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Space form
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Abstract

In this paper, we study a Lightlike hypersurface of a semi-Riemann manifold.

We show that a lightlike hypersurface is totally geodesic if and only if it is locally

symmetric. Also, we show that a lightlike Hypersurface of IR4m
4q (m, q > 1) is totally

geodesic under some restrictions. Finally, we give some results on Ricci curvature

of a lightlike hypersurface to be symmetric.

1. Introduction

The general theory of lightlike (or, null) hypersurfaces is one of the most important

topics of differential geometry. A few authors have studied lightlike (null) hypersurfaces

(or submanifolds) of semi-Riemannian manifold [1], [2], [3], [4], and others. In [1], the

authors have constructed the vector bundles related to a degenerate submanifold in a

semi-Riemann manifold and obtained many properties about these submanifolds.

In the present paper, we consider real lightlike hypersurfaces of a semi-Riemann

manifold. We show that M is totally geodesic in a locally symmetric semi-Riemannian

manifold if and only if M is locally symmetric. Also, it is shown that M is totally geodesic

in a semi-Euclidean space if (∇Xφa) = 0, a = 1, 2, 3. We give some corollaries on screen

distribution and induced metric depend upon the above results.
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2. Preliminaries

Firstly, we note that the notations and fundamental formulas used in this study are

the same as [3]. Let M be a (m+2)− dimensional semi-Riemannian manifold with index

q ∈ {1, ..., m+ 1}. Let M be a hypersurface of M. Denote by g the induced tensor field

by g on M . M is called a lightlike hypersurface if g is of constant rank m. Consider the

vector bundle TM⊥whose fibres are defined by

TxM
⊥ =

{
Yx ∈ TxM | gx (Yx, Xx) = 0, ∀Xx ∈ TxM

}
for any x ∈ M . Thus, a hypersurface M of M is lightlike if and only if TM⊥is a

distribution of rank 1 on M .

The fundamental difference of the theory of lightlike (or, degenerate) hypersurfaces

and the classical theory of hypersurfaces of a semi-Riemannian Manifold M comes from

the fact that, in the first case, the normal bundle TM⊥ lies in the tangent bundle of a

lightlike hypersurface.

An orthogonal complementary vector bundle of TM⊥ in TM is nondegenerate sub-

bundle of TM called the screen distribution on M and denoted S(TM). We have the

following splitting into orthogonal direct sum:

TM = S(TM)⊥TM⊥. (2.1)

The subbundle S(TM) being non-degenerate, so is S(TM)⊥ and the following holds:

TM = S(TM) ⊥ S(TM)⊥, (2.2)

where S(TM)⊥ is the orthogonal complementary vector bundle to S(TM) in TM |M .

In fact, TM⊥ is a subbundle of S(TM)⊥. Let ltr(TM) denote its complementary vector

bundle in S(TM)⊥. Then we have

S(TM)⊥ = TM⊥ ⊕ ltr(TM). (2.3)
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Let U be a coordinate neighborhood of M and ξ be a basis of Γ(TM⊥ |U ). Then

there exists a basis N of Γ(ltr(TM) |U) satisfying the following conditions:

g(N, ξ) = 1

and

g (N,N) = g (W,W ) = 0, ∀W ∈ Γ (S(TM) |U) .

The subbundle ltr(TM) is called a lightlike transversal vector bundle of M . We note

that ltr(TM) is never orthogonal to TM [3]. From (2.1), (2.2) and (2.3) we have the

following decomposition

TM |M= S(TM) ⊥
(
TM⊥ ⊕ ltr(TM)

)
= TM ⊕ ltr(TM).

Hence we have a local quasi-orthonormal field {ξ, N,Wi}, i ∈ {1, 2, 3, ...,m} of frames

of TM along M, where {Wi} is orthonormal basis of Γ (S(TM) |U) .

Let ∇ be Levi-Civita connection on M . We have

∇XY = ∇XY + h(X, Y ), (2.4)

and

∇XV = −AVX +∇⊥XV, (2.5)

for any X, Y ∈ Γ (TM) and V ∈ Γ (ltr(TM)), where ∇XY, AVX ∈ Γ (TM) and

h(X, Y ),∇⊥XV ∈ Γ (ltr(TM)). ∇ called an induced linear connection, is a symmetric

linear connection on M , ∇⊥ is a linear connection on the vector bundle ltr(TM), h

is a Γ (ltr(TM))-valued symmetric bilinear form and AV is the shape operator of M

concerning V .

Locally, suppose {ξ, N} is a pair of sections on U ⊂ M . Then define a symmetric

F (U)-bilinear form B and a 1-form τ on U by
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B(X, Y ) = g(h(X, Y ), ξ), ∀X, Y ∈ Γ (TM |U)

and

τ (X) = g
(
∇⊥XN, ξ

)
.

Thus (2.4) and (2.5) locally become

∇XY = ∇XY + B(X, Y )N, (2.6)

and

∇XN = −ANX + τ (X)N, (2.7)

respectively.

Let denote P as the projection of TM on S(TM). We consider decomposition

∇XPY = ∇∗XPY +C(X, PY )ξ (2.8)

and

∇Xξ = −A∗ξX + ε (X) ξ, (2.9)

where ∇∗XPY , A∗ξX belong to S(TM) and C is a 1-form on U ·. From (2.7) and (2.9) it

is easy to check that ε = −τ . Thus we can write

∇Xξ = −A∗ξX − τ (X) ξ. (2.10)

Thus we have the equations [3]

g (ANX, PY ) = C(X, PY ), g(ANX,N) = 0 (2.11)
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g(A∗ξX, PY ) = B(X, PY ), g(A∗ξX,N) = 0 (2.12)

for any X, Y ∈ Γ (TM).

We denote the curvature tensors associated with ∇ and ∇ by R and R, respectively.

Then we have

R(X, Y )Z = R(X, Y )Z +Ah(X,Z)Y −Ah(Y,Z)X (2.13)

+(∇Xh)(Y, Z)− (∇Y h)(X,Z).

We note that the induced connection on M satisfies

(∇Xg) (Y, Z) = B(X, Y )η(Z) +B(X,Z)η(Z) (2.14)

for any X, Y, Z ∈ Γ (TM |U )[3].

Now, we give some definitions used in this paper. A vector field X on a lightlike

submanifold is called a Killing vector field if LXg = 0, where L is the Lie derivative. A

distribution D on a lightlike submanifold is called a Killing distribution if each vector

field belonging to D is a Killing vector field. A distribution D is called a parallel

distribution if ∇XY ∈ Γ(D), for X, Y ∈ Γ(D). A manifold M is called locally symmetric

if ∇R = 0, where ∇ is the linear connection on M and R is the curvature tensor field

on M . Geometrically, M is locally symmetric if and only if at each point the geodesic

symmetry is a connection-preserving transformation[5].

3. Lightlike Hpersurfaces of a Semi-Riemannian Space Form

First, we start the following lemma whose proof follows from (2.13).

Lemma 3.1 Let M be a semi-Riemann manifold and M be a lightlike hypersurface of

M. Then we have
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R(X, Y )Z = R(X, Y )Z + B(X,Z)AY − B(Y, Z)AX

+(∇XB)(Y, Z)N + B(Y, Z)τ (X)N − (∇Y B)(X,Z)N,

−B(X,Z)τ (Y )N (3.15)

where R and R are curvature tensors of M and M , respectively.

Lemma 3.2 Let M be a semi-Riemann manifold and M be a lightlike hypersurface of

M. Then we have

(∇WR)(X, Y, Z) = (∇WR)(X, Y, Z) + B (W,R(X, Y )Z)N + (∇WB) (X,Z)AY

− (∇WB) (X,Z)τ (Y )N + B(X,Z) (∇WA)Y +B(X,Z)B(W,AY )N

− (∇WB) (Y, Z)AX −B(Y, Z) (∇WA)X −B(Y, Z)B(W,AX)N

+ (∇W (∇XB))) (Y, Z)N − (∇W (∇YB))) (X,Z)N

+B(Y, Z) (∇W τ ) (X)N −B(Y, Z)τ (X)AW + τ (X) τ (W )B(Y, Z)N

+ (∇Y B) (X,Z)AW − (∇YB) (X,Z)τ (W )N − (∇XB) (Y, Z)AW

+ (∇XB) (Y, Z)τ (W )N −B(X,Z) (∇τ ) (Y )N + B(X,Z)τ (Y )AW

+B(X,Z)τ (Y ) τ (W )N − (∇∇WXB) (Y, Z)N + (∇∇WY B) (X,Z)N

−R (h(W,X), Y )Z −R(X, h(W, Y ))Z −R (X, Y )h(W,Z)

+ (∇WB) (Y, Z)τ (X)N

for any X, Y, Z,W ∈ ΓTM) and N ∈ Γ (ltr(TM)) .

Proof. By the definition of covariant derivation of R, we have

(
∇WR

)
(X, Y, Z) = ∇WR(X, Y, Z) −R

(
∇WX, Y

)
Z −R

(
X,∇WY

)
Z

R (X, Y )∇WZ.

In this equation, using (2.6), (2.7) and (3.15) we obtain the assertion of the lemma. 2
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Theorem 3.1 Let M be a locally symmetric semi-Riemann manifold and M be a lightlike

hypersurface of M such that Aξ is not a null vector field. Then M is locally symmetric

if and only if M is totally geodesic.

Proof. By the definition of lightlike hypersurface, M is locally symmetric if and only if

g ((∇XR) (Y, Z,W ), T ) = 0

and

g ((∇XR) (Y, Z,W ), N) = 0

for any X, Y, Z,W ∈ Γ (TM) , T ∈ Γ(S(TM)) and N ∈ Γ (ltr(TM)) . From Lemma 3.2.

and (2.11) we get

−g ((∇XR) (Y, Z,W ), T ) = (∇WB) (X,Z)C(Y, T ) − (∇WB) (Y, Z)C(X, T )

+B(X,Z)g((∇WA)Y, T ) −B(Y, Z)g((∇WA)X, T )

−B(Y, Z)τ (X)C(W, T ) +B(X,Z)τ (Y )C(W, T )

+ (∇Y B) (X,Z)C(W, T )− (∇XB) (Y, Z)C(W, T )

−g
(
R(Z, T )h(W,X), Y

)
−g(R(X, h(W, Y )Z, T )− g(R(X, Y )h(W,Z), T ) (3.16)

and

−g ((∇WR) (X, Y )Z,N) = g(∇WAY,N)B(X,Z) − g(∇WAX,N)B(Y, Z)

−B(W,X)R (N, Y, Z,N)− B(W, Y )R(X,N, Z,N)

−B(W,Z)R(X, Y,N,N)

= g(∇WAY,N)B(X,Z) − g(∇WAX,N)B(Y, Z)

−B(W,X)R (N, Y, Z,N)

−B(W, Y )R(X,N, Z,N). (3.17)
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Now, we suppose that M is totally geodesic, then from (3.16) and (3.17) we have

∇R = 0. i.e. M is locally symmetric. Conversely, suppose M is locally symmetric, then

from (3.17), for W = ξ, we have

g(∇ξAY,N)B(X,Z) − g(∇ξAX,N)B(Y, Z) = 0.

Hence we get

0 = g(∇ξAY,N)B(X,Z) − g(∇ξAX,N)B(Y, Z)

= ξg(AY,N)B(X,Z) − g(AY,∇ξN)B(X,Z)

−ξg(AX,N)B(Y, Z) + g(AX,∇ξN)B(Y, Z)

= ξg(AY,N)B(X,Z) + g(AY,Aξ)B(X,Z)

−ξg(AX,N)B(Y, Z) − g(AX,Aξ)B(Y, Z).

For X = ξ we obtain

0 = g(AY,Aξ)B(ξ, Z) − g(Aξ, Aξ)B(Y, Z)

= −g(Aξ, Aξ)B(Y, Z),

which proves assertion of this theorem. 2

Theorem 3.2 Let M be a lightlike hypersurface of semi-Euclidean space IR4m
4q , (q > 1, m > 1) .

If (∇Xφa)Y = 0, a = 1, 2, 3, then M is totally geodesic, where φa, a = 1, 2, 3 are types of

(1,1) tensor fields.

Proof. Let Ja, a = 1, 2, 3 be almost quaternion Hermitian structures of IR4m
4q . Then we

can write

JaY = φaY + FaY (3.18)
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for any Y ∈ Γ (TM), where φaY ∈ Γ (TM) and FaY ∈ Γ (ltr(TM)). Since dim(ltr(TM)) =

1 we have

JaY = φaY + ηa(Y )N, (3.19)

where ηa(Y ) = g (Y, Jaξ) . On the other hand , since Ja are parallel in IR4m
4q , we obtain

∇XJaY − Ja∇XY = 0.

Using (2.6), (2.7) and (3.19) we derive

0 = ∇X(φaY + ηa(Y )N)− Ja∇XY

= ∇XφaY +B(X, φaY ) + X(ηa(Y ))N − ηa(Y )AX + τ (X) ηa(Y )N

−Ja (∇XY + h(X, Y ))

= ∇XφaY +B(X, φaY ) + X(ηa(Y ))N − ηa(Y )AX + τ (X) ηa(Y )N

−φa∇XY − ηa(∇XY )N − B(X, Y )JaN.

Hence we have

(∇Xφa)Y = ηa(Y )AX +B(X, Y )JaN. (3.20)

Now we suppose that (∇Xφa)Y = 0, then we have

ηa(Y )AX = B(X, Y )Ua, (3.21)

where Ua = −JaN. Thus from (3.21) we get

η1(Y )AX = B(X, Y )U1

η2(Y )AX = B(X, Y )U2

η3(Y )AX = B(X, Y )U3.
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Since U1, U2 and U3 linearly independent we have B(X, Y ) = 0. 2

From the Theorem 3.2 and a theorem of Duggal-Bejancu(cf. [3] Theorem 2.2, P.88 ) we

can give the following corollaries.

Corollary 3.1 Let M be a lightlike hypersurface of semi-Euclidean space IR4m
4q , (q > 1, m > 1) .

If (∇Xφa)Y = 0, a = 1, 2, 3, we have the following assertions;

a) A∗ξ vanishes identically on M.

b) There exists a unique torsion-free metric connection ∇ induced by ∇ on M .

c) TM⊥ is a parallel distribution with respect to ∇.
d) TM⊥ is a Killing distribution on M.

Corollary 3.2 Let M be a totally geodesic lightlike hypersurface of semi-Euclidean space

IR4m
4q , (q > 1, m > 1) . Then screen distribution of M is parallel if and only if (∇Xφa)Y =

0, a = 1, 2, 3.

Proof. Since M is totally geodesic, from (3.20) we have

(∇Xφa)Y = ηa(Y )AX

for any X, Y ∈ Γ (TM) . Thus we get

g ((∇Xφa)Y,N) = 0.

On the other hand, from (2.11) we obtain

g ((∇Xφa) Y, T ) = ηa(Y )C (X, T ) .

Thus C(X, T ) = 0⇐⇒ g ((∇Xφa)Y, T ) = 0. This complete the proof. 2

From the semi-Riemann (Also Riemann) we know that mean curvature of a sub-

manifold is α = trace A. Thus we can give definition of mean curvature of lightlike
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hypersurface as α = trace A. By the definition of the lightlike hypersurface in a semi-

Riemann manifold we have α =
m−1∑
i=1

εig(ANwi, wi) + g(ANξ, N). From (2.11), we have

α =
∑
i=1

εig(ANwi, wi), where {wi} i ∈ {1, 2, ..., m− 1} are the orthonormal basis of screen

distribution.

Proposition 3.1 Let M be a lightlike hypersurface of an (m + 2)-dimensional semi-

Riemann manifold M. Then we have

α =
m∑
i=1

εiC(wi, wi)

Proof. From (2.11), proof is trivial. 2

Theorem 3.3 Let M be a lightlike hypersurface of an (m+2)-dimensional semi-Riemann

space form M (c) . Then we have

Ric(X, Y ) = mcg(PX, PY ) −B(X, Y )α+
m∑
i=1

εiB(wi, Y )C(X,wi) (3.22)

for any X, Y ∈ Γ (TM) .

Proof. By the definition of lightlike hypersurface, we have

Ric(X, Y ) =
m∑
i=1

εig(R(X,wi)Y, wi) + g(R(X, ξ)Y,N).

Thus, from (2.13) we get

Ric(X, Y ) = mcg(PX, PY )−
m∑
i=1

εiC(wi, wi)B(X, Y ) +
m∑
i=1

εiB(wi, Y )C(X,wi)
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or

Ric(X, Y ) = mcg(PX, PY ) − αB(X, Y ) +
m∑
i=1

εiB(wi, Y )C(X,wi).

2

Proposition 3.2 The Ricci tensor of a lightlike hypersurface in a semi-Riemann space

form is degenerate.

From (2.14) we can easily see that the induced connection is not a metric connection.

Moreover, as the tansversal bundle is not orthogonal to the tangent bundle of a lightlike

submanifold, we conclude that the shape operator of a lightlike submanifold is not self-

adjoint. Therefore the Ricci tensor field is not symmetric in a lightlike submanifold in

general. A. Bejancu ([2])showed that the Ricci tensor of a lightlike hypersurface in a semi-

space form is symmetric if and only if dτ = 0. Now, we give an another necessary and

sufficient condition on the Ricci tensor field of a lightlike submanifold to be symmetric.

Proposition 3.3 The Ricci tensor of lightlike hypersurface in a semi-Riemann space

form M(c) is symmetric if and only if the shape operator of a lightlike hypersurface of

M(c) is symmetric with respect to the second fundamental form of M.

Proof. From (3.22) we have

Ric(X, Y )− Ric(Y,X) =
m∑
i=1

εiB(wi, Y )C(X,wi)− B(wi, X)εiC(Y, wi).

On the other hand, using equations (2.11) and (2.12) we arrive at
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m∑
i=1

εiB(wi, Y )C(X,wi) =
m∑
i=1

εig (ANX,wi) g(A∗ξY, wi)

= g(A∗ξY,
m∑
i=1

εig (ANX,wi)wi)

= g(A∗ξY, ANX)

= B(Y, AX).

Thus we derive

Ric(X, Y )− Ric(Y,X) = B(Y, AX) −B(X,AY ).

2

Corollary 3.3 The Ricci tensor of lightlike hypersurface in a semi-Riemann space form

M(c) is symmetric if and only if C(X,A∗ξY ) = C(Y, A∗ξX)

Theorem 3.4 Let M be a lightlike hypersurface of a semi-Riemann space form M(c). If

M is totally geodesic, then the Ricci tensor of M is parallel with respect to ∇. Conversely,

if the Ricci tensor of M is parallel with respect to ∇ then C(A∗ξZ,AX) = C(A∗ξX,AZ)

Proof. First, we compute derivative of Ricci tensor. We define (∇ZRic) (X, Y ) =

∇ZRic(X, Y ) −Ric(∇ZX, Y )− Ric(X,∇ZY ).

Then from (2.14) and (3.22) we have

(∇ZRic) (X, Y ) = −(m)c {B(Z,X)η (Y ) + B(Z, Y )η (X)}

− (∇ZB) (X, Y )α −B(X, Y )(Z(α)) +
m−1∑
i=1

εi{B(∇Zwi, Y )C(X,wi)

+ (∇ZB) (wi, Y )C(X,wi) + B(wi, Y )C(X,∇Zwi)

+B(wi, Y ) (∇ZC) (wi, X)}. (3.23)
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Thus from (3.23) , we obtain that if M is totally geodesic, then (∇ZRic) (X, Y ) = 0.

Conversely we suppose that (∇ZRic) (X, Y ) = 0. Then for Y = ξ, we get

0 = −(m− 1)cB(Z,X) +B(X,∇Zξ)α−
m∑
i=1

εiB(wi,∇Zξ)C(X,wi)

by the using (2.10) we derive

0 = −(m− 1)cB(Z,X) − B(X,A∗ξZ)α −
m∑
i=1

εiB(wi, A∗ξZ)C(X,wi). (3.24)

Interchanging Z and X in (3.24) and subtracting, we get

−
m∑
i=1

εiB(wi, A∗ξZ)C(X,wi) +
m∑
i=1

εiB(wi, A∗ξX)C(Z, wi) = 0,

and in a similar way to the proof of Proposition 3.3, we have

−g(A∗ξA∗ξZ,AX) + g(A∗ξA
∗
ξX,AZ) = 0.

Thus from (2.11) we conclude that

C(A∗ξZ,AX) = C(A∗ξX,AZ),

which proves assertion of the theorem. 2
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