Turk J Math 27 (2003) , 369 – 374. © TÜBİTAK

Fuzzy Ideals in Gamma-Rings

Mehmet Ali Öztürk, Mustafa Uçkun and Young Bae Jun

Abstract

The converse of [7, Theorem 3.3] is provided. For an Artinian Γ -ring, a few results are investigated.

Key words and phrases: (Artinian, Noetherian) Γ -ring, fuzzy left (right) ideal, level left (right) ideal.

1. Introduction

The notion of a fuzzy set in a set was introduced by L. A. Zadeh [8], and since then this concept have been applied to various algebraic structures. N. Nobusawa [6] introduced the notion of a Γ -ring, as more general than a ring. W. E. Barnes [1] weakened slightly the conditions in the definition of the Γ -ring in the sense of Nobusawa. W. E. Barnes [1], S. Kyuno [3] and J. Luh [5] studied the structure of Γ -rings and obtained various generalizations analogous to corresponding parts in ring theory. Y. B. Jun and C. Y. Lee [2] applied the concept of fuzzy sets to the theory of Γ -rings. In [7], the present authors discussed characterizations of Noetherian Γ -rings by using fuzzy ideals, and gave a condition for a Γ -ring to be Artinian. As a continuation of the paper [7], in this paper, we investigate further results. In particular, we state the converse of Theorem 3.3 in [7].

²⁰⁰⁰ Mathematics Subject Classification: 16P99, 03E72.

The third author was supported by Korea Research Foundation Grant (KRF-2000-005-D00003).

2. Preliminaries

Let M and Γ be two abelian groups. If for all $x,y,z\in M$ and all $\alpha,\,\beta\in\Gamma$ the conditions

- $x\alpha y \in M$,
- $(x+y)\alpha z = x\alpha z + y\alpha z, \ x(\alpha+\beta)z = x\alpha z + x\beta z, \ x\alpha(y+z) = x\alpha y + x\alpha z,$
- $(x\alpha y)\beta z = x\alpha(y\beta z)$

are satisfied, then we call $M \ a \ \Gamma$ -ring. By a right (resp. left) ideal of a Γ -ring M we mean an additive subgroup U of M such that $U \ \Gamma M \subseteq U$ (resp. $M \ \Gamma U \subseteq U$). For any subsets A and B of a Γ -ring M, by $A \subset B$ we exclude the possibility that A = B. A Γ -ring M is said to satisfy the left (right) ascending chain condition of left (right) ideals (or to be left (right) Noetherian) if every strictly increasing sequence $U_1 \subset U_2 \subset U_3 \subset \cdots$ of left (right) ideals of M is of finite length. A Γ -ring M is said to satisfy the left (right) descending chain condition of left (right) ideals (or to be left (right) Artinian) if every strictly decreasing sequence $V_1 \supset V_2 \supset V_3 \supset \cdots$ of left (right) ideals of M is of finite length. A Γ -ring M is left (resp. right) Noetherian if M satisfies the left (right) ascending chain condition on left (resp. right) ideals. A Γ -ring M is left (resp. right) Artinian if Msatisfies the left (right) descending chain condition on left (resp. right) ideals.

We now review some fuzzy logic concepts. A fuzzy set μ in a Γ -ring M is called a fuzzy left (resp. right) ideal of M ([2]) if it satisfies

- $\mu(x-y) \ge \min\{\mu(x), \mu(y)\}$
- $\mu(x\gamma y) \ge \mu(y)$ (resp. $\mu(x\gamma y) \ge \mu(x)$)

for all $x, y \in M$ and $\gamma \in \Gamma$. We note from [2] that if μ is a fuzzy left (right) ideal of a Γ -ring M then $\mu(0) \ge \mu(x)$ for all $x \in M$.

Note from Jun and Lee [2, Theorem 3] that a fuzzy set μ in a Γ -ring M is a fuzzy left (right) ideal of M if and only if for every $t \in [0, 1]$, the set

$$U(\mu; t) := \{ x \in M \mid \mu(x) \ge t \}$$

is a left (right) ideal of M when it is nonempty. We call $U(\mu; t)$ the level left (right) ideal of M with respect to μ .

3. Main Results

In what follows, the terms "(fuzzy, level) ideal" and "Artinian (Noetherian) Γ -ring" mean "(fuzzy, level) left ideal" and "left Artinian (Noetherian) Γ -ring", respectively.

For a fuzzy set μ in M and $t \in [0, 1]$, we define

$$U^t_{\mu} := \mu^{-1} \Big((t, 1] \Big) \text{ and } V^t_{\mu} := \mu^{-1} \Big([t, 1] \Big).$$

Theorem 3.1. If μ is a fuzzy ideal of a Γ -ring M, then for each $t \in [0, \mu(0)]$, U^t_{μ} and V^t_{μ} are ideals of M.

Proof. Let $x, y \in U^t_{\mu}$. Then $\mu(x - y) \ge \min\{\mu(x), \mu(y)\} > t$ and so $x - y \in U^t_{\mu}$. Let $x \in M, y \in U^t_{\mu}$ and $\gamma \in \Gamma$. Then $\mu(x\gamma y) \ge \mu(y) > t$, and thus $x\gamma y \in U^t_{\mu}$. Hence U^t_{μ} is an ideal of M. Note that $V^t_{\mu} = U(\mu; t)$ which is an ideal of M.

Theorem 3.2. Let w be a fixed element of a Γ -ring M. If μ is a fuzzy ideal of M, then the set

$$\mu^w := \{ x \in M \mid \mu(x) \ge \mu(w) \}$$

is an ideal of M.

Proof. Let $x, y \in \mu^w$. Then $\mu(x - y) \ge \min\{\mu(x), \mu(y)\} \ge \mu(w)$, which implies that $x - y \in \mu^w$. Now let $x \in M$, $y \in \mu^w$ and $\gamma \in \Gamma$. Then $\mu(x\gamma y) \ge \mu(y) \ge \mu(w)$, and so $x\gamma y \in \mu^w$. Therefore μ^w is an ideal of M.

Corollary 3.3. ([2, Theorem 1]) If μ is a fuzzy ideal of a Γ -ring M, then the set

$$U := \{ x \in M \mid \mu(x) = \mu(0) \}$$

is an ideal of M.

Lemma 3.4. ([4, Corollary 2]) If a Γ -ring M is Artinian, then M is Noetherian.

Lemma 3.5. Let μ be a fuzzy ideal of a Γ -ring M and let $s, t \in \text{Im}(\mu)$. Then $U(\mu; s) = U(\mu; t)$ if and only if s = t.

Proof. Straightforward.

Lemma 3.6. ([7, Theorem 3.3]) If every fuzzy ideal of a Γ -ring M has finite number of values, then M is Artinian.

Combining Lemmas 3.4 and 3.6, we have the following corollary.

Corollary 3.7. If for any fuzzy ideal μ of a Γ -ring M, μ is finite valued, then M is Noetherian.

We discuss the converse of Lemma 3.6.

Theorem 3.8. If a Γ -ring M is Artinian, then every fuzzy ideal of M is finite valued.

Proof. Let a Γ -ring M be Artinian and let μ be a fuzzy ideal of M. Suppose that $\operatorname{Im}(\mu)$ is infinite. Note that every subset of [0, 1] contains either a strictly increasing or strictly decreasing infinite sequence. Hence $\operatorname{Im}(\mu)$ has a strictly increasing or strictly decreasing sequence. Let $t_1 < t_2 < t_3 < \cdots$ be a strictly increasing sequence in $\operatorname{Im}(\mu)$. Then $U(\mu; t_1) \supset U(\mu; t_2) \supset U(\mu; t_3) \supset \cdots$ is a strictly descending chain of ideals of M. Since M is Artinian, there exists a natural number i such that $U(\mu; t_i) = U(\mu; t_{i+n})$ for all $n \geq 1$. Since $t_i \in \operatorname{Im}(\mu)$ for all i, it follows from Lemma 3.5 that $t_i = t_{i+n}$ for all $n \geq 1$. This is a contradiction. If $t_1 > t_2 > t_3 > \cdots$ is a strictly decreasing sequence in $\operatorname{Im}(\mu)$, then $U(\mu; t_1) \subset U(\mu; t_2) \subset U(\mu; t_3) \subset \cdots$ is an ascending chain of ideals of M. Since M is Noetherian by Lemma 3.4, there exists a natural number j such that $U(\mu; t_j) = U(\mu; t_{j+n})$ for all $n \geq 1$. Since $t_j \in \operatorname{Im}(\mu)$ for all $n \geq 1$. Since $t_j \in \operatorname{Im}(\mu)$ for all j, by Lemma 3.5 we have $t_j = t_{j+n}$ for all $n \geq 1$, which is also a contradiction. Hence $\operatorname{Im}(\mu)$ is finite.

Let \mathcal{U}_{μ} denote the family of all level ideals of M with respect to μ .

Theorem 3.9. Let a Γ -ring M be Artinian and let μ be a fuzzy ideal of M. Then $|\mathcal{U}_{\mu}| = |\text{Im}(\mu)|.$

Proof. Since M is Artinian, it follows from Theorem 3.8 that $\operatorname{Im}(\mu)$ is finite. Let $\operatorname{Im}(\mu) = \{t_1, t_2, \cdots, t_n\}$, where $t_1 < t_2 < \cdots < t_n$. It is sufficient to show that \mathcal{U}_{μ} consists of level ideals of M with respect to μ for all $t_i \in \operatorname{Im}(\mu)$, that is, $\mathcal{U}_{\mu} = \{U(\mu; t_i) \mid 1 \leq i \leq n\}$. Obviously, $U(\mu; t_i) \in \mathcal{U}_{\mu}$ for all $t_i \in \operatorname{Im}(\mu)$. Let $0 \leq t \leq \mu(0)$ and let $U(\mu; t)$ be a level ideal of M with respect to μ . Assume that $t \notin \operatorname{Im}(\mu)$. If $t < t_1$, then clearly $U(\mu; t) = U(\mu; t_1)$, and so let $t_i < t < t_{i+1}$ for some i. Then $U(\mu; t_{i+1}) \subseteq U(\mu; t)$. Let $x \in U(\mu; t)$. Then $\mu(x) > t$ because $t \notin \operatorname{Im}(\mu)$, and so $\mu(x) \geq t_{i+1}$, that is, $x \in U(\mu; t_{i+1})$.

Hence $U(\mu; t) = U(\mu; t_{i+1})$, which shows that \mathcal{U}_{μ} consists of level ideals of M with respect to μ for all $t_i \in \text{Im}(\mu)$. Therefore $|\mathcal{U}_{\mu}| = |\text{Im}(\mu)|$.

If μ is a fuzzy ideal of a Γ -ring M and $\operatorname{Im}(\mu)$ is finite, then $|\mathcal{U}_{\mu}| = |\operatorname{Im}(\mu)|$ by Lemma 3.6 and Theorem 3.9. Let $\operatorname{Im}(\mu) = \{t_1, t_2, \dots, t_n\}$, where $t_1 < t_2 < \dots < t_n$. Then $\mathcal{U}_{\mu} = \{U(\mu; t_i) \mid 1 \leq i \leq n\}$. Now $t_i < t_j$ if and only if $U(\mu; t_i) \supset U(\mu; t_j)$. Thus we have the following chain of ideals:

$$M = U(\mu; t_1) \supset U(\mu; t_2) \supset \cdots \supset U(\mu; t_n).$$

Theorem 3.10. Let a Γ -ring M be Artinian and let μ and ν be fuzzy ideals of M. Then $\mathcal{U}_{\mu} = \mathcal{U}_{\nu}$ and $\operatorname{Im}(\mu) = \operatorname{Im}(\nu)$ if and only if $\mu = \nu$.

Proof. If $\mu = \nu$, then clearly $\mathcal{U}_{\mu} = \mathcal{U}_{\nu}$ and $\operatorname{Im}(\mu) = \operatorname{Im}(\nu)$. Suppose that $\mathcal{U}_{\mu} = \mathcal{U}_{\nu}$ and $\operatorname{Im}(\mu) = \operatorname{Im}(\nu)$. By Theorems 3.8 and 3.9, $\operatorname{Im}(\mu)$ and $\operatorname{Im}(\nu)$ are finite and $|\mathcal{U}_{\mu}| = |\operatorname{Im}(\mu)|$ and $|\mathcal{U}_{\nu}| = |\operatorname{Im}(\nu)|$. Let $\operatorname{Im}(\mu) = \{t_1, t_2, \cdots, t_n\}$ and $\operatorname{Im}(\nu) = \{s_1, s_2, \cdots, s_n\}$, where $t_1 < t_2 < \cdots < t_n$ and $s_1 < s_2 < \cdots < s_n$. Then $t_i = s_i$ for all *i*. We now prove that $U(\mu; t_i) = U(\nu; t_i)$ for all *i*. Note that $U(\mu; t_1) = M = U(\nu; t_1)$. Consider $U(\mu; t_2)$ and $U(\nu; t_2)$, and suppose $U(\mu; t_2) \neq U(\nu; t_2)$. Then $U(\mu; t_2) = U(\nu; t_k)$ for some k > 2 and $U(\mu; t_j) = U(\nu; t_2)$ for some j > 2. Now let $x \in M$ be such that $\mu(x) = t_2$. Then $\mu(x) < t_j$ for all j > 2. Since $U(\mu; t_2) = U(\nu; t_k)$, it follows that $x \in U(\nu; t_k)$ so that $\nu(x) \geq t_k > t_2$ for k > 2. Thus $x \in U(\nu; t_2) = U(\mu; t_j)$ and so $\mu(x) \geq t_j$ for some j > 2. This is a contradiction. Hence $U(\mu; t_2) = U(\nu; t_2)$. Continuing in this way, we get $U(\mu; t_i) = U(\nu; t_i)$ for all $i + 1 \leq j \leq n$, which implies that $x \notin U(\nu; t_j)$ for all $i + 1 \leq j \leq n$. Hence $\nu(x) < t_j$ for all $i + 1 \leq j \leq n$. Suppose that $\nu(x) = t_m$ for some $1 \leq m \leq i$. If $i \neq m$, then $x \notin U(\nu; t_i)$. On the other hand, $x \in U(\mu; t_i) = U(\nu; t_i)$ because $\mu(x) = t_i$.

References

- [1] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math. 18 (1966), 411-422.
- [2] Y. B. Jun and C. Y. Lee, *Fuzzy* Γ-rings, Pusan Kyongnam Math. J. (presently, East Asian Math. J.) 8(2) (1992), 163-170.

- [3] S. Kyuno, On prime gamma rings, Pacific J. Math. 75(1) (1978), 185-190.
- [4] S. Kyuno, A gamma ring with the right and left unities, Math. Japonica 24(2) (1979), 191-193.
- [5] J. Luh, On the theory of simple Γ -rings, Michigan Math. J. 16 (1969), 65-75.
- [6] N. Nobusawa, On a generalization of the ring theory, Osaka J. Math. 1 (1964), 81-89.
- [7] M. A. Öztürk, M. Uckun and Y. B. Jun, *Characterizations of Artinian and Noetherian* gamma-rings in terms of fuzzy ideals, Tr. J. of Mathematics (submitted).
- [8] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

M. A. ÖZTÜRK Department of Mathematics Faculty of Arts and Sciences Cumhuriyet University 58140, Sivas-TURKEY e-mail: maozturk@cumhuriyet.edu.tr M. UÇKUN Department of Mathematics Faculty of Arts and Sciences İnönü University 44069, Malatya-TURKEY e-mail: muckun@inonu.edu.tr Y. B. JUN Department of Mathematics Education Gyeongsang National University Chinju 660-701, KOREA e-mail: ybjun@nongae.gsnu.ac.kr

Received 27.12.2001