Uniqueness of Primary Decompositions

P. F. Smith

Abstract

Uniqueness properties of primary decompositions in modules over non-commutative rings are presented.

Key Words: Primary, decomposition, normal decomposition, prime ideal, Left Noetherian ring, PI ring.

1. Introduction

Throughout, R is a ring (not necessarily commutative) with identity and all modules are unital left modules. For any submodules N, L of an R-module M, we define (N : $L)=\{r \in R: r L \subseteq N\}$. Note that $(N: L)$ is an ideal of R. Moreover $(N: L)=R$ if and only if $L \subseteq N$. Given a prime ideal P of R, a proper submodule K of an R-module M is called P-primary provided
(i) $(K: N) \subseteq P$ for every submodule N of M such that $N \nsubseteq K$; and
(ii) $P^{n} \subseteq(K: M)$ for some positive integer n.

Note that if K is P-primary, then $P^{n} \subseteq(K: M) \subseteq P$ for some positive integer n. A submodule L of an R-module M is called primary if L is P-primary for some prime ideal P of R. A submodule H of M has a primary decomposition if H is the intersection of a finite collection of primary submodules of M. Note that if H has a primary decomposition then H is a proper submodule of M.

In [1], Krull gave necessary and sufficient conditions for a proper ideal I of a commutative ring R to have a primary decomposition. It is a standard fact that, if R is a commutative Noetherian ring and M is a finitely generated R-module then every proper submodule of M has a primary decomposition (see, for example, [5, Theorem 3.10] or [2. Exercise 9.31]). In [3], Fisher gives necessary and sufficient conditions for a proper

[^0]submodule of an R-module M to have a primary decomposition in case R is a (not necessarily commutative) ring with the property that nil ideals are nilpotent. For a recent new treatment of the existence of primary decompositions see [4], and for the related geometrical aspects see [5, Section 3.8].

In this note we are concerned not with the existence but with uniqueness properties of primary decompositions. Eisenbud [5, Section 3.7] gives a simple example to show that a submodule may have many (even an infinite number of) different primary decompositions. In [6], Gilmer characterizes commutative rings in which each ideal is uniquely the intersection of a finite number of primary ideals.

This paper generalizes results of [11] where the dicussion is concerned with submodules which are finite intersections of prime submodules, a special case of what follows here.

Let N be a submodule of an R-module M such that N has a primary decomposition. Then N will be said to have a normal decomposition if there exist a positive integer n, distinct prime ideals $P_{i}(1 \leq i \leq n)$ of R and P_{i}-primary submodules $K_{i}(1 \leq i \leq n)$ of M such that $N=K_{1} \cap \cdots \cap K_{n}$ and $N \neq K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n}$ for all $1 \leq i \leq n$.

Lemma 1 Let R be any ring, let P be a prime ideal of R, let n be a positive integer and let K_{i} be a P-primary submodule of M for each $1 \leq i \leq n$. Then $\cap_{i=1}^{n} K_{i}$ is also a P-primary submodule of M.
Proof. Straightforward.
Corollary 2 Let R be any ring and let N be a submodule of an R-module M such that N has a primary decomposition. Then N has a normal decomposition.
Proof. By Lemma 1.
The proof of the next result is a straightforward adaptation of [7, p. 15 Theorem 2].
Theorem 3 Let R be any ring, let N be a submodule of an R-module M such that N has a primary decomposition and let $N=K_{1} \cap \cdots \cap K_{n}$ and $N=L_{1} \cap \cdots \cap L_{k}$ be normal decompositions of N where K_{i} is P_{i}-primary for some prime ideal $P_{i}(1 \leq i \leq n)$ and L_{j} is Q_{j}-primary for some prime ideal $Q_{j}(1 \leq j \leq k)$ of R. Then $n=k$ and $\left\{P_{i}: 1 \leq i \leq n\right\}=\left\{Q_{j}: 1 \leq j \leq k\right)$.
Proof. Consider the prime ideals $P_{1}, \cdots, P_{n}, Q_{1}, \cdots, Q_{k}$. Without loss of generality, we can suppose that $P_{n} \nsubseteq P_{i}(1 \leq i \leq n-1)$ and P_{n} is not strictly contained in $Q_{j}(1 \leq j \leq k)$. There exists a positive integer t such that $P_{n}^{t} M \subseteq K_{n}$ and hence

$$
P_{n}^{t}\left(K_{1} \cap \cdots \cap K_{n-1}\right) \subseteq N=L_{1} \cap \cdots \cap L_{k}
$$

SMITH

If $K_{1} \cap \cdots \cap K_{n-1} \subseteq L_{j}(1 \leq j \leq k)$, then $N=K_{1} \cap \cdots \cap K_{n-1}$, a contradiction. Without loss of generality we can suppose that $K_{1} \cap \cdots \cap K_{n-1} \nsubseteq L_{k}$. Then $P_{n}^{t} \subseteq Q_{k}$ and hence $P_{n} \subseteq Q_{k}$. By the choice of P_{n}, we conclude that $P_{n}=Q_{k}$.

Next note that

$$
P_{n}^{t}\left(K_{1} \cap \cdots \cap K_{n-1}\right) \subseteq N \subseteq L_{1} \cap \cdots \cap L_{k-1}
$$

and $P_{n} \nsubseteq Q_{i}(1 \leq i \leq k-1)$, so that

$$
K_{1} \cap \cdots \cap K_{n-1} \subseteq L_{1} \cap \cdots \cap L_{k-1}
$$

Similarly, $L_{1} \cap \cdots \cap L_{k-1} \subseteq K_{1} \cap \cdots \cap K_{n-1}$. Hence $K_{1} \cap \cdots \cap K_{n-1}=L_{1} \cap \cdots \cap L_{k-1}$ and the result follows by induction.

In view of Theorem 3, for any submodule N of an R-module M we call prime ideals $P_{i}(1 \leq i \leq n)$ of R the associated prime ideals of N provided there exists a normal decomposition $N=K_{1} \cap \cdots \cap K_{n}$, where K_{i} is a P_{i}-primary submodule of M for each $1 \leq i \leq n$.

If A is a proper ideal of a ring R then a prime ideal P of R is a minimal prime ideal of A if $A \subseteq P$ and P / A is a minimal prime ideal of the ring R / A.

Lemma 4 Let R be any ring and let N be a submodule of an R-module M such that N has a primary decomposition. Then every minimal prime ideal of the ideal $(N: M)$ is an associated prime ideal of N.
Proof. Let $N=K_{1} \cap \cdots \cap K_{n}$ be a normal decomposition of N where K_{i} is a P_{i}-primary submodule for some prime ideal P_{i} for each $1 \leq i \leq n$. There exists a positive integer k such that $P_{i}^{k} \subseteq\left(K_{i}: M\right)$ for all $1 \leq i \leq n$. Then $\left(P_{1} \cdots P_{n}\right)^{k} \subseteq(N: M) \subseteq P_{1} \cap \cdots \cap P_{n}$. Let P be any minimal prime ideal of $(N: M)$. Then $\left(P_{1} \cdots P_{n}\right)^{k} \subseteq P$ and hence $P_{i} \subseteq P$ for some $1 \leq i \leq n$. It follows that $P=P_{i}$.

By adapting the proof of Theorem 3, we have the following "uniqueness result".
Theorem 5 Let R be any ring, let N be a submodule of an R-module M such that N has a primary decomposition and let $P_{i}(1 \leq i \leq n)$ be the associated prime ideals of N, for some positive integer n, such that $P_{j} \nsubseteq P_{i}$ for all $1 \leq i<j \leq n$. Let $N=K_{1} \cap \cdots \cap K_{n}$ and $N=L_{1} \cap \cdots \cap L_{n}$ be normal decompositions of N in terms of P_{i}-primary submodules K_{i} and $L_{i}(1 \leq i \leq n)$. Then $K_{1} \cap \cdots \cap K_{i}=L_{1} \cap \cdots \cap L_{i}$ for all $1 \leq i \leq n$.

SMITH

Next, we give a characterization of the associated prime ideals of a submodule with primary decomposition.

Theorem 6 Let R be any ring and let N be a submodule of an R-module M such that N has a primary decomposition. Then the following statements are equivalent for a prime ideal P of R.
(i) P is an associated prime ideal of N.
(ii) $P=(N: L)$ for some submodule L of M with $L \nsubseteq N$.
(iii) $P=\{r \in R: r R m \subseteq N$ for some element $m \in M \backslash N\}$.

Proof. (i) \Rightarrow (ii) Let $N=K_{1} \cap \cdots \cap K_{n}$ be a normal decomposition of N where K_{i} is a P_{i}-primary submodule of M for some prime ideal P_{i} of R for each $1 \leq i \leq n$. Let $1 \leq i \leq n$ and let $H_{i}=K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n}$. There exists a positive integer $k(i)$ such that $P_{i}^{k(i)} M \subseteq K_{i}$ and hence $P_{i}^{k(i)} H_{i} \subseteq N$. Since $H_{i} \nsubseteq N$ there exists an integer $1 \leq t(i) \leq k(i)$ such that $P_{i}^{t(i)} H_{i} \subseteq N$ but $P_{i}^{t(i)-1} H_{i} \nsubseteq N$. Let $L_{i}=P_{i}^{t(i)-1} H_{i}$. Then L_{i} is a submodule of M such that $L_{i} \nsubseteq N$ and $P_{i} L_{i} \subseteq N$.

Let $A=\left(N: L_{i}\right)$ and note that $P_{i} \subseteq A$. On the other hand, $A L_{i} \subseteq N \subseteq K_{i}$. If $L_{i} \subseteq K_{i}$ then $L_{i} \subseteq N$, a contradiction. Thus $A \subseteq P_{i}$. It follows that $P_{i}=\left(N: L_{i}\right)$.
(ii) \Longleftrightarrow (iii) Clear.
(ii) \Longrightarrow (i) Suppose that $P=(N: L)$ for some submodule $L \nsubseteq N$. There exists $1 \leq i \leq n$ such that $L \nsubseteq K_{i}$. Without loss of generality, there exists $1 \leq m \leq n$ such that $L \nsubseteq K_{i}(1 \leq i \leq m)$ and $L \subseteq K_{i}(m+1 \leq i \leq n)$. Clearly $P L \subseteq N \subseteq K_{1} \cap \cdots \cap K_{m}$ implies that $P \subseteq P_{1} \cap \cdots \cap P_{m}$. On the other hand, there exists a positive integer s such that $\left(P_{1} \cap \cdots \cap P_{m}\right)^{s} M \subseteq K_{1} \cap \cdots \cap K_{m}$ and hence $\left(P_{1} \cap \cdots \cap P_{m}\right)^{s} L \subseteq N$. Thus $\left(P_{1} \cap \cdots \cap P_{m}\right)^{s} \subseteq P$ and we have $P_{1} \cap \cdots \cap P_{m} \subseteq P$, so that $P=P_{1} \cap \cdots \cap P_{m}$. This implies that $P=P_{i}$ for some $1 \leq i \leq m$.

If X is a non-empty subset of a ring R then $\ell(X)$ will denote the left annihilator of X, i.e. $\ell(X)=\{r \in R: r X=0\}$. By a prime left annihilator of R we mean a prime ideal P of R such that $P=\ell(X)$ for some non-empty subset X of R, equivalently $P=\ell(A)$, where A is the ideal $R X R$ of R.

Corollary 7 Let R be any ring, let N be a submodule of an R-module M such that N has a primary decomposition and let P be a prime ideal of R such that $(N: M) \subseteq P$ and

SMITH

$P /(N: M)$ is a prime left annihilator of the ring $R /(N: M)$. Then P is an associated prime ideal of N.
Proof. There exists an ideal A of R such that $P=\{r \in R: r A \subseteq(N: M)\}$. Clearly this implies that $A \nsubseteq(N: M)$, i.e. $A M \nsubseteq N$ and $P=(N: A M)$. By Theorem $6, P$ is an associated prime ideal of N.

Note that the converse of Corollary 7 is false in general, as the following simple example shows.

Example 8 Let \mathbb{Z} be the ring of rational integers, let p be any prime in \mathbb{Z}, let M be the free \mathbb{Z}-module $\mathbb{Z} \oplus \mathbb{Z}$ and let N be the proper submodule $0 \oplus \mathbb{Z} p$ of M. Then $N=K_{1} \cap K_{2}$ is a normal decomposition where K_{1} is the 0-primary submodule $0 \oplus \mathbb{Z}$ and K_{2} is the $(\mathbb{Z} p)$-primary submodule $\mathbb{Z} p \oplus \mathbb{Z} p$. Thus the associated prime ideals of N are 0 and $\mathbb{Z} p$. Note that $(N: M)=0$ and $\mathbb{Z} p$ is not a prime (left) annihilator of \mathbb{Z}.

This brings us to another "uniqueness result".
Theorem 9 Let R be any ring, let N be a submodule of an R-module M such that N has a primary decomposition and let $P_{i}(1 \leq i \leq n)$ be the associated prime ideals of N such that $P_{i} \nsubseteq P_{1}$ for all $2 \leq i \leq n$. Let $N=K_{1} \cap \cdots \cap K_{n}$ be any normal decomposition of N where K_{i} is a P_{i}-primary submodule of M for each $1 \leq i \leq n$. Then $K_{1}=\left\{m \in M: A m \subseteq N\right.$ for some ideal A of R with $\left.A \nsubseteq P_{1}\right\}$.

Proof. Let $m \in M$ satisfy $A m \subseteq N$ for some ideal $A \nsubseteq P_{1}$. Then $A m \subseteq K_{1}$ and hence $m \in K_{1}$. On the other hand, there exists a positive integer k such that $P_{i}^{k} M \subseteq K_{i}(2 \leq i \leq n)$. It follows that if $B=\Pi_{i=2}^{n} P_{i}^{k}$ then B is an ideal of $R, B \nsubseteq P_{1}$ and $B K_{1} \subseteq N$.

Corollary 10 Let R be any ring, let N be a submodule of an R-module M such that N has a primary decomposition and let $P_{i}(1 \leq i \leq n)$ be the associated prime ideals of N such that P_{1}, \cdots, P_{t} are minimal in $\left\{P_{i}: 1 \leq i \leq n\right\}$, for some $1 \leq t \leq n$. Let $N=K_{1} \cap \cdots \cap K_{n}$ be any normal decomposition of N where K_{i} is a P_{i}-primary submodule of M for each $1 \leq i \leq n$. Then $K_{1} \cap \cdots \cap K_{t}=\{m \in M: A m \subseteq N$ for some ideal $\left.A \nsubseteq P_{1} \cup \cdots \cup P_{t}\right\}$.

Proof. Suppose first that $A m \subseteq N$ for some ideal $A \nsubseteq P_{1} \cup \cdots \cup P_{t}$. For each $1 \leq i \leq t$, $A \nsubseteq P_{i}$ and $A m \subseteq N$ so that $m \in K_{i}$ by Theorem 9 . Thus $m \in K_{1} \cap \cdots \cap K_{t}$.

SMITH

Conversely, let $x \in K_{1} \cap \cdots \cap K_{t}$. By Theorem 9, for each $1 \leq i \leq t$ there exists an ideal $B_{i} \nsubseteq P_{i}$ such that $B_{i} x \subseteq N$. Let $B=\sum_{i=1}^{t} B_{i}\left(\Pi_{j \neq i} P_{j}\right)$. Then B is an ideal of R such that $B \nsubseteq P_{1} \cup \cdots \cup P_{t}$ and $B x \subseteq N$.

Next we give an algorithm for finding the associated prime ideals of a submodule having a primary decomposition. Such a process for the commutative case is given in [8]. The algorithm we give works for modules over an arbitrary left or right Noetherian ring and depends on being able to find the minimal prime ideals of certain proper ideals of the ring. We shall call a ring R suitable if every proper ideal of R has only a finite number of minimal prime ideals. Any ring which satisfies the ascending chain condition on semiprime ideals is suitable by [9, Proposition 33]. Clearly left or right Noetherian rings satisfy the ascending chain condition on semiprime ideals and so too do rings with left or right Krull dimension by [10, Proposition 7.3], so that all such rings are suitable.

Lemma 11 Let R be any ring, let N be a submodule of an R-module M such that N has a primary decomposition and let $N=K_{1} \cap \cdots \cap K_{n}$ be a normal decomposition of N in terms of primary submodules $K_{i}(1 \leq i \leq n)$. Then $\left(N: K_{1} \cap \cdots \cap K_{i}\right)=\left(K_{i+1} \cap \cdots \cap K_{n}: M\right)$ for all $1 \leq i \leq n-1$.

Proof. Let $r \in\left(K_{i+1} \cap \cdots \cap K_{n}: M\right)$. Then $r\left(K_{1} \cap \cdots \cap K_{i}\right) \subseteq K_{1} \cap \cdots \cap K_{n}=M$. Conversely, let $s \in\left(N: K_{1} \cap \cdots \cap K_{i}\right)$. For each $i+1 \leq j \leq n, s\left(K_{1} \cap \cdots \cap K_{i}\right) \subseteq N \subseteq K_{j}$ and $K_{1} \cap \cdots \cap K_{i} \nsubseteq K_{j}$, so that $s M \subseteq K_{j}$. Hence $s M \subseteq K_{i+1} \cap \cdots \cap K_{n}$.

Theorem 12 Let R be a suitable ring and let N be a submodule of a left R-module M such that N has a primary decomposition, let $P_{1}, \cdots, P_{k(1)}$ be the minimal prime ideals of the ideal $(N: M)$ of R, let $N_{1}=\{m \in M: A m \subseteq N$ for some ideal $\left.A \nsubseteq P_{1} \cup \cdots \cup P_{k(1)}\right\}$, let $P_{k(1)+1}, \cdots, P_{k(2)}$ be the minimal prime ideals of $\left(N: N_{1}\right)$, let $N_{2}=\left\{m \in N_{1}: A m \subseteq N\right.$ for some ideal $\left.A \nsubseteq P_{k(1)+1} \cup \cdots \cup P_{k(2)}\right\}$, let $P_{k(2)+1}, \cdots, P_{k(3)}$ be the minimal prime ideals of $\left(N: N_{2}\right)$, let $N_{3}=\left\{m \in N_{2}: A m \subseteq N\right.$ for some ideal $\left.A \nsubseteq P_{k(2)+1} \cup \cdots \cup P_{k(3)}\right\}$, and so on. Then there exists a positive integer t such that $P_{1}, \cdots, P_{k(t)}$ are the associated prime ideals of N.
Proof. Let $N=K_{1} \cap \cdots \cap K_{n}$ be a normal decomposition of N in terms of Q_{i}-primary submodules K_{i} for some prime ideal $Q_{i}(1 \leq i \leq n)$. Without loss of generality, Lemma 4 gives $Q_{i}=P_{i}$ for all $1 \leq i \leq k(1)$. Suppose that $k(1)<n$. By Corollary $8, N_{1}=$ $K_{1} \cap \cdots \cap K_{k(1)}$ and Lemma 9 gives $\left(N: N_{1}\right)=\left(L_{1}: M\right)$, where $L_{1}=K_{k(1)+1} \cap \cdots \cap K_{n}$.

Again using Lemma 4 we can suppose without loss of generality that $Q_{i}=P_{i}$ for all $k(1)+1 \leq i \leq k(2)$. Suppose that $k(2)<n$. Let $N_{2}=K_{1} \cap \cdots \cap K_{k(2)}$. Then, by Corollary 10,

$$
\begin{aligned}
K_{1} \cap \cdots \cap K_{k(2)}= & N_{1} \cap\left(K_{k(1)+1} \cap \cdots \cap K_{k(2)}\right) \\
= & N_{1} \cap\left\{m \in M: A m \subseteq K_{k(1)+1} \cap \cdots \cap K_{k(2)} \quad\right. \text { for some ideal } \\
& \left.A \nsubseteq P_{k(1)+1} \cup \cdots \cup P_{k(2)}\right\} \\
= & N_{2} .
\end{aligned}
$$

Again applying Lemma 11 we have $\left(N: M_{2}\right)=\left(L_{2}: M\right)$, where $L_{2}=K_{k(2)+1} \cap \cdots \cap$ K_{n}. Clearly this process must stop since $1 \leq k(1)<k(2)<\cdots \leq n$.

We can illustrate the process described in Theorem 12 by the following simple example. Again \mathbb{Z} is the ring of rational integers. Let $M=\mathbb{Z}^{(6)}$, let p, q be distinct primes in \mathbb{Z} and let N be the submodule $\mathbb{Z} \oplus \mathbb{Z} p \oplus \mathbb{Z} p^{2} \oplus \mathbb{Z} q^{3} \oplus \mathbb{Z} q^{4} \oplus 0$ of M. Then $(N: M)=0$ and hence (in the notation of Theorem 12), $k(1)=1, P_{1}=0$ and $N_{1}=\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus 0$. Next $\left(N: N_{1}\right)=\mathbb{Z} p^{2} \cap \mathbb{Z} q^{4}$, so that $k(2)=3, P_{2}=\mathbb{Z} p$ and $P_{3}=\mathbb{Z} q$. It can easily be checked that $N_{2}=N$. Thus $\left(N: N_{2}\right)=R$ and the process stops, giving the associated prime ideals of N as $0, \mathbb{Z} p$ and $\mathbb{Z} q$.

Let P be a prime ideal of a ring R. A proper ideal A of R will be called left P-primary if
(i) whenever B, C are ideals of R such that $B C \subseteq A$ then $B \subseteq P$ or $C \subseteq A$, and
(ii) $P^{n} \subseteq A \subseteq P$ for some positive integer n.

Next an ideal will be called left primary if it is left P-primary for some prime ideal P of R. An ideal I of R has a left primary decomposition if I is the intersection of a finite collection of left primary ideals. Note that an ideal I of R has a left primary decomposition if and only if the submodule I of the left R-module R has a primary decomposition.

Proposition 13 Let R be any ring and let N be a submodule of an R-module M such that N has a primary decomposition. Then the ideal $(N: M)$ has a left primary decomposition. Moreover, every associated prime ideal of $(N: M)$ is an associated prime ideal of N.
Proof. Let $N=K_{1} \cap \cdots \cap K_{n}$, where n is a positive integer and K_{i} is a P_{i}-primary submodule for some prime ideal P_{i} for each $1 \leq i \leq n$. Then $(N: M)=\left(K_{1}: M\right) \cap \cdots \cap\left(K_{n}:\right.$ $M)$. Let $1 \leq i \leq n$. There exists a positive integer k such that $P_{i}^{k} \subseteq\left(K_{i}: M\right)$. Let

SMITH

A, B be ideals of R such that $A B \subseteq\left(K_{i}: M\right)$. Then $A B M \subseteq K_{i}$ and either $A \subseteq P_{i}$ or $B M \subseteq K_{i}$, i.e. $B \subseteq\left(K_{i}: M\right)$. It follows that $\left(K_{i}: M\right)$ is left P_{i}-primary. The result follows.

A submodule K of an R-module M is called prime if $K \neq M$ and $(K: L)=(K: M)$ for every submodule L of M such that $L \nsubseteq K$. In case K is a prime submodule of M it can easily be checked that the ideal $P=(K: M)$ is a prime ideal of R and in this case we call K a P-prime submodule of M.

Lemma 14 Let P be a prime ideal of R. Then the following statements are equivalent for a submodule K of an R-module M.
(i) K is P-prime.
(ii) K is P-primary and $P \subseteq(K: M)$.

Proof. Straightforward.

A submodule N of a module M has a prime decomposition if N is the intersection of a finite collection of prime submodules of M. Let N be a submodule of an R-module M such that N has a prime decomposition. Then N will be said to have a normal prime decomposition if there exist a positive integer n, distinct prime ideals $P_{i}(1 \leq i \leq n)$ of R and P_{i}-prime submodules $K_{i}(1 \leq i \leq n)$ of M such that $N=K_{1} \cap \cdots \cap K_{n}$ and $N \neq K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n}$ for all $1 \leq i \leq n$. By Corollary 2 , any submodule having a prime decomposition has a normal prime decomposition. In certain situations it is possible to write down explicitly a normal prime decomposition for a submodule once its associated prime ideals are known, as we show next.

Theorem 15 Let R be any ring, let N be a submodule of an R-module M such that N has a prime decomposition and let $P_{i}(1 \leq i \leq n)$ be the associated prime ideals of N. Suppose further that for each $1 \leq i \leq n$ and for each ideal $A \nsubseteq P_{i}$ there exists an ideal $B \nsubseteq P$ and a finitely generated left ideal C of R such that $B \subseteq C \subseteq A$. For each $1 \leq i \leq n$ let $H_{i}=\left\{m \in M: D m \subseteq N+P_{i} M\right.$ for some ideal $\left.D \nsubseteq P_{i}\right\}$. Then H_{i} is a P_{i}-prime submodule of M for each $1 \leq i \leq n$ and $N=H_{1} \cap \cdots \cap H_{n}$ is a normal prime decomposition of N.
Proof. Let $N=K_{1} \cap \cdots \cap K_{n}$ be a normal prime decomposition where K_{i} is a P_{i}-prime submodule of M for each $1 \leq i \leq n$. Let $1 \leq j \leq n$. It is easy to check that H_{j} is a submodule of M such that $P_{j} \subseteq\left(H_{j}: M\right)$ and $N \subseteq H_{j}$. Let $m \in H_{j}$. There exists an
ideal $E \nsubseteq P_{j}$ such that $E m \subseteq N+P_{j} M \subseteq K_{j}$ so that $m \in K_{j}$. It follows that $H_{j} \subseteq K_{j}$. In particular, H_{j} is a proper submodule of M.

Now we prove that H_{j} is a P_{j}-prime submodule of M. Let $x \in M$ and let F be an ideal of R such that $F \nsubseteq P_{j}$ and $F x \subseteq H_{j}$. By hypothesis, there exist a finitely generated left ideal G and an ideal $G^{\prime} \nsubseteq P_{j}$ such that $G^{\prime} \subseteq G \subseteq F$. Suppose that $G=R g_{1}+\cdots+R g_{k}$ for some positive integer k and elements $g_{i} \in G(1 \leq i \leq k)$. For each $1 \leq s \leq k$ there exists an ideal $I_{s} \nsubseteq P_{j}$ such that $I_{s} g_{s} x \subseteq N+P_{j} M$. Let $I=I_{1} \cdots I_{k}$. Then I is an ideal of R such that $I \nsubseteq P_{j}$ and $I G^{\prime} x \subseteq I G x=\sum_{s=1}^{k} I g_{s} x \subseteq N+P_{j} M$. Because $I G^{\prime} \nsubseteq P_{j}$, the element $x \in H_{j}$. This proves that H_{j} is a P_{j}-prime submodule of M.

To summarise, H_{j} is a P_{j}-prime submodule of M such that $N \subseteq H_{j} \subseteq K_{j}$ for all $1 \leq j \leq n$. Clearly $N=H_{1} \cap \cdots \cap H_{n}$ and this is a normal prime decomposition of N.

Note that the condition on associated prime ideals in Theorem 15 is satisfied if R is a left Noetherian ring or a PI-ring. Note further that the proof of Theorem 15 gives the following result.

Corollary 16 let N be a submodule of an R-module M and let P be a prime ideal of R such that for each ideal $A \nsubseteq P$ there exists an ideal $B \nsubseteq P$ and a finitely generated left ideal C such that $B \subseteq C \subseteq A$. For each positive integer n let $H_{n}=\{m \in M: D m \subseteq$ $N+P^{n} M$ for some ideal $\left.D \nsubseteq P\right\}$. Then H_{n} is a P-primary submodule containing N for each positive integer n.

References

[1] W. Krull, Uber einen Hauptsatz der allgemeinen Idealtheorie, Sitzungsber. Heidelberg. Akad. Wiss. 2 (1929), 11-16.
[2] R.Y. Sharp, Steps in Commutative Algebra, London Math. Soc. Student Texts 19 (Cambridge Univ. Press, Cambridge 1990).
[3] J.W. Fisher, The primary decomposition theory for modules, Pacific J. Math. 35 (1970), 359-367.
[4] B.L. Osofsky, Noether Laskar primary decomposition revisited, Amer. Math. Monthly 101 (1994), 759-768.
[5] D. Eisenbud, Commutative Algebra with a view toward Algebraic Geometry (SpringerVerlag New York 1995).
[6] R.W. Gilmer, Rings in which the unique primary decomposition theorem holds, Proc. Amer. Math. Soc. 14 (1963), 777-781.
[7] D.G. Northcott, Ideal Theory (Cambridge University Press, Cambridge 1965).
[8] D. Eisenbud, C. Huneke and W. Vasconcelos, Direct methods for primary decomposition, Invent. Math. 110 (1992), 207-235.
[9] M. Nagata, On the theory of radicals in a ring, J. Math. Soc. Japan 3 (1951), 330-344.
[10] R. Gordon and J.C. Robson, Krull dimension, Memoirs Amer. Math. Soc. 133 (1973).
[11] R.L. McCasland, J.B.A. Schmidt, P.F. Smith and E.M. Stark, Uniform dimension and radical modules, University of Glasgow preprint 99/19 (1999).

[^1]
[^0]: AMS Mathematics Subject Classification: Primary 16.D70, Secondary 16D25, 16N60

[^1]: P. F. SMITH

 Received 31.10.2002
 Department of Mathematics
 University of Glasgow
 Glasgow, G12 8QW, Scotland, UK

