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M. Atçeken, B. Şahin, E. Kılıç

Abstract

In this paper, we generalize the geometry of the invariant submanifolds of Rie-
mannian product manifold to the geometry of the invariant submanifolds of Rie-
mannian warped product manifold. We investigate some properties of an invariant
submanifolds of a Riemannian warped product manifold. We show that every in-
variant submanifold of the Riemannian warped product manifold is a Riemannian
warped product manifold. Also, we give a theorem on the pseudo-umbilical invariant
submanifold. Further, we obtain that integral manifolds on an invariant subman-
ifold are curvature-invariant submanifolds. Finally, we give a necessary condititon
on a totally umbilical invariant submanifold to be totally geodesic.

Key Words: Riemannian Warped Product Manifold, Vertical and Horizontal
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1. Introduction

The geometry of a submanifold (M, g) of a locally product Riemannian manifold
(M1 ×M2, g1⊗ g2) was widely studied by many geometers. In particular, K. Matsumoto

has proved that (M, g) is a locally product Riemannian manifold of Riemannian manifolds

(Ma, ga) and (M b, gb), if it is an invariant submanifold of a Riemannian product manifold
(M1 ×M2, g1 ⊗ g2)(see [5]). Later, Xu. Senlin, and Ni. Yilong, ([6]) have updated X-

Matsumotos and proved that Ma ⊂ M1 and M b ⊂ M2. Moreover, they have proved

that (Ma, ga) and (M b, gb) are pseudo-umbilical submanifolds of (M1, g1) and (M2, g2),

respectively, if (M, g) is a pseudo-umbilical submanifold of (M, g) = (M1 ×M2, g1 ⊗ g2).

They have also demonstrated that M is isometric to the production of its two totally
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geodesic submanifolds (Ma, ga) and (M b, gb) which are submanifolds of (M1, g1) and
(M2 , g2), respectively (see [6]).

Furthermore, semi-invariant submanifolds of locally product Riemannian manifolds
were studied by A. Bejancu (see [2]).

Riemannian and Warped product structures are widely used in geometry to construct
new examples of Riemannian manifolds with interesting curvature properties. Warped
product metric tensor, as a generalization of Riemannian product metric tensor, have
also been useful in the study of several aspect of submanifold theory.

An invariant submanifold of a semi-Riemannian product manifold has been considered
by several authors; but , an invariant submanifold of the other product manifold (such
as warped product, or twisted product) has not been widely considered so far.

In this work, we have studied the geometry of a submanifold (M, g), a warped product
Riemannian manifold of a Riemannian manifold (M1, g1) and a Riemannian manifold
(M2 , g2), if it is an invariant submanifold of a Riemannian warped product manifold

(M1×fM2, g1⊗f2g2). We have also proved that (M, g) is a pseudo-umbilical submanifold

of (M, g) = (M1×fM2, g1⊗f2g2) if and only if (Ma, ga) and (Mb, gb) are pseudo-umbilical

submanifolds of (M1, g1) and (M2, g2), respectively, where (M, g) is the Riemannian

warped product manifold of the Riemannian manifolds (Ma, ga) and (M b, gb). Moreover,

we have shown that (Ma, ga) and (M b, gb) are the curvature-invariant submanifolds of

(M1 , g1) and (M2, g2), respectivley, if (M, g) is the curvature-invariant submanifold of
(M, g), and we give a theorem on a totally umbilical invariant submanifold to be totally
geodesic.

2. Preliminaries

In this section, we give some notations and terminology used througthout this paper.
We recall some necessary facts and formulas from the theory of submanifolds. For an

arbitrary submanifold M of a Riemannian manifold M , Gauss and Weingarten formulas
are given by

∇XY = ∇XY + h(X, Y )

and

∇Xξ = −AξX +∇⊥Xξ,

respectively, where ∇ and ∇ are Levi-Civita connections on the Riemannian manifolds
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ATÇEKEN, ŞAHİN, KILIÇ

M and its submanifold M , respectively; X, Y are vector fields tangent to M ; ξ is a vector

field normal to M ; h : Γ(TM) × Γ(TM) −→ Γ(TM
⊥

) is the second fundamental form

of M , ∇⊥ is the normal connection in the normal vector bundle Γ(TM
⊥

); and Aξ is
the shape operator of the second quadratic form for a normal vector ξ. From the above
formulas it follows that

g(AξX, Y ) = g(h(X, Y ), ξ),

where the symbol g denotes the Riemannian metric of M .

We denote the Riemannian curvature tensors of the Levi-Civita connections ∇ and
∇ on M and M by R and R, respectively. The Gauss, Codazzi, and Ricci equations are
given by

g(R(X, Y )Z,W ) = g(R(X, Y )Z,W ) + g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W ))

(R(X, Y )Z)⊥ = (∇Xh)(Y, Z) − (∇Y h)(X,Z),

g(R(X, Y )ξ, η) = g(R⊥(X, Y )ξ, η)− g([Aξ, Aη]X, Y ),

respectively, where the vector fields X, Y, Z,W are tangent to M , the vector fields ξ and

η are orthogonal to M , (R(X, Y )Z)⊥ denotes the normal Component of R(X, Y )Z and
the derivative ∇h is defined by

(∇Xh)(Y, Z) = (∇⊥Xh)(Y, Z) − h(∇XY, Z)− h(∇XZ, Y ).

M is called a curvature-invariant submanifold if it has

(R(X, Y )Z)⊥ = 0,

which is equivalent to
(∇Xh)(Y, Z) = (∇Y h)(X,Z)

for all X, Y, Z ∈ Γ(TM).
If the ambient space M is a space of constant sectional curvature c, the equations of

Gauss, Codazzi and Ricci reduce to

K(X, Y, Z,W ) = c{g(X,W )g(Y, Z) − g(X,Z)g(Y,W )}
+ g(h(X,W ), h(Y, Z)) − g(h(X,Z), h(Y,W )),

(∇Xh)(Y, Z) = (∇Y h)(X,Z)
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and

K⊥(X, Y, ξ, η) = g([Aξ , Aη]X, Y ),

respectively, where K denotes the Riemannian-Christoffel curvature tensor of M [4].

Definition 2.1 For a submanifold M ⊆M the mean-curvature vector field H is defined
by the formula

H =
1
n

n∑
i=1

h(ei, ei),

where {ei} is a local orthonormal basis in Γ(TM). If a submanifold M ⊆ M having one
of the conditions

h = 0, g(h(X, Y ), H) = λg(X, Y ), H = 0, λ ∈ C∞(M,R),

then it is called totally geodesic, pseudo-umbilical and minimal, respectively for all x,

y ∈ Γ(TM) [3].

We recall that the length the mean curvature vector field of M is constant if M is a
totally umbilical submanifold of a Riemannian manifold M [3].

Let (M1, g1) and (M2, g2) be Riemannian manifolds with dimension n1 and n2,
respectively, and f〉0 be a smooth function on M1. The Riemannian warped prod-
uct manifold M = M1 ×f M2 is the product manifold M furnished with metric ten-

sor g = π∗g1 + (foπ)2σ∗g2, where π∗ : Γ(T (M1 ×f M2)) −→ Γ(TM1) and σ∗ :

Γ(T (M1 ×f M2)) −→ Γ(TM2) are the projection mappings. The warped product man-
ifold M1 ×f M2 is characterized by M1 is totally geodesic and M2 is totally umbilical
submanifolds of M1×fM2. We denote the Levi-Civita connection of the warped product
metric tensor of g by ∇. Then we give the following propositions for later use.

Proposition 2.2 (O’Neill, [7]) Let (M1 ×f M2, g) be a warped Riemannian product

manifold with the warping function f〉0 on M1. Then we have
a) ∇X1Y1 ∈ Γ(TM1)

b) ∇X1Y2 = ∇Y2X1 = X1(f)
f

Y2

c) nor(∇X2Y2) = −fg2(X2 , Y2)gradf

d) tan(∇X2Y2) = ∇2
X2
Y2 ∈ Γ(TM2),
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for all Xi, Yi ∈ Γ(TMi), for i = 1, 2, respectively, where ∇2 is the Levi-Civita connection
of Riemannian metric tensor g2.

Proposition 2.3 (O’Neill, [7]) Let (M1 ×f M2, g) be a warped Riemannian product

manifold with the warping function f〉0 and Riemannian curvature tensor R. Then we
have
a) R(X1, Y1)Z1 = R1(X1, Y1)Z1 ∈ Γ(TM1).

b) R(X2, X1)Y1 = 1
fH

f (X1, Y1)X2.

c) R(X1, Y1)X2 = R(X2, Y2)X1 = 0
d) R(X2, Y2)Z2 = R2(X2, Y2)Z2 − g1(gradf, gradf){g2(X2, Z2)Y2 − g2(Y2, Z2)X2}.
e) R(X1, Y2)Z2 = fg2(Y2, Z2)∇X1gradf,

for all Xi, Yi, Zi ∈ Γ(TMi) for i = 1, 2, respectively, where R1 and R2 denote the

Riemannian curvature tensor of M1 and M2, respectively, and Hf is the Hessian form of
warping function f .

3. Invariant Submanifold of a Riemannian Warped Product Manifold

Let (M1 ×f M2, g) be a Riemannian warped product manifold with (M1, g1) and

(M2 , g2). We denote by π∗ and σ∗ the projection mappings of Γ(T (M1 ×f M2)) to

Γ(TM1) and Γ(TM2), respectively. Then we have

π2
∗ = π∗, σ

2
∗ = σ∗, π∗ × σ∗ = σ∗ × π∗ = 0, π∗ + σ∗ = I,

where I is the identity transformation of Γ(T (M1 ×f M2)). If we put F = π∗ − σ∗, then

we can easily see that F 2 = I. It follows that

g(FX, Y ) = g(X, FY ),

which is equivalent to
g(FX, FY ) = g(X, Y ),

for all X, Y ∈ Γ(T (M1 ×f M2)).

Now, let M be a submanifold of M1 ×f M2 and B the differential of the imbedding i

of M into M1 ×f M2, i.e., B = i∗. Let X be a tangent vector field of M . Then we can
write FBX in the following way:

FBX = (FBX)T + (FBX)⊥ = BSX + ξ,
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where (FBX)T = BSX ∈ Γ(TM), (FBX)⊥ = ξ ∈ Γ(TM)⊥ and

S : Γ(TM) −→ Γ(TM) is a linear transformation. M is said to be an invariant
submanifold of M1 ×f M2, if FBX = BSX always holds. In the rest of this paper

we assume that the submanifold M is invariant. In this case, we have S2 = I.

Let g be an induced Riemannian metric tensor on M by the Riemannian warped
metric tensor g, that is, g = i∗g. Then

g(X, Y ) = i∗g(X, Y ) = g(BX,BY ) = g(FBX, FBY ) = g(BSX,BSY )

= g(SX, SY )

for all X, Y ∈ Γ(TM). Thus S defines an almost Riemannian product structure on M ,

that is, TM has the vertical and horizontal distributions which are defined by

T1 = {X ∈ Γ(TM)|SX = X},

and
T2 = {X ∈ Γ(TM)|SX = −X},

respectively. Since S2 = I, we know that Γ(TM) = T1 ⊕ T2. We denote the integral

manifolds of the distributions T1 and T2 by Ma and M b, respectively.

Example 3.1 Let M = IR3 ×f IR3 be Riemannian warped product manifold with Rie-

mannian warped metric tensor 〈, 〉 = 〈, 〉1 +f2〈, 〉2, where 〈, 〉i denote the standard metric

tensors of IR3 for i = 1, 2 and f : IR3 −→ IR+ is a smooth function. We consider a
submanifold

M = {(x1, x2, x3, x4, x5, x6)|x3 =
1√
2
(x2 + sinx1), x5 = cosx4}

of M . By direct calculations we get

Γ(TM) = {U1 = ∂
∂x1

+ 1√
2

cosx1
∂
∂x3

, U2 = ∂
∂x2

+ 1√
2

∂
∂x3

, U3 = ∂
∂x4
− sinx4

∂
∂x5

,

U4 = ∂
∂6
}. We can easily see that M is an invariant submanifold of M . It follows

that the vertical and horizontal distributions are spanned by T1 = Sp{U1, U2} and T2 =
Sp{U3 , U4}, respectively.

Now we can give the following theorem.

Theorem 3.2 Every invariant submanifold M of a Riemannian warped product manifold
(M1 ×f M2, g) is a mixed-geodesic submanifold of (M1 ×f M2, g).
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Proof. We denote the integral manifolds of the vertical and horizontal distributions of

M by Ma and M b, respectively. If h is the second fundamental form of M in M1×f M2,

then we have to show that h(X1, X2) = 0 for all X1 ∈ Γ(TMa) and X2 ∈ Γ(TM b). Using
the Gauss formula, we derive

∇X1X2 = ∇X1X2 + h(X1 , X2) =
X1(f)
f

X2.

Restrict the above equation to Γ(TM) and Γ(TM
⊥

), we have h(X1, X2) = 0, where ∇ is

the Levi-Civita Connection on M . This completes the proof of the theorem. 2

Theorem 3.3 Let (M1×fM2, g) be Riemannian warped product manifold with the warp-

ing function f and M be an invariant submanifold of a Riemannian warped product
manifold M1×f M2. We denote the integral manifolds of the vertical and horizontal dis-

tributions of M by Ma and Mb, respectively. Then Ma and M b are totally geodesic and

totally umbilical submanifolds ofM , respectively. Moreover, Ma and M b are submanifolds
of M1 and M2, respectively.

Proof. Let ha and hb be the second fundamental forms of Ma and M b in M ,
respectively. Then

∇X1Y1 = ∇aX1
Y1 + ha(X1, Y1),

for all X1, Y1 ∈ Γ(TMa), where ∇a is the Levi-Civita connection on Ma. Hence for all

Z2 ∈ Γ(TM b) we get

g(ha(X1, Y1), Z2) = g(∇X1Y1, Z2) = −g(Y1 ,∇X1Z2)

= −g(Y1,
X1(f)
f

Z2) =
X1(f)
f

g(Y1 , Z2) = 0.

It follows that ha(X1, Y1) = 0, that is, Ma is totally geodesic submanifold of M . In the

same way, for all X2, Y2 ∈ Γ(TM b) we have

∇X2Y2 = ∇bX2
Y2 + hb(X2, Y2),
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where ∇b is the Levi-Civita connection on M b. For all Z1 ∈ Γ(TMa)

g(hb(X2, Y2), Z1) = g(∇X2Y2, Z1) = −g(∇X2Z1, Y2)

= −g(Z1(f)
f

X2, Y2) = − 1
f
g(g(Z1 , gradf)X2 , Y2)

= −fg1(X1 , gradf)g2(X2, Y2)

= −fg1(g2(X2, Y2)gradf, Z1), (3.1)

that is,
hb(X2, Y2) = −fg2(X2, Y2)gradf,

which implies that M b is the totally umbilical submanifold of M and

gradf ∈ Γ(TMa).
Now we define the distributions by

Dπ = {X ∈ Γ(T (M1 ×f M2))|π∗X = X}

and
Dσ = {X ∈ Γ(T (M1 ×f M2))|σ∗X = X}.

Then we obtain

π∗BX1 =
1
2
(I + F )BX1 =

1
2
(BX1 + FBX1) =

1
2
(BX1 +BSX1)

=
1
2
(BX1 +BX1) = BX1 ,

and

σ∗BX1 =
1
2
(I − F )BX1 =

1
2
(BX1 − FBX1) =

1
2
(BX1 −BSX1)

=
1
2
(BX1 −BX1) = 0,

for all X1 ∈ Γ(TMa). In the same way, we get π∗BX2 = 0 and σ∗BX2 = BX2 , for

all X2 ∈ Γ(TM b). Because the integral manifolds of Dπ and Dσ are manifolds M1 and

M2, respectively, we can easily see that Ma and M b are submanifolds of M1 and M2,
respectively. 2
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Since M is a warped product manifold and Gauss formula we obtain

∇X1Y1 +∇X2Y2 = ∇X1Y1 +∇X2Y2

+ h(X1, Y1) + h(X2, Y2).

Using the Proposition. 2.2(c), we get

∇X1Y1 +∇2
X2
Y2 − fg2(X2, Y2)gradf = ∇aX1

Y1 +∇bX2
Y2 + hb(X2, Y2)

+ h(X1, Y1) + h(X2, Y2)

From (3.1) we have

∇X1Y1 −∇aX1
Y1 +∇2

X2
Y2 −∇bX2

Y2 = fg2(X2, Y2)gradf − fg2(X2, Y2)gradf

+ h(X1, Y1) + h(X2, Y2)

h1(X1, Y1) + h2(X2, Y2) = h(X1, Y1) + h(X2, Y2).

Since h1(X1 , Y1) = h(X1 , Y1) ∈ Γ(TMa
⊥

) we get h2(X2, Y2) = h(X2, Y2). It follows that

h1 and h2 are the second fundamental forms of Ma and Mb in M1 and M2, respectively.
So we have

h(X, Y ) = h1(X1, Y1) + h2(X2, Y2) (3.2)

for all X1, Y1 ∈ Γ(TMa) and X2, Y2 ∈ Γ(TMb).
The following corollary is quite easy.

Corollary 3.4 Let (M1 ×f M2, g) be a Riemannian warped product manifold and M

be an invariant submanifold of (M1 ×f M2, g). We denote the vertical and horizontal

distributions of M by T1 and T2, respectively. Then the distributions T1 and T2 are
always involutive, but they are not parallel.

Theorem 3.5 Let (M1 ×f M2, g) be a Riemannian warped product manifold with the

warping function f and M be an invariant submanifold of Riemannian warped product
manifold M1 ×f M2. We denote the integral manifolds of the vertical and horizontal

distributions of M by Ma and M b, respectively. Then Ma and M b are curvature-invariant

submanifolds of M .
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Proof. The curvature-invariant submanifold ofMa in M is trivial because it is totally

geodesic submanifold of M . We denote the Riemannian curvature tensor of M and M b

by R and Rb, respectively. Then from Proposition. 2.3 and Theorem 3.3 we have

R(X2 , Y2)Z2 = Rb(X2 , Y2)Z2

− g(gradf, gradf){g(X2, Z2)Y2 − g(Y2, Z2)X2}. (3.3)

Moreover, it is well known that

R(X2, Y2)Z2 = Rb(X2, Y2)Z2 − Ahb(Y2,Z2)X2 + Ahb(X2,Z2)Y2

+ (∇X2hb)(Y2, Z2)− (∇Y2hb)(X2, Z2) (3.4)

for all X2, Y2, Z2 ∈ Γ(TM b). Thus from the equations (3.3) and (3.4) we derive

Ahb(Y2,Z2)X2 −Ahb(X2,Z2)Y2 = g(gradf, gradf){g(X2, Z2)Y2 − g(Y2, Z2)X2},

and

(∇X2hb)(Y2, Z2)− (∇Y2hb)(X2, Z2) = 0,

which implies that M b is a curvature-invariant submanifold of M . 2

Now we choose a local field of adapted basis {e1, ..., ea, ea+1, ..., en1, e
1, ..., eb

, eb+1, ..., en2} with respect to g so that when restricted locally to orthonormal basis over

Γ(TM), {e1, ..., ea} are tangent vectors to Γ(TMa) with respect to g1, {e1, ..., eb} are

tangent vectors to Γ(TM b) with respect to g2 and {ea+1 , ..., en1, e
b+1, ..., en2} are normal

vectors to Γ(TM). Let H be the mean curvature vector field of M in M1 ×f M2. Then
we consider equation (3.2) by a direct calculation we obtain

mH =
n1∑

i=a+1

trh1ei +
n2∑

j=b+1

trh2e
j

= aH1 + bH2, m = a+ b,

where H1 and H2 denote the mean curvature vector fields of Ma and M b in M1 and M2,
respectively.

The following lemma is quite easy.

Lemma 3.6 H1 and H2 are constants if and only if H is constant
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Theorem 3.7 Let (M1 ×f M2, g) be a Riemannian warped product manifold with the

warping function f and M be an invariant submanifold of Riemannian warped product
manifold M1×f M2. We denote the integral manifolds of the vertical and horizontal dis-

tributions of M by Ma and M b, respectively. Then M is a pseudo-umbilical submanifold

of M1 ×f M2 if and only if Ma and M b are pseudo-umbilical submanifolds of M1 and

M2, respectively. Moreover, a‖H1‖2 = bf2‖H2‖2.

Proof. We suppose that M is a pseudo-umbilical submanifold of M1 ×f M2. Then

there exists a smooth function λ ∈ C∞(M, IR) such that

g(h(X, Y ), H) = λg(X, Y ) (3.5)

for all X, Y ∈ Γ(TM). If we take e1, ..., ea for X = Y in the equation (3.5), then we have

g(
a∑
i=1

h(ei, ei), H) = λ

a∑
i=1

g(ei, ei)

g(aH1, H) = λa

g(aH1,
a

m
H1 +

b

m
H2) = λa

a

m
g1(H1, H1) = λ.

Similarly, taking e1, ..., eb for X = Y in the equation (3.5) we get

λ = g(H2, H) =
b

m
g(H2, H2) = f2 b

m
g2(H2, H2).

Furthermore, we have

g(H,H) =
a2

m2
g1(H1, H1) + f2 b

2

m2
g2(H2, H2)

=
a2

m2
g1(H1, H1) +

ab

m2
g1(H1, H1)

=
a

m
g1(H1, H1), (3.6)

and similarly, we obtain

g(H,H) = f2 b

m
g2(H2, H2). (3.7)
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Hence, taking X1, Y1 for X, Y in equation (3.5), respectively, we have

g(h1(X1, Y1), H) =
a

m
g1(H1, H1)g(X1 , Y1)

g1(h1(X1 , Y1),
a

m
H1) =

a

m
g1(H1, H1)g(X1 , Y1)

g1(h1(X1, Y1), H1) = g1(H1, H1)g(X1, Y1). (3.8)

In the same way, if we take X2, Y2 for X, Y in the equation (3.5), respectively, then we
obtain

g2(h2(X2, Y2), H2) = g2(H2, H2)g(X2, Y2). (3.9)

The equations (3.8) and (3.9) imply that Ma and M b are pseudo-umbilical submanifolds
of M1 and M2, respectively. We note that g1(H1, H1) and g2(H2, H2) are the smooth
functions on M1 and M2, respectively. Moreover, we know that they are also constants.

Conversely, we suppose that Ma and M b are pseudo-umbilical submanifolds of M1

and M2, respectively. Then we have

g1(h1(X1, Y1), H1) = g1(H1, H1)g(X1, Y1) (3.10)

for all X1, Y1 ∈ Γ(TMa) and

g2(h2(X2, Y2), H2) = g2(H2, H2)g(X2, Y2) (3.11)

for all X2, Y2 ∈ Γ(TM b). Then using the projections

π∗ : Γ(T (M1 ×f M2)) −→ Γ(TM1),

and
σ∗ : Γ(T (M1 ×f M2)) −→ Γ(TM2),

H = a
mH1 + b

mH2 and h(X, Y ) = h1(X1, Y1) + h2(X2, Y2), we obtain

π∗H = a
m
H1, σ∗H = b

m
H2. Thus we derive

m

a
g1(h1(X1, Y1), π∗H) =

m2

a2
g1(π∗H, π∗H)g(X1, Y1)

and

m

b
g2(h2(X2, Y2), σ∗H) =

m2

b2
g2(σ∗H, σ∗H)g(X2 , Y2).
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Hence we have

g1(π∗h(X, Y ), π∗H) =
m

a
g1(π∗H, π∗H)g(X1, Y1) (3.12)

and

f2g2(σ∗h(X, Y ), σ∗H) = f2m

b
g2(σ∗H, σ∗H)g(X2, Y2). (3.13)

If we add the equations (3.12), (3.13) and using g(H,H) = a
mg1(H1, H1) = b

mf
2g2(H2, H2),

we obtain

g(h(X, Y ), H) =
m

a
g1(

a

m
H1,

a

m
H1)g(X1, Y1)

+ f2m

b
g2(

b

m
H2,

b

m
H2)g(X2, Y2)

=
a

m
g1(H1, H1)g(X1, Y1) + f2 b

m
g2(H2, H2)g(X2, Y2)

= g(H,H){g(X1, Y1) + g(X2, Y2)}

= g(H,H)g(X, Y ),

which implies that M is a pseudo-umbilical submanifold of M1 ×f M2. This completes
the proof of the theorem. 2

Theorem 3.8 Let (M1 ×f M2, g) be the Riemannian warped product manifold with the

warping function f and M be an invariant submanifold of M1 ×f M2. We denote the

integral manifolds of the vertical and horizontal distributions of M by Ma and Mb,

respectively. If M is a curvature-invariant submanifold of M1 ×f M2, then Ma and

M b are curvature-invariant submanifolds of M1 and M2, respectively.

Proof. We denote the Riemannian curvature tensor fields of Riemannian manifolds
M1 ×f M2, M1 and M2 by R, R1 and R2, respectively. Then using the Proposition. 2.3,
by direct calculations we get
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R(X, Y )Z = R1(X1, Y1)Z1 +R2(X2 , Y2)Z2 − g1(gradf, gradf){g2(X2, Z2)Y2

− g2(Y2, Z2)X2} −
1
f
Hf (X1, Z1)Y2 +

1
f
Hf(Y1, Z1)X2

+
1
f
g(Y2, Z2)∇X1gradf − 1

f
g(X2, Z2)∇Y1gradf

= R1(X1, Y1)Z1 +R2(X2 , Y2)Z2 − g1(gradf, gradf){g2(X2, Z2)Y2

− g2(Y2, Z2)X2} −
1
f
Hf (Z1, X1)Y2 +

1
f
Hf(Y1, Z1)X2

+ fg2(Y2, Z2)∇aX1
gradf + fg2(Y2, Z2)h1(X1, gradf)

− fg2(X2, Z2)∇aY1
gradf − fg2(X2, Z2)h1(Y1, gradf), (3.14)

where X1, Y1, Z1 ∈ Γ(TMa) and X2, Y2, Z2 ∈ Γ(TM b). From the Gauss equation we have

R(X, Y )Z = R2(X, Y )Z + (∇Xh)(Y, Z) − (∇Y h)(X,Z) +Ah(X,Z)Y −Ah(Y,Z)X

for all X, Y, Z ∈ Γ(TM), where R2 and A denote the Riemannian curvature tensor and

the shape operator of M , respectively. Thus from the Codazzi Equation, we obtain

(∇Xh)(Y, Z) − (∇Y h)(X,Z) = (∇X1h1)(Y1, Z1)− (∇Y1h1)(X1, Z1)

+ (∇2
X2
h2)(Y2, Z2) − (∇2

Y2
h2)(X2, Z2)

+ fg2(Y2, Z2)h1(X1, gradf)

− fg2(X2, Z2)h1(Y1, gradf), (3.15)

where ∇2 and ∇ are the Levi-Civita connections on M2 and M1 ×f M2, respectively.

If M is a curvature-invariant submanifold of the Riemannian warped product manifold
M1 ×f M2, from the equation (3.15) we have

(∇Xh)(Y, Z) − (∇Y h)(X,Z) = 0,

which implies that

(∇X1h1)(Y1, Z1)− (∇Y1h1)(X1, Z1) + fg2(Y2, Z2)h1(X1 , gradf)

− fg2(X2, Z2)h1(Y1, gradf) = 0, (3.16)
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and

(∇2
X2
h2)(Y2, Z2)− (∇2

Y2
h2)(X2, Z2) = 0. (3.17)

So the equation (3.17) implies that M b is a curvature-invariant submanifold of M2.
If we take FZ for Z in the equation (3.16), then we have

(∇X1h1)(Y1, Z1)− (∇Y1h1)(X1, Z1) − fg2(Y2, Z2)h1(X1 , gradf)

+ fg2(X2, Z2)h1(Y1, gradf) = 0. (3.18)

So from the equations (3.16) and (3.18) we get

(∇X1h1)(Y1, Z1)− (∇Y1h1)(X1, Z1) = 0,

which implies that Ma is a curvature-invariant submanifold of M1. This completes the
proof of the theorem. 2

Theorem 3.9 Let (M1 ×f M2, g) be a Riemannian warped product manifold and M be

an invariant submanifold of (M1×fM2, g). If M1×fM2 has constant sectional curvature

and M is the totally umbilical submanifold of M1 ×f M2, then M is a totally geodesic
submanifold of M1 ×f M2.

Proof. Since M1 and M2 are totally geodesic and totally umbilical submanifold of
M1×fM2, respectively, if M1×fM2 has constant sectional curvature c then M1 and M2

have also constant sectional curvatures c and c+ ‖ gradf ‖2, respectively. We have

h(X, Y ) = g(X, Y )H (3.19)

for all X, Y ∈ Γ(TM) because M is a totally umbilical submanifold of

M1 ×f M2. In this case, M has also constant sectional curvature c+ ‖ H ‖2. Moreover,

Ma and M b have constant sectional curvatures

c+ ‖ H ‖2, c+ ‖ H ‖2 + ‖ gradf ‖2,

respectively, according to Theorem. 3.3.

We take X = X1, Y = Y1 ∈ Γ(TMa) in equation (3.19) and using the projection
mapping π∗, we get

h1(X1, Y1) = g(X1, Y1)
a

m
H1. (3.20)
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In the same way, we take X = X2, Y = Y2 ∈ Γ(TMb) in equation (3.19) and using the
projection mapping σ∗ we have

h2(X2, Y2) = g(X2, Y2)
b

m
H2. (3.21)

Thus we derive that Ma and M b have also constant sectional curvatures

c+
a2

m2
‖ H1 ‖2, c+

b2

m2
‖ H2 ‖2 + ‖ gradf ‖2,

respectively, that is,

a2

m2
‖ H1 ‖2 =‖ H ‖2, ‖ H ‖2 + ‖ gradf ‖2= b2

m2
‖ H2 ‖2 .

It follow that H = 0. M is a totally geodesic submanifold of M1×f M2 because M is the
totally umbilical submanifold of M1 ×f M2.

References

[1] Atceken, M., and Keles, S., On the Product Riemannian Manifold. Differential Geometry-

Dynamical Systems. Vol.5/2003. pp.1-7.

[2] Bejancu, A., Semi-Invariant Submanifolds of Locally Product Riemannian Manifolds, An.
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