Turk J Math 27 (2003) , 299 – 314. © TÜBİTAK

On locally *m*-pseudoconvex A^* -algebras

A. El Kinani

Abstract

We consider classical A^* -algebras in the context of locally pseudoconvex algebras. Results concerning the auxiliary topology and A^* -algebras of the first kind are given.

Key words and phrases: Locally *m*-pseudoconvex A^* -algebra, auxiliary topology, *Q*-algebra, pre- C^* -algebra, A^* -algebra of the first kind.

Introduction

This paper is concerned with a natural extension of the classical (Banach) A^* -algebras (cf. [1], Definition 1., p. 214) in the general context of locally *m*-pseudoconvex algebras. We consider a locally *m*-pseudoconvex algebra $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}), 0 < p_{\lambda} \leq 1$, endowed with a generalized involution $x \mapsto x^*$, on which there is defined a second locally pseudoconvex topology, called the auxiliary topology, given by a family $(\|\cdot\|_{\alpha})_{\alpha \in \Gamma}$ of q_{α} -seminorms, $0 < q_{\alpha} \leq 1$, with C^* -properties. We call the resulting algebra a locally *m*-pseudoconvex A^* algebra. Such an algebra will be denoted by $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$. We show that the auxiliary topology, of every locally *m*-pseudoconvex A^* -algebra $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$, is necessarily locally *m*-convex and hence $\left(E, \left(\|\cdot\|_{\alpha}^{\frac{1}{q_{\alpha}}}\right)_{\alpha \in \Gamma}\right)$ is a locally pre- C^* -algebra. Furthermore, if $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda})$ is a *Q*-algebra, then $\|\cdot\| = \sup \left\{\|\cdot\|_{\alpha}^{\frac{1}{q_{\alpha}}} : \alpha \in \Gamma\right\}$ is a pre- C^* -algebra norm such that $\|\cdot\|_{\alpha} \leq \|\cdot\|^{q_{\alpha}}$, for every $\alpha \in \Gamma$. This last norm is the

¹⁹⁹¹ Mathematics Subject Classification: Primary 46H20. 46C50.

coarsest among algebra norms which are stronger than $(\|\cdot\|_{\alpha})_{\alpha\in\Gamma}$. Moreover, $(E, \|\cdot\|)$ is a C^* -algebra if $(E, (\|\cdot\|_{\alpha})_{\alpha\in\Gamma})$ is pseudo-complete (i.e., every bounded and closed idempotent disk is Banach). On the other hand, we consider A^* -algebras of the first kind. In this case, we prove that the auxiliary topology is unique. We also obtain that if $(E, (|\cdot|_{\lambda})_{\lambda\in\Lambda}, (\|\cdot\|_{\alpha})_{\alpha\in\Gamma})$ is of the first kind, then $(E, (\|\cdot\|_{\alpha})_{\alpha\in\Gamma})$ is (modulo a topological algebra isomorphism) topologically and algebraically isomorphic to $(E, \|\cdot\|)$.

1. Preliminaries

All algebras in this paper are complex and associative. An involutive antimorphism on an algebra E is a vector involution $x \mapsto x^*$ ([1]) such that $(xy)^* = x^*y^*$, for every $x, y \in E$. A vector space involution $x \mapsto x^*$ is said to be a generalized involution if either it is an algebra involution (i.e. $(xy)^* = y^*x^*$, for every $x, y \in E$) or an involutive antimorphism. Let E be a vector space and $\|\cdot\|_p$, 0 , a p-seminorm, on E, (i.e., nonnegative function $x \mapsto \|x\|_p$ such that $\|x+y\|_p \le \|x\|_p + \|y\|_p$ and $\|\lambda x\|_p = |\lambda|^p \|x\|_p$, for all x, y in E and $\lambda \in C$). If, in addition, $||x||_p = 0$ implies x = 0, then $||\cdot||_p$ is a *p*-norm. By a *p*-normed space, we mean a space endowed with a *p*-norm. A complete *p*-normed space is called a *p*-Banach space. Moreover, if E is an algebra and $\|\cdot\|_p$ is submultiplicative (i.e., $||xy||_p \leq ||x||_p ||y||_p$, for all $x, y \in E$), then $||\cdot||_p$ is called an algebra *p*-norm. A *p*-normed algebra is an algebra endowed with an algebra p-norm. A complete p-normed algebra is called a p-Banach algebra. Let (E, τ) be a locally pseudoconvex space ([10], [14]) the topology of which is given by a family $\{|\cdot|_{\lambda} : \lambda \in \Lambda\}$ of p_{λ} -seminorms, $0 < p_{\lambda} \leq 1$. If E is endowed with an algebra structure such that $|xy|_{\lambda} \leq |x|_{\lambda} |y|_{\lambda}$ for every $x, y \in E$ and $\lambda \in \Lambda$, we say that $(E, (|.|_{\lambda})_{\lambda \in \Lambda})$ is a locally *m*-pseudoconvex algebra. If, in addition, E is endowed with an involution $x \mapsto x^*$ such that $|x|_{\lambda} = |x^*|_{\lambda}$, for any $x \in E$ and $\lambda \in \Lambda$, then $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda})$ is called a locally *m*-pseudoconvex.*-algebra. An element *a* of E is said to be hermitian (resp. normal) if $a = a^*$ (resp. $aa^* = a^*a$). We designate by H(E) (resp. N(E)) the set of hermitian (resp. normal) elements of E. We denote Ptak's function on E by P_E , that is, for every $a \in E$, $P_E(a) = \rho_E(aa^*)^{\frac{1}{2}}$, where ρ_E is the spectral radius, i.e. $\rho_E(a) = \sup \{ |\lambda| : \lambda \in Sp(a) \}$.

Let $(E, \|\cdot\|_p)$, 0 , be a*p* $-Banach algebra with a generalized involution. If <math>(E, \|\cdot\|_p)$ is hermitian (i.e., the spectrum of every hermitian element is real), we show, as in the Banach case ([9]), that P_E is an algebra seminorm such that $\rho_E \leq P_E$ and $P_E(a)^2 = P_E(aa^*)$, for every $a \in E$. Moreover $\operatorname{Rad} E = \{x \in E : P_E(x) = 0\}$. Taking into account the fact that, in any *p*-Banach algebra $(E, \|\cdot\|_p)$, we have $\rho_E(a)^p = \lim_n \|a^n\|_p^{\frac{1}{n}}$, for every $a \in E$, we prove, as in [9], the following result.

Proposition 1.1 Let $(E, \|\cdot\|_p)$, $0 , be a p-Banach algebra with a generalized involution <math>x \mapsto x^*$. The following assertions are equivalent.

- **1)** E is hermitian.
- **2)** There is c > 0 such that $\rho_E(a) \leq cP_E(a)$, for every $a \in N(E)$.
- **3)** $\rho_E(a) \leq P_E(a)$, for every $a \in E$.

Using Theorem 3 of [15] and the fact that the quotient of a p-Banach algebra by a primitive ideal is a primitive p-Banach algebra, we extend theorem 4.8 of Kaplansky ([5]) to the p-Banach case as follows.

Theorem 1.2 Any real semi-simple p-Banach algebra, 0 , in which every square is quasi-invertible, is necessarily commutative.

2. Locally *m*-pseudoconvex *A**-algebras.

We introduce locally *m*-pseudoconvex A^* -algebras as a natural extension of the classical Banach A^* -algebras (cf. [1], Definition 1., p. 214) as follows.

Definition 2.1 A locally m-pseudoconvex A^* -algebra is a locally m-pseudoconvex *algebra $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}), 0 < p_{\lambda} \leq 1$, on which there is defined a second locally pseudoconvex Hausdorff topology, called the auxiliary topology, given by a family $(||\cdot||_{\alpha})_{\alpha \in \Gamma}$ of q_{α} -seminorms, $0 < q_{\alpha} \leq 1$, such that

$$\|x^*x\|_{\alpha} = \|x\|_{\alpha}^2, \text{ for every } x \in E \text{ and } \alpha \in \Gamma.$$
(1)

We do not pose either submultiplicativity or preservation of the involution for q_{α} seminorms $\|\cdot\|_{\alpha}$, $(\alpha \in \Gamma)$. These properties occur automatically from [2] which is an
extension of Sebestyén's result ([11]). To make the paper self-contained, we give the
following result.

Proposition 2.2 Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda})$ and $(||\cdot||_{\alpha})_{\alpha \in \Gamma}$ be as described in definition 2.1. Then

 $||xy||_{\alpha} \leq ||x||_{\alpha} ||y||_{\alpha}$, for every $x, y \in E$ and $\alpha \in \Gamma$.

In particular,

1) $||x||_{\alpha} = ||x^*||_{\alpha}$, for every $x \in E$ and $\alpha \in \Gamma$,

2) $||x||_{\alpha} = \sup \{ ||xy||_{\alpha} : ||y||_{\alpha} \le 1 \} = \sup \{ ||yx||_{\alpha} : ||y||_{\alpha} \le 1 \}$, for every $x \in E$ and $\alpha \in \Gamma$.

Proof. By considering the algebraic identity

$$\begin{aligned} 4ab &= (b+a^*)^*(b+a^*) + i(b+ia^*)^*(b+ia^*) \\ &- (b-a^*)^*(b-a^*) - i(b-ia^*)^*(b-ia^*) \end{aligned}$$

is valid for every $a, b \in E$, we obtain that

$$\|ab\|_{\alpha} \le 4^{2-q_{\alpha}} \|a^*\|_{\alpha} \|b\|_{\alpha}, \text{ for every } a, b \in E.$$

$$\tag{2}$$

Thus by (1) we get

$$\|a^*\|_{\alpha} \le 4^{1-\frac{q_{\alpha}}{2}} \|a\|_{\alpha}, \text{ for every } a \in E.$$
(3)

As a consequence of (2) and (3), we get

$$\|ab\|_{\alpha} \leq 4^{3-\frac{3q_{\alpha}}{2}} \|a\|_{\alpha} \|b\|_{\alpha}$$
, for every $a, b \in E$.

Consider on $E/Ker \left\|\cdot\right\|_{\alpha}$ the $q_{\alpha}\text{-norm,}$ also denoted by $\left\|\cdot\right\|_{\alpha},$ defined by

$$\|\pi_{\alpha}(x)\|_{\alpha} = \|x\|_{\alpha}; \ x \in E,$$

where π_{α} is the natural quotient map of E onto $E/Ker \|\cdot\|_{\alpha}$. Let $\overset{\wedge}{F_{\alpha}}$ be the completion of $F_{\alpha} = E/Ker \|\cdot\|_{\alpha}$ with respect to the q_{α} -norm $\|\cdot\|_{\alpha}$. The q_{α} -norm in $\overset{\wedge}{F_{\alpha}}$ will also designated by $\|\cdot\|_{\alpha}$. Then we have

$$\|a^*a\|_{\alpha} = \|a\|_{\alpha}^2; \text{ for every } a \in \stackrel{\wedge}{F_{\alpha}}$$

$$\tag{4}$$

and also

$$\|ab\|_{\alpha} \le 4^{3-\frac{3q_{\alpha}}{2}} \|a\|_{\alpha} \|b\|_{\alpha}, \text{ for every } a, b \in \overset{\wedge}{F_{\alpha}}.$$
(5)

For $a \in \stackrel{\wedge}{F_{\alpha}}$, put

$$||a||'_{\alpha} = \sup\{||ab||_{\alpha} : ||b||_{\alpha} \le 1\}.$$

We get an algebra q_{α} -norm, on $\overset{\wedge}{F_{\alpha}}$, such that

$$4^{\frac{q_{\alpha}}{2}-1} \|a\|_{\alpha} \le \|a\|_{\alpha}' \le 4^{3-\frac{3q_{\alpha}}{2}} \|a\|_{\alpha}, \text{ for every } a \in \stackrel{\wedge}{F_{\alpha}}.$$

Moreover, one get from the above that

$$\rho_{\stackrel{\wedge}{F_{\alpha}}}(a) = P_{\stackrel{\wedge}{F_{\alpha}}}(a), \text{ for every } a \in N(\stackrel{\wedge}{F_{\alpha}}), \tag{6}$$

which yields

$$\rho_{\stackrel{\wedge}{F_{\alpha}}}(a)^{q_{\alpha}} = \|a\|_{\alpha}, \text{ for every } a \in N(\stackrel{\wedge}{F_{\alpha}}).$$
(7)

By Proposition 1.1, the algebra $\left(\hat{F}_{\alpha}, \|\cdot\|_{\alpha}\right)$ is hermitian and so

$$\rho_{\stackrel{\wedge}{F_{\alpha}}}(a) \le P_{\stackrel{\wedge}{F_{\alpha}}}(a), \text{ for every } a \in \stackrel{\wedge}{F_{\alpha}}.$$
(8)

.

We consider first that $x \mapsto x^*$ is an algebra involution. In this case, we get by (7) and (8), for every $n \in N^*$,

$$\|ab\|_{\alpha}^{2} \leq \left\| (bb^{*})^{2^{n-1}} (a^{*}a)^{2^{n}} (bb^{*})^{2^{n-1}} \right\|_{\alpha}^{2^{-n}}, \text{ for every } a, b \in \overset{\wedge}{F_{\alpha}}.$$

It then follows from (5) and (4) that

$$||ab||_{\alpha}^{2} \leq (4^{6-3q_{\alpha}})^{2^{-n}} ||a||_{\alpha}^{2} ||b||_{\alpha}^{2}$$
; for every $n \in N^{*}$ and $a, b \in \overset{\wedge}{F_{\alpha}}$.

Therefore taking limit for $n \longrightarrow \infty$, we conclude that

$$\|ab\|_{\alpha} \leq \|a\|_{\alpha} \, \|b\|_{\alpha} \,, \text{ for every } a, b \in \stackrel{\frown}{F_{\alpha}}$$

and in particular

$$\|ab\|_{\alpha} \leq \|a\|_{\alpha} \|b\|_{\alpha}$$
, for every $a, b \in E$.

Suppose now that $x \mapsto x^*$ is an involutive antimorphism. We will show that, in this case, the algebra $\stackrel{\wedge}{F_{\alpha}}$ is commutative. It is sufficient to consider the real q_{α} -Banach algebra $H(\stackrel{\wedge}{F_{\alpha}})$. By (7), we have $\operatorname{Rad}(H(\stackrel{\wedge}{F_{\alpha}})) = \{0\}$. $\stackrel{\wedge}{F_{\alpha}}$ is Hermitian and by Theorem 1.2 $H(\stackrel{\wedge}{F_{\alpha}})$ is commutative. The second statement of the proposition follows immediately from (1) and the submultiplicativity of q_{α} -seminorms $\|\cdot\|_{\alpha}$, ($\alpha \in \Gamma$). This completes the proof. \Box

For the rest of the paper, $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ will denote a locally *m*-pseudoconvex A^* -algebra $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}), 0 < p_{\lambda} \leq 1$, with auxiliary topology given by $(\|\cdot\|_{\alpha})_{\alpha \in \Gamma}, 0 < q_{\alpha} \leq 1$.

The following result shows that the auxiliary topology is necessarily locally *m*-convex.

Proposition 2.3 Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ be a locally *m*-pseudoconvex A^* -algebra. Then, for every $\alpha \in \Gamma$, $\|\cdot\|_{q\alpha}^{\frac{1}{q\alpha}}$ is an algebra seminorm.

Proof. Let us first notice that if $x \mapsto x^*$ is an involutive antimorphism, then the algebra $\overset{\wedge}{F_{\alpha}}$ is commutative. So there is no loss in assuming that $x \mapsto x^*$ is an algebra involution. On the other hand, the algebra $\overset{\wedge}{F_{\alpha}}$ is hermitian and $P_{\overset{\wedge}{F_{\alpha}}}$ is an algebra seminorm such that

$$P_{\stackrel{\wedge}{F_{\alpha}}}(a)^2 = P_{\stackrel{\wedge}{F_{\alpha}}}(a^*a), \text{ for every } a \in \stackrel{\wedge}{F_{\alpha}}.$$

But, by (7),

$$P_{\stackrel{\wedge}{F_{lpha}}}(a)^{q_{lpha}}=\left\Vert a
ight\Vert _{lpha}, ext{ for every }a\in \stackrel{\wedge}{F_{lpha}}.$$

Whence $\|\cdot\|_{\alpha}^{\frac{1}{q_{\alpha}}}$ is an algebra seminorm for $P_{\stackrel{\wedge}{F_{\alpha}}}$ is so. This completes the proof.

As a consequence, we obtain the following results.

Corollary 2.4 Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ be a locally *m*-pseudoconvex A^* -algebra. Then, for every $\alpha \in \Gamma$,

$$||a||^2_{\alpha} \leq \rho(a^*a)^{q_{\alpha}}, \text{ for every } a \in E.$$

In particular, E is semi-simple.

Proof. Observe first that one checks that,

$$\rho_{\widehat{E}}(a) \le \rho(a), \text{ for every } a \in E,$$

where \widehat{E} is the completion of $(E, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$. But

$$\rho_{\widehat{E}}(a) = \sup\left\{\lim_{n} \|a^n\|_{\alpha}^{\frac{1}{nq_{\alpha}}} : \alpha \in \Gamma\right\}.$$

 So

$$\sup\left\{\lim_{n} \|a^{n}\|_{\alpha}^{\frac{1}{nq_{\alpha}}} : \alpha \in \Gamma\right\} \le \rho(a), \text{ for every } a \in E.$$

On the other hand, we have

$$\|h\|_{\alpha} = \left\|h^{2^n}\right\|_{\alpha}^{\frac{1}{2^n}}$$
, for every $h \in H(E)$.

and $n = 1, 2, \dots$ This implies that

$$||h||_{\alpha} \leq \rho(h)^{q_{\alpha}}$$
, for every $h \in H(E)$.

We consider first that $x \longmapsto x^*$ is an algebra involution. In this case, we get, for every $a \in E$,

$$||a||_{\alpha}^{2} = ||aa^{*}||_{\alpha} \le \rho(aa^{*})^{q_{\alpha}}.$$

Suppose now that $x \mapsto x^*$ is an involutive antimorphism. In this case, the algebra $\stackrel{\wedge}{F_{\alpha}}$ is commutative by Theorem 1.2 and hence $E/Ker \|\cdot\|_{\alpha}$ is also commutative. So we have

$$||a||_{\alpha}^{2} = ||\pi_{\alpha}(a)||_{\alpha}^{2} \le \rho (\pi_{\alpha}(aa^{*}))^{q_{\alpha}} \le \rho (aa^{*})^{q_{\alpha}}.$$

The second claim follows from standard arguments.

Corollary 2.5 Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (||\cdot||_{\alpha})_{\alpha \in \Gamma})$ be a locally *m*-pseudoconvex A^* -algebra. If $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda})$ is Q-algebra, then there is $\lambda_0 \in \Lambda$ such that for every $\alpha \in \Gamma$, we have

$$\|x\|_{\alpha}^{\frac{1}{q_{\alpha}}} \leq |x|_{\lambda_{0}}^{\frac{1}{p_{\lambda_{0}}}}$$
, for every $x \in E$

Proof. By an analogous result of ([12], Corollary 4.1, p. 551), there is $\lambda_0 \in \Lambda$ such that

$$\rho(x)^{p_{\lambda_0}} \leq |x|_{\lambda_0}$$
, for every $x \in E$.

Then, by Corollary 2.4, we have

$$\|x\|_{\alpha}^{\frac{2}{q_{\alpha}}} \leq \rho(x^*x) \leq |x^*x|_{\lambda_0}^{\frac{1}{p_{\lambda_0}}} \leq |x|_{\lambda_0}^{\frac{2}{p_{\lambda_0}}}, \text{ for every } \alpha \in \Gamma \text{ and } x \in E.$$

Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (||\cdot||_{\alpha})_{\alpha \in \Gamma})$ be a locally *m*-pseudoconvex A^* -algebra such that $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda})$ is *Q*-algebra. Put

$$||x|| = \sup\left\{ ||x||_{\alpha}^{\frac{1}{q\alpha}} : \alpha \in \Gamma \right\}.$$

Then $\|\cdot\|$ is a pre- C^* -algebra norm such that $\|x\|_{\alpha} \leq \|x\|^{q_{\alpha}}$, for every $x \in E$ and $\alpha \in \Gamma$. Furthermore we have the following.

Proposition 2.6 Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ be a locally *m*-pseudoconvex A^* -algebra such that $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda})$ is *Q*-algebra.

If \$\left(E, \$\left(\|\cdot \|\frac{1}{q_{\alpha}}\right)_{\alpha \in \Gamma}\right)\$ is pseudo-complete, then \$(E, \|\cdot \|)\$ is a C*-algebra.
 If \$\left(E, \$\left(\|\cdot \|\frac{1}{q_{\alpha}}\right)_{\alpha \in \Gamma}\right)\$ is M-complete (i.e., every bounded and closed disk is Banach),
 then \$(E, \|\cdot \|)\$ and \$\left(E, \$\left(\|\cdot \|\frac{1}{q_{\alpha}}\right)_{\alpha \in \Gamma}\right)\$ have the same bounded sets.

Proof. 1) Completeness of $(E, \|\cdot\|)$ follows from the fact that the unit ball $B_{\|\cdot\|} = \{x \in E : \|x\| \le 1\}$, of $(E, \|\cdot\|)$, is a bounded and closed idempotent disk in $(E, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$.

2) It is due to the fact that any barrel in M-complete locally convex space is bornivorous.

Remark 2.7. If $(E, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ is barreled, then $(E, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ is a pre- C^* -algebra. Moreover one can easily verify that $\|\cdot\|$ is the coarsest among algebra norms which are stronger than $\|\cdot\|_{\alpha}$ for each $\alpha \in \Gamma$.

3. A^* -algebras of the first kind.

Definition 3.1 A locally *m*-pseudoconvex A^* -algebra $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (||\cdot||_{\alpha})_{\alpha \in \Gamma})$ is said to be of the first kind if, for every λ , there exists a constant $c_{\lambda} > 0$ and $\alpha \in \Gamma$ (depending on λ) such that

$$\max(|xy|_{\lambda}^{\frac{1}{p_{\lambda}}}, |yx|_{\lambda}^{\frac{1}{p_{\lambda}}}) \le c_{\lambda} |x|_{\lambda}^{\frac{1}{p_{\lambda}}} ||y||_{\alpha}^{\frac{1}{q_{\alpha}}}, \text{ for all } x, y \in E.$$
(9)

Throughout this section, we suppose that $(|\cdot|_{\lambda})_{\lambda \in \Lambda}$ and $(||\cdot||_{\alpha})_{\alpha \in \Gamma}$ are p_{λ} -norms and q_{α} -norms respectively and $E_{\lambda} = (E, |\cdot|_{\lambda})$ is a Q-algebra, for every $\lambda \in \Lambda$.

Remarks 3.2

1) By Corollary 2.4, we have

$$\|a\|_{\alpha}^{\frac{1}{q_{\alpha}}} \leq \rho_{E_{\lambda}}(aa^*)^{\frac{1}{2}} \leq |aa^*|_{\lambda}^{\frac{1}{2p_{\lambda}}} \leq |a|_{\lambda}^{\frac{1}{p_{\lambda}}}, \text{ for every } a \in E.$$
(10)

Denote by \widehat{E}_{λ} the completion of the p_{λ} -normed algebra E_{λ} and the p_{λ} -norm in \widehat{E}_{λ} by $|\cdot|_{\lambda}$. By (10), the q_{α} -norm $\|\cdot\|_{\alpha}$ can be extended to \widehat{E}_{λ} . So $\left(\widehat{E}_{\lambda}, |\cdot|_{\lambda}\right)$ is a p_{λ} -Banach *-algebra on which there is defined a second algebra C^* -norm $\|\cdot\|_{\alpha}^{\frac{1}{q_{\alpha}}}$. Let \widehat{F}_{α} be the completion of \widehat{E}_{λ} with respect to the auxiliary norm $\|\cdot\|_{\alpha}^{\frac{1}{q_{\alpha}}}$. Then, by (9), we have

$$\max(|xy|_{\lambda}^{\frac{1}{p_{\lambda}}}, |yx|_{\lambda}^{\frac{1}{p_{\lambda}}}) \le c_{\lambda} |x|_{\lambda}^{\frac{1}{p_{\lambda}}} \|y\|_{\alpha}^{\frac{1}{q_{\alpha}}}, \text{ for all } x, y \in \widehat{E_{\lambda}}.$$
(11)

This implies that \widehat{E}_{λ} is a two-sided ideal of \widehat{F}_{α} . Indeed let $a \in \widehat{F}_{\alpha}$. Then there exists a sequence $(a_n)_n$ of \widehat{E}_{λ} such that $\lim_n ||a_n - a||_{\alpha} = 0$. Moreover, by (11), we have

$$\lim_{n} [\max(|xa_n - xa|_{\lambda}^{\frac{1}{p_{\lambda}}}, |a_n x - ax|_{\lambda}^{\frac{1}{p_{\lambda}}})] = 0, \text{ for every } x \in \widehat{E_{\lambda}}.$$

9	n	7
0	U	1

It follows that ax and xa are in $\widehat{E_{\lambda}}$. Conversely, if $\widehat{E_{\lambda}}$ is a two-sided ideal of $\widehat{F_{\alpha}}$, then using the closed graph and uniform boundedness theorems, we prove that (11) is satisfied. For this last fact the proof, being straighforward, is omitted. So a locally *m*-pseudoconvex A^* -algebra $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (||\cdot||_{\alpha})_{\alpha \in \Gamma})$ is for the first kind if, and only if, for every λ there exists $\alpha \in \Gamma$, such that $\widehat{E_{\lambda}}$ is a two-sided ideal of $\widehat{F_{\alpha}}$. In this case, we also have

$$\max(|ax|_{\lambda}^{\frac{1}{p_{\lambda}}}, |xa|_{\lambda}^{\frac{1}{p_{\lambda}}}) \le c_{\lambda} |a|_{\lambda}^{\frac{1}{p_{\lambda}}} \|x\|_{\alpha}^{\frac{1}{q_{\alpha}}}, \text{ for all } a \in \widehat{E_{\lambda}} \text{ and } x \in \widehat{F_{\alpha}}.$$
 (12)

2) For every $x \in \widehat{F_{\alpha}}$, put

$$|x|_{\lambda,1} = \sup\left\{\max(|ax|_{\lambda}, |xa|_{\lambda}) : a \in \widehat{E_{\lambda}} \text{ and } |a|_{\lambda} \le 1\right\}.$$

By (12), it is easy to see that $|x|_{\lambda,1}^{\frac{1}{p_{\lambda}}} \leq c_{\lambda} ||x||_{\alpha}^{\frac{1}{q_{\alpha}}}$ for every $x \in \widehat{F_{\alpha}}$. This together with the fact that $\widehat{E_{\lambda}}$ is dense in $\widehat{F_{\alpha}}$ implies that $|\cdot|_{\lambda,1}$ is an algebra p_{λ} -norm on $\widehat{F_{\alpha}}$. On the other hand, we also have

$$\|x\|_{\alpha}^{\frac{2}{q_{\alpha}}} = \|xx^*\|_{\alpha}^{\frac{1}{q_{\alpha}}} = \rho_{\widehat{E_{\lambda}}}(xx^*), \text{ for every } x \in \widehat{F_{\alpha}}.$$

But $\rho_{\widehat{E_{\lambda}}}(xx^*) = \rho_{\widehat{F_{\alpha}}}(xx^*)$ for $xx^* \in N(E_{\lambda})$. Hence

$$\|x\|_{\alpha}^{\frac{2}{q_{\alpha}}} \leq |x^*|_{\lambda,1}^{\frac{1}{p_{\lambda}}} |x|_{\lambda,1}^{\frac{1}{p_{\lambda}}} \leq c_{\lambda} \|x\|_{\alpha}^{\frac{1}{q_{\alpha}}} |x|_{\lambda,1}^{\frac{1}{p_{\lambda}}}, \text{ for every } x \in \widehat{F_{\alpha}}.$$

This implies that $\|x\|_{\alpha}^{\frac{1}{q_{\alpha}}} \leq c_{\lambda} |x|_{\lambda,1}^{\frac{1}{p_{\lambda}}}$, for every $x \in \widehat{F_{\alpha}}$. So, for each $\lambda \in \Lambda$, $|.|_{\lambda,1}$ defines an algebra p_{λ} -norm on $\widehat{F_{\alpha}}$ which is equivalent to $\|\cdot\|_{\alpha}$.

If E is an A^* -algebra of the first kind, then the auxiliary norm on E is unique ([6], Lemma 3.1. p. 508). In a more general context of locally *m*-pseudoconvex A^* -algebras, we have the following proposition.

Proposition 3.3 Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (||\cdot||_{\lambda})_{\lambda \in \Lambda})$ be a locally m-pseudoconvex A^* -algebra of the first kind. If $(||\cdot||_{1,\lambda})_{\lambda \in \Lambda}$ is a family of r_{λ} -norms, $0 < r_{\lambda} \leq 1$, defining another auxiliary locally m-pseudoconvex topology on E, then $(||\cdot||_{\lambda})_{\lambda \in \Lambda}$ and $(||\cdot||_{1,\lambda})_{\lambda \in \Lambda}$ are equivalent.

Proof. For $\lambda \in \Lambda$, define

$$\|x\|_{2,\lambda} = \max\left(\|x\|_{\lambda}^{\frac{1}{q_{\lambda}}}, \|x\|_{1,\lambda}^{\frac{1}{r_{\lambda}}}\right), \ x \in E.$$

It is clear that the family $\left(\|\cdot\|_{2,\lambda}\right)_{\lambda\in\Lambda}$ of norms defines a locally *m*-convex topology on E such that

$$||x^*x||_{2,\lambda} = ||x||_{2,\lambda}^2$$
 for all $x \in E$ and $\lambda \in \Lambda$.

Let $\widehat{F_{\lambda}}$, $\widehat{F_{\lambda}'}$, $\widehat{F_{\lambda}'}$ be the completions of $\widehat{E_{\lambda}}$ with respect to $\|\cdot\|_{\lambda}$, $\|\cdot\|_{1,\lambda}$ and $\|\cdot\|_{2,\lambda}$, respectively. By Remark 3.2, there exists a constant $k_{\lambda} > 0$ so that, for $a, b \in \widehat{E_{\lambda}}$,

$$\max(\left|ab\right|_{\lambda}',\left|ba\right|_{\lambda}') \le k_{\lambda} \left|a\right|_{\lambda}' \left\|b\right\|_{\lambda} \le k_{\lambda} \left|a\right|_{\lambda}' \left\|b\right\|_{2,\lambda}$$

Thus, $\widehat{E_{\lambda}}$ is a two-sided ideal of $\widehat{F_{\lambda}''}$. Now since the identity mapping is a continuous *isomorphism of $(\widehat{E_{\lambda}}, \|\cdot\|_{2,\lambda})$ onto $(\widehat{E_{\lambda}}, \|\cdot\|_{\lambda})$, it follows from [8, lemma 2] that $(\widehat{F_{\lambda}}, \|\cdot\|_{\lambda})$ and $(\widehat{F_{\lambda}''}, \|\cdot\|_{2,\lambda})$ are topologically isomorphic. Similarly it can be shown that $(\widehat{F_{\lambda}'}, \|\cdot\|_{\lambda}')$ is topologically isomorphic to $(\widehat{F_{\lambda}''}, \|\cdot\|_{\lambda}')$ and so it follows that the auxiliary norms $\|\cdot\|_{\lambda}$ and $\|\cdot\|_{\lambda}'$ are equivalent.

Proposition 3.4 Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (||\cdot||_{\alpha})_{\alpha \in \Gamma})$ be a locally *m*-pseudoconvex A^* -algebra of the first kind. Then $(E, (||\cdot||_{\alpha})_{\alpha \in \Gamma})$ is topologically and algebraically isomorphic to a pre- C^* -algebra.

Proof. Since $(E, |\cdot|_{\lambda})$ is a *Q*-algebra, one has $\rho(x)^{p_{\lambda}} \leq |x|_{\lambda}$ for every $x \in E$ and $\lambda \in \Lambda$. On the other hand, using (9), we obtain

$$\rho(xy) \le |xy|_{\lambda}^{\frac{1}{p_{\lambda}}} \le c_{\lambda} |x|_{\lambda}^{\frac{1}{p_{\lambda}}} \|y\|_{\alpha}^{\frac{1}{q_{\alpha}}}, \text{ for all } x, y \in E.$$

Writing this for $y = x^k$, with k = 1, 2, ..., and using submultiplicativity of $\|\cdot\|_{\alpha}$, it follows that $\rho(x) \leq \|x\|_{\alpha}^{\frac{1}{\alpha}}$ for every $x \in E$. Then, using Corollary 2.4, we have

$$||x||_{\alpha}^{\frac{1}{q\alpha}} = \rho(x)$$
, for every $x \in N(E)$.

Now, for every $x \in E$, we get

$$\|x\|_{\alpha}^{\frac{2}{q_{\alpha}}} \leq \sup_{\gamma \in \Gamma} \|x\|_{\gamma}^{\frac{2}{q_{\gamma}}} = \sup_{\gamma \in \Gamma} \|xx^*\|_{\gamma}^{\frac{1}{q_{\gamma}}} = \rho(x^*x) \leq \|x\|_{\alpha}^{\frac{2}{q_{\alpha}}}$$

Thus the topology of $(E, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ is equivalent to the pre-C^{*}-norm

$$\|x\|_{\alpha}^{\frac{1}{q_{\alpha}}} = \sup\left\{\|x\|_{\gamma}^{\frac{1}{q_{\gamma}}} : \gamma \in \Gamma\right\} = \|x\|, \text{ for every } x \in E$$

This completes the proof.

Remark 3.5. In the previous proposition, the algebra $(E, (\|\cdot\|_{\lambda})_{\lambda \in \Lambda})$ becomes topologically and algebraically isomorphic to a C^* -algebra under a weaker notion of completion. More precisely, one has that $(E, \|\cdot\|)$ is a C^* -algebra if and only if $(E, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ is a pseudo-complete algebra.

4. Examples

To illustrate the above results, we give the following examples.

1) Let $0 < p_0 < 1$ and define E to be the set of all complex sequences $x = (x_n)_n$ such that

$$|x|_{p} = \sum_{n=1}^{\infty} |x_{n}|^{p} < +\infty, \text{ for every } p \in]p_{0}, 1[.$$
 (13)

One can easily verify that the formula (13) defines, on E, a family of p-seminorms. Endow E with the usual pointwise operations and the involution $((x_n)_n)^* = (\overline{x_n})_n$. Then $\left(E, \left(|\cdot|_p\right)_p\right)$ is a complete locally m-pseudoconvex (not locally convex) *-algebra. For every $k \in N$, put

$$||x||_k = \sup\{|x_n| : n \le k\}.$$

Then $\left(E, \left(|\cdot|_p\right)_p, (\|\cdot\|_k)_k\right)$ is a locally *m*-pseudoconvex *A*^{*}-algebra. It is not of the first kind. Notice that the pre *C*^{*}-algebra norm $\|\cdot\|$, given by Proposition 2.6, is $\|x\| =$

310

 $\sup \{|x_n|: n \in N\}$. Furthermore, for every $0 , <math>(E, |\cdot|_p, ||\cdot||)$ is a *p*-Banach (not Banach) A^* -algebra of the first kind.

2) Let Ω be a nonempty open set of R (real field) and $k \in N^*$. Consider $E = \mathcal{C}^k(\Omega)$ the set of all complex -valued \mathcal{C}^k -functions on Ω , provided with the pointwise operations and the involution $f^* = \overline{f}$. For every compact subset K of Ω , put

$$p_{K,k}(f) = \max_{j \le k} \sup_{x \in K} \left| f^{(j)}(x) \right|, \text{ for every } f \in \mathcal{C}^k(\Omega).$$

Let K be a compact subset of Ω . Applying Leibniz's rule, it easy to see that there is $\alpha(k)$ (depending on k) such that, for every $f, g \in \mathcal{C}^k(\Omega)$, we have

$$p_{K,k}(fg) \le \alpha(k) p_{K,k}(f) p_{K,k}(g).$$

Put

$$|f|_{K,k} = \alpha(k)p_{K,k}(f)$$
, for every $f \in \mathcal{C}^k(\Omega)$.

Then $\left(E, \left(|\cdot|_{K,k}\right)_{K}\right)$ is a metrizable and complete locally *m*-convex *-algebra. For every compact subset *K* of Ω , put

$$||f||_{K} = \sup \{|f(t)| : t \in K\}$$

Then $\left(E, \left(|\cdot|_{K,k}\right)_{K}, (\|\cdot\|_{K})_{K}\right)$ is a locally *m*-convex A^* -algebra. It is not of the first kind.

3) Let $(A, \|\cdot\|, *)$ be an H^* -algebra in the spirit of F. F. Bonsall and J. Duncun (cf. [1], definition 6., p. 182). Then $(A, \|\cdot\|, |\cdot|)$, where $|x| = \sup \{ \|xy\| : \|y\| \le 1 \}$, for every $x \in A$, is an A^* -algebra of the first kind. Now let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda})$ be a locally *m*-convex H^* -algebra (cf. [2]) that is a complete locally *m*-convex *-algebra on which there is defined a family $(\langle ., . \rangle_{\lambda})_{\lambda \in \Lambda}$ of positive semi-definite pseudo-inner products such that $|x|_{\lambda}^2 = \langle x, x \rangle_{\lambda}, \langle xy, z \rangle_{\lambda} = \langle y, x^*z \rangle_{\lambda}$ and $\langle yx, z \rangle_{\lambda} = \langle y, zx^* \rangle_{\lambda}$, for all $x, y, z \in E$ and $\lambda \in \Lambda$. Put

$$||a||_{\lambda} = \sup\{|ab|_{\lambda}: |b|_{\lambda} \le 1\}, \text{ for every } a \in E.$$

Then $(\|\cdot\|_{\lambda})_{\lambda \in \Lambda}$ is a family of seminorms in E such that $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (\|\cdot\|_{\lambda})_{\lambda \in \Lambda})$ is locally m-convex A^* -algebra of the first kind. The reader is referred to [2] for all details.

4) Let $(E, (|\cdot|_{\lambda})_{\lambda \in \Lambda}, (\|\cdot\|_{\alpha})_{\alpha \in \Gamma})$ be a locally *m*-pseudoconvex A^* -algebra of the first kind. Recall that a mapping $T : E \longrightarrow E$ is called a multiplier on E if T(ab) = T(a)b = aT(b), for all $a, b \in E$. It is obvious that T is necessarily linear and, by the closed graph theorem, it is also continuous on $(\widehat{E_{\lambda}}, |\cdot|_{\lambda})$, for every $\lambda \in \Lambda$. So $|T(x)|_{\lambda} \leq |T|_{\lambda} |x|_{\lambda}$, for every $x \in E$, where $|T|_{\lambda} = \sup\{|T(x)|_{\lambda} : |x|_{\lambda} \leq 1\}$. Now consider the algebra $M_d(E)$ of all double multipliers (S, T) on E (here a double multiplier is a pair (S, T) of multipliers such that xS(y) = T(x)y, for every $x, y \in E$). Endow $M_d(E)$ with the involution $(S,T)^* = (T^*, S^*)$, where $T^*(x) = T(x^*)^*$, $S^*(x) = S(x^*)^*$, for every $x \in E$, (cf. [13]) and the locally *m*-pseudoconvex topology given by the following family of p_{λ} -norms

$$|(S,T)|_{\lambda} = \max(|S|_{\lambda}, |T|_{\lambda})$$
, for every $(S,T) \in M_d(E)$.

The algebra $(M_d(E), (|(.,.)|_{\lambda})_{\lambda \in \Lambda})$ becomes a locally *m*-pseudoconvex A^* -algebra. For this, it remains only to define an auxiliary topology on $M_d(E)$. Let $x \in E$ and $(S, T) \in$ $M_d(E)$. Using **2**) of Remarks 3.2, we get

$$|S(x)|_{\lambda,1}^{\frac{1}{p_{\lambda}}} \leq c_{\lambda} |S|_{\lambda}^{\frac{1}{p_{\lambda}}} \|x\|_{\alpha}^{\frac{1}{q_{\alpha}}} \text{ and } |T(x)|_{\lambda,1}^{\frac{1}{p_{\lambda}}} \leq c_{\lambda} |T|_{\lambda}^{\frac{1}{p_{\lambda}}} \|x\|_{\alpha}^{\frac{1}{q_{\alpha}}}$$

But also, by **2**) of Remarks 3.2, $|\cdot|_{\lambda,1}$ and $\|\cdot\|_{\alpha}$ are equivalent. This implies that S and T are continuous on $(E, \|\cdot\|_{\alpha})$. Put $\|S\|_{\alpha} = \sup\{\|S(x)\|_{\alpha} : \|x\|_{\alpha} \le 1\}$ and $\|T\|_{\alpha} = \sup\{\|T(x)\|_{\alpha} : \|x\|_{\alpha} \le 1\}$. Then, by 2) of proposition 2.2, we have for each $x \in \widehat{E_{\lambda}}$,

$$||T(x)||_{\alpha} \le ||x||_{\alpha} ||S||_{\alpha}$$
 and $||S(x)||_{\alpha} \le ||x||_{\alpha} ||T||_{\alpha}$.

This implies that $||T||_{\alpha} = ||S||_{\alpha}$. Thus, for each $(S,T) \in M_d(E)$, define $||(S,T)||_{\alpha} = ||S||_{\alpha}$. It is obvious that $||(.,.)||_{\alpha}$ is an algebra q_{α} -norm. In order to complete the proof, it will be sufficient to show that $||(.,.)||_{\alpha}$ satisfies the C^* -property. Since $||S||_{\alpha} = ||S^*||_{\alpha}$ and $||T||_{\alpha} = ||T^*||_{\alpha}$, one gets from the above that

$$\|(S,T)^*(S,T)\|_{\alpha} \le \|(S,T)\|_{\alpha}^2$$
.

On the other hand

$$\|(S,T)\|_{\alpha}^{2} = \|S\|_{\alpha}^{2} = \sup \{\|S(x)^{*}S(x)\|_{\alpha} : \|x\|_{\alpha} \le 1\}.$$

But

$$S(x)^*S(x) = S^*(x^*)S(x) = x^*(T^*S)(x).$$

Hence

$$\left\| (S,T) \right\|_{\alpha}^{2} = \sup \left\{ \left\| x^{*} \left(T^{*}S \right) \left(x \right) \right\|_{\alpha} : \left\| x \right\|_{\alpha} \le 1 \right\} \le \left\| T^{*}S \right\|_{\alpha} = \left\| \left(S,T \right)^{*} \left(S,T \right) \right\|_{\alpha}.$$

Thus

$$\|(S,T)^*(S,T)\|_{\alpha} = \|(S,T)\|_{\alpha}^2$$
, for every $(S,T) \in M_d(E)$.

and the desired result follows.

Acknowledgement

The author would like to thank the referee for his remarks and valuable suggestions.

References

- F. F. Bonsall and J. Duncan, Complete normed algebras. Ergebnisse der Mathematik, Band 80, Springer Verlag, 1973.
- [2] A. El Kinani, On locally pre-C*-algebra structures in locally m-convex H*-algebras. Turk. J. Math. 26(2002), 263-271.
- [3] A. El Kinani, On C_p^* -seminorms for generalized involution. Fonctiones et Approximatio (to appear).
- [4] M. Fragoulopoulou, Symmetric Topological *-Algebras. Applications, Schriftenreihe des Mathematischen Instituts und des Graduiertenkollegs der Universität Münster, 3 serie, Heft 9 (1993).
- [5] I. Kaplansky, Normed algebras. Duke Math. J. 16 (1949), 399-418.
- [6] M.S. Kassem and K. Rowlands, Double multipliers and A*-algebras of the first find. Math. Proc. Camb. Phil. Soc. (1987), 102, 507-516.
- [7] A. Mallios, Topological Algebras. Selected Topics, North -Holland, Amsterdam, 1986.
- [8] T. Ogasawara and K. Yoshinaga. Weakly completely continuous Banach *-algebras. Sci., Hiroshima Univ. Ser, A 18 (1954), 15-36.
- [9] V. Ptàk, Banach algebras with involution. Manuscripta. Math. 6 (1972), 245-290.
- [10] S. Rolewicz, Metric Linear Spaces, PWN, Warsawa, 1972.

- [11] Z. Sebestyen, Every C^{*}-seminorm is automatically submultiplicative. Periodica Mathematica Hungarica, Vol 10 (1), (1979), 1-8.
- [12] Y. Tsertos, Representations and extensions of positive functionals on *-algebras; Bulletin. UMI 7(1994), 541-555.
- [13] Y. Tsertos, *-multiplications on involutive vector spaces. Proc. Inter. Conf. on "Topological Algebras and Applications" (Ictaa 2000), E.N.S. Takaddoum, Rabat, (in press).
- [14] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971.
- [15] W. Zelazko, Selected Topics on Topological Algebras. Aarhus University, Lecture Notes, Serie 31 (1971).
- [16] Ecole Normale Supérieure, B.P. 5118, Takaddoum, 10105 Rabat (Morocco).

A. EL KINANIEcole Normale Supérieure,B.P. 5118, Takaddoum,10105 Rabat (Morocco)

Received 14.06.2002