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Groups Whose Proper Subgroups are Hypercentral of

Length at Most ≤ ω
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Abstract

Groups, all proper subgroups of which are hypercentral of length at most ω and

every proper subgroup of which is a Bn-group for a natural number n depending on

the subgroup, are studied in this article.
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1. Introduction

For n ≥ 0, we denote by Bn the class of groups in which every subnormal subgroup

has defect at most n. Bn-groups are considered by many authors, both for special cases

and in general. For results related to B1-groups see [10], [4], [11], for B2, B3, B4-groups

see [5], [2] and for the general case see [6], [3]. It was shown in [14] that there exists a

group G that is a hypercentral group of length exactly ω + 1 and all of its subgroups are

subnormal. The split extension G of a group of type C2∞ by the inverting automorphism,

is hypercentral of length ω+1 and every proper subgroup of G is nilpotent. A group G is

locally graded if every non-trivial finitely generated subgroup of G has a finite non-trivial

image. We denote by N0 class of groups in which every subgroup is subnormal.

The focus of this paper are those locally nilpotent groups whose every proper sub-

group is a hypercentral of length at most ω; and where every proper subgroup of these
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hypercentrals are Bn-groups in general, and prove that every such Bn-group is either

soluble or a N0-group.

2. Main Results

Theorem 1 Let G be a periodic hypercentral group and let every proper subgroup H of

G be a Bn-group for some natural number n depending on H. If G is hypercentral of

length at most ≤ ω, then G is nilpotent.

Proof. Suppose that G is not nilpotent. Then G is hypercentral of length ω and

G =
⋃∞
i=0 Zi(G). For all x ∈ G, there exists i ∈ N such that x ∈ Zi(G). Since Zi(G)

is nilpotent for all natural numbers i, for all x ∈ G, < x > is a subnormal subgroup of

G. Thus G is a Baer group. Since G is hypercentral, G′ < G and also G′ is nilpotent,

by Lemma 6.1 of [6]. Since G/G′ is abelian, G is soluble. Every proper subgroup of G

is nilpotent, again by Lemma 6.1 of [6]. If G has no maximal subgroup, then every sub-

groups of G are subnormal by Theorem 3.1.(ii) of [15]. Thus G is nilpotent by Theorem

2.7 of [8]. If G has a maximal subgroup, then there is a maximal subgroup M such that

G =< x > M for some x ∈ G. SinceG is Baer, < x > M is nilpotent by Lemma 1 of [7]. 2

Theorem 2 Let G be a locally graded torsion-free group and let every proper subgroup H

of G be a Bn-group for some natural number n depending on H. If every proper subgroup

of G is hypercentral of length at most ≤ ω, then G is nilpotent.

Proof. Since every proper subgroup of G is hypercentral of length at most ≤ ω,

H =
⋃∞
i=0 Zi(H) for all H < G; since Zi(H) is nilpotent, for all i ≥ 0, < x > is subnor-

mal in H , for all x ∈ H . Thus H is a Baer group. By Lemma 6.1 of [6], H is nilpotent.

Let F be a finitely generated non-trivial subgroup of G. If F 6= G then F is nilpotent

by the above. If F = G, then G is a finitely generated locally graded group and so G

is nilpotent by Theorem 2 of [16]. Therefore G is locally nilpotent group. Finally, we

conclude that G is nilpotent by Theorem 2.1 of [15] . 2
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Theorem 3 Let G be a locally nilpotent group and let every proper subgroup H of G be

a Bn-group for some natural number n depending on H. If every proper subgroup of G

is hypercentral of length at most ≤ ω, then G is soluble.

Proof. Suppose that G is not soluble. Let T be the periodic part of G. T is a subgroup

of G by 12.1.1 of [13]. If T = 1, then G is nilpotent by Theorem 2. Therefore G is solu-

ble. If G = T , then every proper subgroup of G is nilpotent by Theorem 1. By Theorem

3.3.(i),(ii) of [15], G is a Fitting p-group. G 6= G′ by Theorem 1.1 of [1]. Therefore G

is soluble. If 1 6= T 6= G, then T is hypercentral of length at most ≤ ω. Therefore T is

nilpotent by Theorem 1. Since G/T is torsion-free, G/T is soluble by Theorem 1. Since

T and G/T are soluble, G is soluble. This is a contradiction. 2

Theorem 4 Let G be a locally nilpotent group and let every proper H be a Bn-group for

some natural number n depending on H. If G is hypercentral of length at most ≤ ω, then

G is nilpotent.

Proof. Suppose that G is not nilpotent. G is soluble by Theorem 3. Every proper sub-

group of G is nilpotent by the proof of Theorem 3. By hypothesis and Theorem 3.1.(i),(ii)

of [15], every subgroup of G is subnormal. By Theorem 2.7 of [8] G is nilpotent. If G has

a maximal subgroup, then G is a metabelian Chernikov p-group and G is hypercentral of

length at most ≤ ω + 1 in [9]. This is a contradiction. 2

Corollary 5 Let G be a locally nilpotent group and let every proper subgroup H of G be

a Bn-group for some natural number n depending on H. If every proper subgroup of G

is hypercentral of length at most ≤ ω, then either G is hypercentral or G is an N0-group.

Proof. Suppose that G is not hypercentral. Then G is not nilpotent. G is soluble by

Theorem 3 and every proper subgroup of G is nilpotent by the proof of Theorem 3. If G

has a maximal subgroup, then G is a metabelian Chernikov p-group and G is hypercentral

of length at most ≤ ω + 1 in [9]. This is a contradiction. 2
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Theorem 6 Let G be a locally soluble torsion-free group and let every proper subgroup

H of G be a Bn-group for some natural number n depending on H. Then either G is

locally nilpotent or G is finitely generated.

Proof. Suppose that G is not finitely generated. Let F be a finitely generated sub-

group of G. Since G 6= F , F is nilpotent by Corollary 2 of Theorem 10.57 of [12]. Thus

G is finitely generated. 2
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