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Uniqueness of Primary Decompositions
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Abstract

Uniqueness properties of primary decompositions in modules over non-commutative
rings are presented.
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1. Introduction

Throughout, R is a ring (not necessarily commutative) with identity and all modules
are unital left modules. For any submodules N,L of an R-module M , we define (N :
L) = {r ∈ R : rL ⊆ N}. Note that (N : L) is an ideal of R. Moreover (N : L) = R if and
only if L ⊆ N . Given a prime ideal P of R, a proper submodule K of an R-module M is
called P -primary provided

(i) (K : N) ⊆ P for every submodule N of M such that N * K; and

(ii) P n ⊆ (K : M) for some positive integer n.
Note that if K is P -primary, then P n ⊆ (K : M) ⊆ P for some positive integer n. A

submodule L of an R-module M is called primary if L is P -primary for some prime ideal
P of R. A submodule H of M has a primary decomposition if H is the intersection of a
finite collection of primary submodules of M . Note that if H has a primary decomposition
then H is a proper submodule of M .

In [1], Krull gave necessary and sufficient conditions for a proper ideal I of a com-
mutative ring R to have a primary decomposition. It is a standard fact that, if R is a
commutative Noetherian ring and M is a finitely generated R-module then every proper
submodule of M has a primary decomposition (see, for example, [5, Theorem 3.10] or
[2. Exercise 9.31]). In [3], Fisher gives necessary and sufficient conditions for a proper
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submodule of an R-module M to have a primary decomposition in case R is a (not nec-
essarily commutative) ring with the property that nil ideals are nilpotent. For a recent
new treatment of the existence of primary decompositions see [4], and for the related
geometrical aspects see [5, Section 3.8].

In this note we are concerned not with the existence but with uniqueness properties
of primary decompositions. Eisenbud [5, Section 3.7] gives a simple example to show that
a submodule may have many (even an infinite number of) different primary decomposi-
tions. In [6], Gilmer characterizes commutative rings in which each ideal is uniquely the
intersection of a finite number of primary ideals.

This paper generalizes results of [11] where the dicussion is concerned with submodules
which are finite intersections of prime submodules, a special case of what follows here.

Let N be a submodule of an R-module M such that N has a primary decomposition.
Then N will be said to have a normal decomposition if there exist a positive integer n,
distinct prime ideals Pi(1 ≤ i ≤ n) of R and Pi-primary submodules Ki(1 ≤ i ≤ n) of M
such that N = K1 ∩ · · ·∩Kn and N 6= K1 ∩ · · ·∩Ki−1 ∩Ki+1 ∩ · · ·∩Kn for all 1 ≤ i ≤ n.

Lemma 1 Let R be any ring, let P be a prime ideal of R, let n be a positive integer
and let Ki be a P -primary submodule of M for each 1 ≤ i ≤ n. Then ∩ni=1 Ki is also a
P -primary submodule of M .

Proof. Straightforward. 2

Corollary 2 Let R be any ring and let N be a submodule of an R-module M such that
N has a primary decomposition. Then N has a normal decomposition.

Proof. By Lemma 1. 2

The proof of the next result is a straightforward adaptation of [7, p.15 Theorem 2].

Theorem 3 Let R be any ring, let N be a submodule of an R-module M such that N
has a primary decomposition and let N = K1 ∩ · · · ∩ Kn and N = L1 ∩ · · · ∩ Lk be
normal decompositions of N where Ki is Pi-primary for some prime ideal Pi (1 ≤ i ≤ n)
and Lj is Qj-primary for some prime ideal Qj(1 ≤ j ≤ k) of R. Then n = k and

{Pi : 1 ≤ i ≤ n} = {Qj : 1 ≤ j ≤ k).

Proof. Consider the prime ideals P1, · · · , Pn, Q1, · · · , Qk. Without loss of generality,
we can suppose that Pn * Pi(1 ≤ i ≤ n − 1) and Pn is not strictly contained in

Qj(1 ≤ j ≤ k). There exists a positive integer t such that P tnM ⊆ Kn and hence

P tn(K1 ∩ · · · ∩Kn−1) ⊆ N = L1 ∩ · · · ∩ Lk.

426



SMITH

If K1 ∩ · · ·∩Kn−1 ⊆ Lj(1 ≤ j ≤ k), then N = K1 ∩ · · ·∩Kn−1, a contradiction. Without

loss of generality we can suppose that K1 ∩ · · · ∩Kn−1 * Lk. Then P tn ⊆ Qk and hence
Pn ⊆ Qk. By the choice of Pn, we conclude that Pn = Qk.

Next note that

P tn(K1 ∩ · · · ∩Kn−1) ⊆ N ⊆ L1 ∩ · · · ∩ Lk−1,

and Pn * Qi(1 ≤ i ≤ k − 1), so that

K1 ∩ · · · ∩Kn−1 ⊆ L1 ∩ · · · ∩ Lk−1.

Similarly, L1 ∩ · · · ∩ Lk−1 ⊆ K1 ∩ · · · ∩Kn−1. Hence K1 ∩ · · · ∩Kn−1 = L1 ∩ · · · ∩ Lk−1

and the result follows by induction. 2

In view of Theorem 3, for any submodule N of an R-module M we call prime ideals
Pi (1 ≤ i ≤ n) of R the associated prime ideals of N provided there exists a normal
decomposition N = K1 ∩ · · · ∩Kn, where Ki is a Pi-primary submodule of M for each
1 ≤ i ≤ n.

If A is a proper ideal of a ring R then a prime ideal P of R is a minimal prime ideal
of A if A ⊆ P and P/A is a minimal prime ideal of the ring R/A.

Lemma 4 Let R be any ring and let N be a submodule of an R-module M such that N
has a primary decomposition. Then every minimal prime ideal of the ideal (N : M) is an
associated prime ideal of N .

Proof. Let N = K1∩· · ·∩Kn be a normal decomposition of N where Ki is a Pi-primary
submodule for some prime ideal Pi for each 1 ≤ i ≤ n. There exists a positive integer k

such that P ki ⊆ (Ki : M) for all 1 ≤ i ≤ n. Then (P1 · · ·Pn)k ⊆ (N : M) ⊆ P1 ∩ · · · ∩Pn.

Let P be any minimal prime ideal of (N : M). Then (P1 · · ·Pn)k ⊆ P and hence Pi ⊆ P
for some 1 ≤ i ≤ n. It follows that P = Pi. 2

By adapting the proof of Theorem 3, we have the following “uniqueness result”.

Theorem 5 Let R be any ring, let N be a submodule of an R-module M such that N has
a primary decomposition and let Pi(1 ≤ i ≤ n) be the associated prime ideals of N , for

some positive integer n, such that Pj * Pi for all 1 ≤ i < j ≤ n. Let N = K1 ∩ · · · ∩Kn

and N = L1∩· · ·∩Ln be normal decompositions of N in terms of Pi-primary submodules
Ki and Li (1 ≤ i ≤ n). Then K1 ∩ · · · ∩Ki = L1 ∩ · · · ∩Li for all 1 ≤ i ≤ n.
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Next, we give a characterization of the associated prime ideals of a submodule with
primary decomposition.

Theorem 6 Let R be any ring and let N be a submodule of an R-module M such that N
has a primary decomposition. Then the following statements are equivalent for a prime
ideal P of R.

(i) P is an associated prime ideal of N .

(ii) P = (N : L) for some submodule L of M with L * N .

(iii) P = {r ∈ R : rRm ⊆ N for some element m ∈M\N}.

Proof. (i) ⇒ (ii) Let N = K1 ∩ · · · ∩ Kn be a normal decomposition of N where Ki

is a Pi-primary submodule of M for some prime ideal Pi of R for each 1 ≤ i ≤ n. Let
1 ≤ i ≤ n and let Hi = K1 ∩ · · · ∩Ki−1 ∩Ki+1 ∩ · · ·∩Kn. There exists a positive integer

k(i) such that P k(i)
i M ⊆ Ki and hence P

k(i)
i Hi ⊆ N . Since Hi * N there exists an

integer 1 ≤ t(i) ≤ k(i) such that P t(i)i Hi ⊆ N but P t(i)−1
i Hi * N . Let Li = P

t(i)−1
i Hi.

Then Li is a submodule of M such that Li * N and PiLi ⊆ N .

Let A = (N : Li) and note that Pi ⊆ A. On the other hand, ALi ⊆ N ⊆ Ki. If
Li ⊆ Ki then Li ⊆ N , a contradiction. Thus A ⊆ Pi. It follows that Pi = (N : Li).

(ii) ⇐⇒ (iii) Clear.

(ii) =⇒ (i) Suppose that P = (N : L) for some submodule L * N . There exists

1 ≤ i ≤ n such that L * Ki. Without loss of generality, there exists 1 ≤ m ≤ n such

that L * Ki (1 ≤ i ≤ m) and L ⊆ Ki (m+ 1 ≤ i ≤ n). Clearly PL ⊆ N ⊆ K1 ∩ · · ·∩Km

implies that P ⊆ P1 ∩ · · · ∩ Pm. On the other hand, there exists a positive integer s
such that (P1 ∩ · · · ∩ Pm)sM ⊆ K1 ∩ · · · ∩Km and hence (P1 ∩ · · · ∩ Pm)sL ⊆ N . Thus
(P1 ∩ · · · ∩ Pm)s ⊆ P and we have P1 ∩ · · · ∩ Pm ⊆ P , so that P = P1 ∩ · · · ∩ Pm. This
implies that P = Pi for some 1 ≤ i ≤ m. 2

If X is a non-empty subset of a ring R then `(X) will denote the left annihilator of
X, i.e. `(X) = {r ∈ R : rX = 0}. By a prime left annihilator of R we mean a prime ideal
P of R such that P = `(X) for some non-empty subset X of R, equivalently P = `(A),
where A is the ideal RXR of R.

Corollary 7 Let R be any ring, let N be a submodule of an R-module M such that N
has a primary decomposition and let P be a prime ideal of R such that (N : M) ⊆ P and
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P/(N : M) is a prime left annihilator of the ring R/(N : M). Then P is an associated
prime ideal of N .

Proof. There exists an ideal A of R such that P = {r ∈ R : rA ⊆ (N : M)}. Clearly

this implies that A * (N : M), i.e. AM * N and P = (N : AM). By Theorem 6, P is
an associated prime ideal of N . 2

Note that the converse of Corollary 7 is false in general, as the following simple example
shows.

Example 8 Let Z be the ring of rational integers, let p be any prime in Z, let M be the
free Z-module Z⊕Z and let N be the proper submodule 0⊕Zp of M . Then N = K1 ∩K2

is a normal decomposition where K1 is the 0-primary submodule 0 ⊕ Z and K2 is the
(Zp)-primary submodule Zp⊕ Zp. Thus the associated prime ideals of N are 0 and Zp.
Note that (N : M) = 0 and Zp is not a prime (left) annihilator of Z.

This brings us to another “uniqueness result”.

Theorem 9 Let R be any ring, let N be a submodule of an R-module M such that
N has a primary decomposition and let Pi(1 ≤ i ≤ n) be the associated prime ideals

of N such that Pi * P1 for all 2 ≤ i ≤ n. Let N = K1 ∩ · · · ∩ Kn be any normal
decomposition of N where Ki is a Pi-primary submodule of M for each 1 ≤ i ≤ n. Then
K1 = {m ∈ M : Am ⊆ N for some ideal A of R with A * P1}.

Proof. Let m ∈ M satisfy Am ⊆ N for some ideal A * P1. Then Am ⊆ K1

and hence m ∈ K1. On the other hand, there exists a positive integer k such that

P ki M ⊆ Ki (2 ≤ i ≤ n). It follows that if B = Πn
i=2 P

k
i then B is an ideal of R, B * P1

and BK1 ⊆ N . 2

Corollary 10 Let R be any ring, let N be a submodule of an R-module M such that
N has a primary decomposition and let Pi (1 ≤ i ≤ n) be the associated prime ideals
of N such that P1, · · · , Pt are minimal in {Pi : 1 ≤ i ≤ n}, for some 1 ≤ t ≤ n. Let
N = K1∩· · ·∩Kn be any normal decomposition of N where Ki is a Pi-primary submodule
of M for each 1 ≤ i ≤ n. Then K1 ∩ · · · ∩ Kt = {m ∈ M : Am ⊆ N for some ideal

A * P1 ∪ · · · ∪ Pt}.

Proof. Suppose first that Am ⊆ N for some ideal A * P1∪· · ·∪Pt. For each 1 ≤ i ≤ t,
A * Pi and Am ⊆ N so that m ∈ Ki by Theorem 9. Thus m ∈ K1 ∩ · · · ∩Kt.
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Conversely, let x ∈ K1 ∩ · · · ∩Kt. By Theorem 9, for each 1 ≤ i ≤ t there exists an

ideal Bi * Pi such that Bix ⊆ N . Let B =
∑t

i=1 Bi (Πj 6=iPj). Then B is an ideal of R

such that B * P1 ∪ · · · ∪ Pt and Bx ⊆ N . 2

Next we give an algorithm for finding the associated prime ideals of a submodule
having a primary decomposition. Such a process for the commutative case is given in
[8]. The algorithm we give works for modules over an arbitrary left or right Noetherian
ring and depends on being able to find the minimal prime ideals of certain proper ideals
of the ring. We shall call a ring R suitable if every proper ideal of R has only a finite
number of minimal prime ideals. Any ring which satisfies the ascending chain condition
on semiprime ideals is suitable by [9, Proposition 33]. Clearly left or right Noetherian
rings satisfy the ascending chain condition on semiprime ideals and so too do rings with
left or right Krull dimension by [10, Proposition 7.3], so that all such rings are suitable.

Lemma 11 Let R be any ring, let N be a submodule of an R-module M such that N has a
primary decomposition and let N = K1∩· · ·∩Kn be a normal decomposition of N in terms
of primary submodules Ki(1 ≤ i ≤ n). Then (N : K1 ∩ · · · ∩Ki) = (Ki+1 ∩ · · ·∩Kn : M)
for all 1 ≤ i ≤ n− 1.

Proof. Let r ∈ (Ki+1 ∩ · · · ∩Kn : M). Then r(K1 ∩ · · · ∩Ki) ⊆ K1 ∩ · · · ∩Kn = M .
Conversely, let s ∈ (N : K1∩· · ·∩Ki). For each i+1 ≤ j ≤ n, s(K1∩· · ·∩Ki) ⊆ N ⊆ Kj

and K1 ∩ · · · ∩Ki * Kj , so that sM ⊆ Kj . Hence sM ⊆ Ki+1 ∩ · · · ∩Kn. 2

Theorem 12 Let R be a suitable ring and let N be a submodule of a left R-module
M such that N has a primary decomposition, let P1, · · · , Pk(1) be the minimal prime

ideals of the ideal (N : M) of R, let N1 = {m ∈ M : Am ⊆ N for some ideal

A * P1 ∪ · · · ∪ Pk(1)}, let Pk(1)+1, · · · , Pk(2) be the minimal prime ideals of (N : N1), let

N2 = {m ∈ N1 : Am ⊆ N for some ideal A * Pk(1)+1∪ · · ·∪Pk(2)}, let Pk(2)+1, · · · , Pk(3)

be the minimal prime ideals of (N : N2), let N3 = {m ∈ N2 : Am ⊆ N for some ideal

A * Pk(2)+1 ∪ · · · ∪ Pk(3)}, and so on. Then there exists a positive integer t such that

P1, · · · , Pk(t) are the associated prime ideals of N .

Proof. Let N = K1∩· · ·∩Kn be a normal decomposition of N in terms of Qi-primary
submodules Ki for some prime ideal Qi (1 ≤ i ≤ n). Without loss of generality, Lemma
4 gives Qi = Pi for all 1 ≤ i ≤ k(1). Suppose that k(1) < n. By Corollary 8, N1 =
K1 ∩ · · ·∩Kk(1) and Lemma 9 gives (N : N1) = (L1 : M), where L1 = Kk(1)+1∩ · · ·∩Kn.
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Again using Lemma 4 we can suppose without loss of generality that Qi = Pi for all
k(1) + 1 ≤ i ≤ k(2). Suppose that k(2) < n. Let N2 = K1 ∩ · · · ∩ Kk(2). Then, by

Corollary 10,

K1 ∩ · · · ∩Kk(2) = N1 ∩
(
Kk(1)+1 ∩ · · · ∩Kk(2)

)
= N1 ∩ {m ∈M : Am ⊆ Kk(1)+1 ∩ · · · ∩Kk(2) for some ideal

A * Pk(1)+1 ∪ · · · ∪ Pk(2)}

= N2.

Again applying Lemma 11 we have (N : M2) = (L2 : M), where L2 = Kk(2)+1 ∩ · · · ∩
Kn. Clearly this process must stop since 1 ≤ k(1) < k(2) < · · · ≤ n. 2

We can illustrate the process described in Theorem 12 by the following simple example.

Again Z is the ring of rational integers. Let M = Z(6), let p, q be distinct primes in Z
and let N be the submodule Z⊕Zp⊕Zp2⊕Zq3⊕Zq4⊕ 0 of M . Then (N : M) = 0 and
hence (in the notation of Theorem 12), k(1) = 1, P1 = 0 and N1 = Z⊕Z⊕Z⊕Z⊕Z⊕0.

Next (N : N1) = Zp2 ∩ Zq4, so that k(2) = 3, P2 = Zp and P3 = Zq. It can easily be
checked that N2 = N . Thus (N : N2) = R and the process stops, giving the associated
prime ideals of N as 0, Zp and Zq.

Let P be a prime ideal of a ring R. A proper ideal A of R will be called left P -primary
if

(i) whenever B,C are ideals of R such that BC ⊆ A then B ⊆ P or C ⊆ A, and

(ii) P n ⊆ A ⊆ P for some positive integer n.
Next an ideal will be called left primary if it is left P -primary for some prime ideal

P of R. An ideal I of R has a left primary decomposition if I is the intersection of
a finite collection of left primary ideals. Note that an ideal I of R has a left primary
decomposition if and only if the submodule I of the left R-module R has a primary
decomposition.

Proposition 13 Let R be any ring and let N be a submodule of an R-module M such that
N has a primary decomposition. Then the ideal (N : M) has a left primary decomposition.
Moreover, every associated prime ideal of (N : M) is an associated prime ideal of N .

Proof. Let N = K1∩· · ·∩Kn, where n is a positive integer and Ki is a Pi-primary sub-
module for some prime ideal Pi for each 1 ≤ i ≤ n. Then (N : M) = (K1 : M)∩· · ·∩(Kn :

M). Let 1 ≤ i ≤ n. There exists a positive integer k such that P ki ⊆ (Ki : M). Let
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A,B be ideals of R such that AB ⊆ (Ki : M). Then ABM ⊆ Ki and either A ⊆ Pi or
BM ⊆ Ki, i.e. B ⊆ (Ki : M). It follows that (Ki : M) is left Pi-primary. The result
follows. 2

A submodule K of an R-module M is called prime if K 6= M and (K : L) = (K : M)

for every submodule L of M such that L * K. In case K is a prime submodule of M it

can easily be checked that the ideal P = (K : M) is a prime ideal of R and in this case
we call K a P -prime submodule of M .

Lemma 14 Let P be a prime ideal of R. Then the following statements are equivalent
for a submodule K of an R-module M .

(i) K is P -prime.

(ii) K is P -primary and P ⊆ (K : M).

Proof. Straightforward. 2

A submodule N of a module M has a prime decomposition if N is the intersection of
a finite collection of prime submodules of M . Let N be a submodule of an R-module M
such that N has a prime decomposition. Then N will be said to have a normal prime
decomposition if there exist a positive integer n, distinct prime ideals Pi(1 ≤ i ≤ n) of
R and Pi-prime submodules Ki(1 ≤ i ≤ n) of M such that N = K1 ∩ · · · ∩ Kn and
N 6= K1 ∩ · · · ∩Ki−1 ∩Ki+1 ∩ · · · ∩Kn for all 1 ≤ i ≤ n. By Corollary 2, any submodule
having a prime decomposition has a normal prime decomposition. In certain situations it
is possible to write down explicitly a normal prime decomposition for a submodule once
its associated prime ideals are known, as we show next.

Theorem 15 Let R be any ring, let N be a submodule of an R-module M such that
N has a prime decomposition and let Pi(1 ≤ i ≤ n) be the associated prime ideals of

N . Suppose further that for each 1 ≤ i ≤ n and for each ideal A * Pi there exists an

ideal B * P and a finitely generated left ideal C of R such that B ⊆ C ⊆ A. For each

1 ≤ i ≤ n let Hi = {m ∈ M : Dm ⊆ N + PiM for some ideal D * Pi}. Then Hi is a
Pi-prime submodule of M for each 1 ≤ i ≤ n and N = H1 ∩ · · · ∩Hn is a normal prime
decomposition of N .

Proof. Let N = K1∩· · ·∩Kn be a normal prime decomposition where Ki is a Pi-prime
submodule of M for each 1 ≤ i ≤ n. Let 1 ≤ j ≤ n. It is easy to check that Hj is a

submodule of M such that Pj ⊆ (Hj : M) and N ⊆ Hj. Let m ∈ Hj. There exists an
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ideal E * Pj such that Em ⊆ N +PjM ⊆ Kj so that m ∈ Kj . It follows that Hj ⊆ Kj.
In particular, Hj is a proper submodule of M .

Now we prove that Hj is a Pj-prime submodule of M . Let x ∈ M and let F be an ideal

of R such that F * Pj and Fx ⊆ Hj. By hypothesis, there exist a finitely generated left

ideal G and an ideal G′ * Pj such that G′ ⊆ G ⊆ F . Suppose that G = Rg1 + · · ·+Rgk

for some positive integer k and elements gi ∈ G(1 ≤ i ≤ k). For each 1 ≤ s ≤ k there

exists an ideal Is * Pj such that Isgsx ⊆ N +PjM . Let I = I1 · · ·Ik. Then I is an ideal

of R such that I * Pj and IG′x ⊆ IGx =
∑k

s=1 Igsx ⊆ N + PjM . Because IG′ * Pj,
the element x ∈ Hj. This proves that Hj is a Pj-prime submodule of M .

To summarise, Hj is a Pj-prime submodule of M such that N ⊆ Hj ⊆ Kj for all
1 ≤ j ≤ n. Clearly N = H1 ∩ · · · ∩Hn and this is a normal prime decomposition of N .2

Note that the condition on associated prime ideals in Theorem 15 is satisfied if R is
a left Noetherian ring or a PI-ring. Note further that the proof of Theorem 15 gives the
following result.

Corollary 16 let N be a submodule of an R-module M and let P be a prime ideal of R
such that for each ideal A * P there exists an ideal B * P and a finitely generated left

ideal C such that B ⊆ C ⊆ A. For each positive integer n let Hn = {m ∈ M : Dm ⊆
N +P nM for some ideal D * P }. Then Hn is a P -primary submodule containing N for
each positive integer n.
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