On Some Properties of Szasz-Mirakyan Operators in Hölder Spaces

L. Rempulska, Z. Walczak

Abstract

We study some properties of modified Szasz-Mirakyan operators in Hölder exponential weighted spaces. We give theorems on the degree of approximation of functions by these operators.

Key Words: Szasz-Mirakyan operator, Hölder space, modulus of smoothness, degree of approximation.

1. Introduction

1.1. Paper [1] examined approximation properties of Szasz-Mirakyan operators

$$
\begin{equation*}
S_{n}(f ; x):=\sum_{k=0}^{\infty} p_{k}(n x) f\left(\frac{k}{n}\right) \tag{1}
\end{equation*}
$$

$x \in R_{0}=[0,+\infty), n \in N:=\{1,2, \cdots\}$, where

$$
\begin{equation*}
p_{k}(t):=e^{-t} \frac{t^{k}}{k!} \quad \text { for } \quad t \in R_{0}, k \in N_{0}:=N \cup\{0\} \tag{2}
\end{equation*}
$$

in exponential weighted spaces C_{q}. The space C_{q}, with a fixed $q>0$, is related with the weighted function $v_{q}(x):=e^{-q x}, x \in R_{0}$, and C_{q} is the set of all real-valued functions f

[^0]
REMPULSKA, WALCZAK

continuous on R_{0} for which $v_{q} f$ is uniformly continuous and bounded on R_{0}. The norm in C_{q} is defined by

$$
\begin{equation*}
\|f\|_{q} \equiv\|f(\cdot)\|_{q}:=\sup _{x \in R_{0}} v_{q}(x)|f(x)| \tag{3}
\end{equation*}
$$

It is obvious that $C_{q} \subset C_{p}$ if $0<q<p<+\infty$.
In [1] was proved that S_{n} defined by (1) is a positive linear operator from the space C_{q} into C_{p} provided that $p>q>0$ and $n>q / \ln (p / q)$.

Recently in many papers were introduced various modifications of operators S_{n} (see e.g. $[3,4,5,8,10]$).

In the paper [8] were introduced for $f \in C_{q}, q>0$, the following modified SzaszMirakyan operators

$$
\begin{equation*}
S_{n, q}(f ; x):=\sum_{k=0}^{\infty} p_{k}(n x) f\left(\frac{k}{n+q}\right), \quad x \in R_{0}, n \in N \tag{4}
\end{equation*}
$$

where $p_{k}(\cdot)$ is defined by (2). Also in [8] was proved that, for every $n \in N$ and $q>0$, $S_{n, q}$ is positive linear operator from the space C_{q} into C_{q} and

$$
\begin{equation*}
\left\|S_{n, q}(f ; \cdot)\right\|_{q} \leq\|f\|_{q}, \quad n \in N \tag{5}
\end{equation*}
$$

for every $f \in C_{q}$. Moreover, in [8] were given approximation theorems for $f \in C_{q}$ and $S_{n, q}(f)$.
1.2. The purpose of this paper is the examination of approximation properties of operators $S_{n, q}$ in Hölder spaces related with exponential weighted space $C_{q}, q>0$.

Approximation of 2π-periodic functions in the Hölder spaces first was considered by S. Prössdorf and J. Prestin in the papers [6] and [7].

The results given in [6] and [7] were extend by many authors.
Since the Szasz-Mirakyan operators are important in approximation theory and $S_{n, q}$ are operators from the space C_{q} into C_{q}, we shall consider the properties of these operators in the Hölder spaces.

In this paper, as had been similarly done in [6] and [7], we shall apply the modulus of smoothness of the order $r \in N([2],[9])$ of function $f \in C_{q}$:

$$
\begin{equation*}
\omega_{r}(f ; q ; t):=\sup _{0 \leq h \leq t}\left\|\Delta_{h}^{r} f(\cdot)\right\|_{q}, \quad t \geq 0 \tag{6}
\end{equation*}
$$

REMPULSKA, WALCZAK

where

$$
\begin{equation*}
\Delta_{h}^{1} f(x):=f(x+h)-f(x), \quad \Delta_{h}^{r} f(x):=\Delta_{h}^{1}\left(\Delta_{h}^{r-1} f(x)\right) \quad \text { if } \quad r \geq 2 \tag{7}
\end{equation*}
$$

for $x, h \in R_{0}$. It is known ([9]) that

$$
\begin{equation*}
\Delta_{h}^{r} f(x)=\sum_{j=0}^{r}\binom{r}{j}(-1)^{r-j} f(x+j h) \quad \text { for } x, h \in R_{0} \text { and } r \in N \tag{8}
\end{equation*}
$$

Moreover from (6) - (8) we deduce that if $f \in C_{q}, q>0$, and $r \in N$, then $\omega_{r}(f, q ; \cdot)$ is non-negative and non-decreasing function and $\lim _{t \rightarrow 0+} \omega_{r}(f ; q ; t)=0$.
1.3. Let $r \in N$ and let Ω_{r} be the set of functions of $\omega_{r}(f ; q ; \cdot)$ type, i.e. Ω_{r} is the set of all functions ω satisfying the following conditions:
(i) ω is defined, non-negative and increasing on R_{0};
(ii) $\omega(t) \rightarrow 0$ as $t \rightarrow 0+$;
(iii) $\omega(t) t^{-r}$ is decreasing for $t>0$.

Similarly as in [6] and [7], for given $r \in N, \omega \in \Omega_{r}$ and $q>0$, we define the generalized Hölder spaces $H_{q}^{r, \omega}$ and $\widetilde{H}_{q}^{r, \omega}$. The space $H_{q}^{r, \omega}$ is the set of all functions $f \in C_{q}$ for which

$$
\begin{equation*}
\|f\|_{q}^{* r, \omega}:=\sup _{h>0} \frac{\left\|\Delta_{h}^{r} f(\cdot)\right\|_{q}}{\omega(h)}<+\infty \tag{9}
\end{equation*}
$$

and the norm is defined by the formula

$$
\begin{equation*}
\|f\|_{H_{q}^{r, \omega}}:=\|f\|_{q}+\|f\|_{q}^{* r, \omega} \tag{10}
\end{equation*}
$$

The space $\widetilde{H}_{q}^{r, \omega}$ is the set of all functions $f \in H_{q}^{r, \omega}$ for which

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \frac{\omega_{r}(f ; q ; t)}{\omega(t)}=0 \tag{11}
\end{equation*}
$$

and the norm is defined by (10).
From definition of $H_{q}^{r, \omega}$ we deduce that $f \in H_{q}^{r, \omega}$ if and only if there exists a positive constant $M_{1}(f)$ depending only on f and such that

REMPULSKA, WALCZAK

$$
\begin{equation*}
\omega_{r}(f, q ; t) \leq M_{1}(f) \omega(t) \quad \text { for } \quad t \geq 0 . \tag{12}
\end{equation*}
$$

The spaces $H_{q}^{r, \omega}$ and $\widetilde{H}_{q}^{r, \omega}$, with fixed $q>0, r \in N$ and $\omega(t)=t^{\alpha}, 0<\alpha \leq r$, are classical Hölder - Lipschitz - Zygmund spaces. Moreover, we observe that if $\omega, \mu \in \Omega_{r}$, $r \in N$, and

$$
\begin{equation*}
\lambda(t):=\frac{\omega(t)}{\mu(t)}, \quad t>0 \tag{13}
\end{equation*}
$$

is increasing function, then for every $q>0$ we have

$$
\begin{equation*}
H_{q}^{r, \omega} \subset H_{q}^{r, \mu}, \quad \widetilde{H}_{q}^{r, \omega} \subset \widetilde{H}_{q}^{r, \mu} \tag{14}
\end{equation*}
$$

for every $q>0$.

2. Main Results

2.1. First we shall give certain inequalities for operators $S_{n, q}$ and $f \in C_{q}$.

Denote by $C_{q}^{p}, p \in N, q>0$, the class of all functions $f \in C_{q}$ which have derivatives $f^{(k)}, k=1, \ldots, p$, on R_{0} and these $f^{(k)}$ belong also to C_{q}.

Theorem 1 Let $n \in N$ and $q>0$ be fixed numbers. Then $S_{n, q}$ defined by (4) is an operator from the space C_{q} into C_{q}^{∞}. Moreover, for every $p \in N$ and $f \in C_{q}$, we have

$$
\begin{equation*}
\left\|\left[S_{n, q}(f)\right]^{(p)}\right\|_{q} \leq(1+e)^{p} n^{p}\|f\|_{q} . \tag{15}
\end{equation*}
$$

If $f \in C_{q}^{p}, p \in N, q>0$, then

$$
\begin{equation*}
\left\|\left[S_{n, q}(f)\right]^{(p)}\right\|_{q} \leq e^{p}\left\|f^{(p)}\right\|_{q}, \quad n \in N . \tag{16}
\end{equation*}
$$

Proof. From (4), (2) and (7) we derive the formula

$$
\left[S_{n, q}(f ; x)\right]^{(p)}=n^{p} S_{n, q}\left(\Delta_{1 /(n+q)}^{p} f(t) ; x\right)
$$

for every $f \in C_{q}$ and $n, p \in N$. By (3) and (5) we have

$$
\begin{equation*}
\left\|\left[S_{n, q}(f)\right]^{(p)}\right\|_{q} \leq n^{p}\left\|\Delta_{1 /(n+q)}^{p} f(\cdot)\right\|_{q}, \quad n, p \in N \tag{17}
\end{equation*}
$$

Applying (8) and (3), we get

$$
\begin{gathered}
\left\|\Delta_{1 /(n+q)}^{p} f(\cdot)\right\|_{q} \leq\|f\|_{q} \sum_{k=0}^{p}\binom{p}{k} e^{k q /(n+q)} \leq \\
\leq\|f\|_{q}(1+e)^{p}, \quad n, p \in N
\end{gathered}
$$

From the above follows (15).
It is known ([2], [9]) that if $f \in C_{q}^{p}$ with fixed $p \in N$ and $q>0$, then

$$
\Delta_{h}^{p} f(x)=\int_{0}^{h} \cdots \int_{0}^{h} f^{(p)}\left(x+u_{1}+\cdots+u_{p}\right) d u_{1} \cdots \cdot d u_{p}, \quad h>0
$$

which by (3) implies

$$
\left\|\Delta_{h}^{p} f(\cdot)\right\|_{q} \leq\left\|f^{(p)}\right\|_{q} e^{h p q} h^{p}, \quad h>0
$$

From this and by (17) we get

$$
\left\|\left[S_{n, q}(f)\right]^{(p)}\right\|_{q} \leq\left(\frac{n}{n+q}\right)^{p} e^{p q /(n+q)}\left\|f^{(p)}\right\|_{q} \leq e^{p}\left\|f^{(p)}\right\|_{q}, \quad n, p \in N
$$

Thus the proof is completed.
2.2. Let $f \in C_{q}, q>0$, and let $r \in N$. It is known ([2], Section 6.1) that the modulus of smoothness $\omega_{r}(f ; q ; \cdot)$ defined by (6) is equivalent to the weighted K-functional

$$
\begin{equation*}
K_{r}\left(f ; q ; t^{r}\right):=\inf _{\varphi \in C_{q}^{r}}\left\{\|f-\varphi\|_{q}+t^{r}\left\|\varphi^{(r)}\right\|_{q}\right\} \tag{18}
\end{equation*}
$$

i.e. there exists a positive constant M independent on f and t such that

$$
\begin{equation*}
M^{-1} \omega_{r}(f ; q ; t) \leq K_{r}\left(f ; q ; t^{r}\right) \leq M \omega_{r}(f ; q ; t) \quad \text { for } \quad t>0 \tag{19}
\end{equation*}
$$

Using this equivalece, we shall prove theorem on modulus of smoothness of $S_{n, q}(f)$.
Theorem 2 Let $q>0$ and $r \in N$ be fixed numbers. Then there exists the suitable positive constant $M_{2}(r)$ depending only on r and such that for every $f \in C_{q}$ and $n \in N$ we have

REMPULSKA, WALCZAK

$$
\begin{equation*}
\omega_{r}\left(S_{n, q}(f) ; q ; t\right) \leq M_{2}(r) \omega_{r}(f ; q ; t), \quad t \geq 0 \tag{20}
\end{equation*}
$$

Proof. By Theorem 1 we have $S_{n, q}(f) \in C_{q}^{\infty}$ if $f \in C_{q}$. Hence for $S_{n, q}(f)$ we can apply K - functional (18) and the inequality (19). For given $f \in C_{q}$ and $n, r \in N$ we have

$$
\begin{gathered}
\omega_{r}\left(S_{n, q}(f) ; q ; t\right) \leq M K_{r}\left(S_{n, q}(f) ; q ; t^{r}\right)= \\
=M \inf _{\varphi \in C_{q}^{r}}\left\{\left\|S_{n, q}(f)-\varphi\right\|_{q}+t^{r}\left\|\varphi^{(r)}\right\|_{q}\right\} \leq \\
\leq M\left\{\left\|S_{n, q}(f)-S_{n, q}(\Psi)\right\|_{q}+t^{r}\left\|\left[S_{n, q}(\Psi)\right]^{(r)}\right\|_{q}\right\}
\end{gathered}
$$

for $t \geq 0$, where Ψ is arbitrary fixed function in C_{q}^{r}.
By (4) and (5) we have

$$
\left\|S_{n, q}(f)-S_{n, q}(\Psi)\right\|_{q}=\left\|S_{n, q}(f-\Psi ; \cdot)\right\|_{q} \leq\|f-\Psi\|_{q}
$$

for all $n \in N$. Moreover by Theorem 1 , we have

$$
\left\|\left[S_{n, q}(\Psi)\right]^{(r)}\right\|_{q} \leq e^{r}\left\|\Psi^{(r)}\right\|_{q}, \quad n \in N
$$

From the above we get

$$
\omega_{r}\left(S_{n, q}(f) ; q ; t\right) \leq M e^{r}\left\{\|f-\Psi\|_{q}+t^{r}\left\|\Psi^{(r)}\right\|_{q}\right\}, \quad t \geq 0
$$

for every fixed $f \in C_{q}, n, r \in N$ and for every $\Psi \in C_{q}^{r}$, which by (18) and (19) yields

$$
\begin{gathered}
\omega_{r}\left(S_{n, q}(f) ; q ; t\right) \leq M e^{r} \inf _{\Psi \in C_{q}^{r}}\left\{\|f-\Psi\|_{q}+t^{r}\left\|\Psi^{(r)}\right\|_{q}\right\} \leq \\
\leq M e^{r} K_{r}\left(f ; q ; t^{r}\right) \leq M^{2} e^{r} \omega_{r}(f ; q ; t)
\end{gathered}
$$

for $t \geq 0, f \in C_{q}$ and $n, r \in N$. Thus the inequality (20) was proved.
2.3. Now we shall give the main property of $S_{n, q}$ in Hölder spaces.

Theorem 3 We assume that $q>0$ and $r \in N$ are fixed numbers and $\omega \in \Omega_{r}$ is a given function. Then $S_{n, q}, n \in N$, defined by (4) is a positive linear operator from the space $H_{q}^{r, \omega}\left(\widetilde{H}_{q}^{r, \omega}\right)$ into $H_{q}^{r, \omega}\left(\widetilde{H}_{q}^{r, \omega}\right)$.

REMPULSKA, WALCZAK

Proof. Let $f \in H_{q}^{r, \omega}$ and $n \in N$. By Theorem 1, (20) and (12) we have $S_{n, q}(f) \in C_{q}^{\infty}$ and

$$
\begin{equation*}
\omega_{r}\left(S_{n, q}(f) ; q ; t\right) \leq M_{3}(f, r) \omega(t), \quad t \geq 0 \tag{21}
\end{equation*}
$$

where $M_{3}(f, r)=$ const. >0 depending only on f and r. The inequality (21) and Section 1.3 show that if $f \in H_{q}^{r, \omega}$ then also $S_{n, q}(f) \in H_{q}^{r, \omega}$.

Now, assume that $f \in \widetilde{H}_{q}^{r, \omega}$. The condition (11) and the inequality (20) imply that

$$
\lim _{t \rightarrow 0+} \frac{\omega_{r}\left(S_{n, q}(f) ; q ; t\right)}{\omega(t)}=0, \quad n \in N
$$

which proves that $S_{n, q}(f) \in \widetilde{H}_{q}^{r, \omega}, n \in N$.
2.4. In [8] (p.127) was proved the following theorem.

Theorem 4 If $f \in C_{q}^{2}, q>0$, then

$$
\begin{align*}
& v_{q}(x)\left|S_{n, q}(f ; x)-f(x)\right| \leq\left\|f^{\prime}\right\|_{q} \frac{q x}{n+q}+ \tag{22}\\
& \quad+\left\|f^{\prime \prime}\right\|_{q}\left(\frac{\left(4 e^{2}+1\right) q^{2} x^{2}}{(n+q)^{2}}+\frac{4 x}{n+q}\right)
\end{align*}
$$

for $x \in R_{0}$ and $n \in N$.
Arguing as in [1] and [8], we shall prove the following theorem.
Theorem 5 Suppose that $a>0$ and $q>0$ are fixed numbers. Then there exists a positive constant $M_{4}(a, q)$ (depending only on a and q) such that

$$
\begin{equation*}
\sup _{0 \leq x \leq a} v_{q}(x)\left|S_{n, q}(f ; x)-f(x)\right| \leq M_{4}(a, q) \omega_{2}(f ; q ; 1 / \sqrt{n+q}) \tag{23}
\end{equation*}
$$

for every $f \in C_{q}$ and $n \in N$.
Proof. Analogously as [1] and [8] we use the Steklov function f_{h} of $f \in C_{q}$:

$$
f_{h}(x):=\frac{4}{h^{2}} \int_{0}^{\frac{h}{2}} \int_{0}^{\frac{h}{2}}[2 f(x+s+t)-f(x+2(s+t))] d s d t
$$

REMPULSKA, WALCZAK

for $x \in R_{0}$ and $h>0$. It is known ([1], [8]) that $f_{h} \in C_{q}^{2}$ if $f \in C_{q}$ and

$$
\begin{gather*}
\left\|f_{h}-f\right\|_{q} \leq \omega_{2}(f, q ; h) \tag{24}\\
\left\|f_{h}^{\prime}\right\|_{q} \leq 5 e^{q h} h^{-1} \omega_{1}(f ; q ; h) \tag{25}\\
\left\|f_{h}^{\prime \prime}\right\|_{q} \leq 9 h^{-2} \omega_{2}(f ; q ; h) \tag{26}
\end{gather*}
$$

for $h>0$. Applying (5), (22), and (24)-(26), we get

$$
\begin{gathered}
v_{q}(x)\left|S_{n, q}(f ; x)-f(x)\right| \leq v_{q}(x)\left\{\left|S_{n, q}\left(f-f_{h} ; x\right)\right|+\right. \\
\left.+\left|S_{n, q}\left(f_{h} ; x\right)-f_{h}(x)\right|+\left|f_{h}(x)-f(x)\right|\right\} \leq 2\left\|f_{h}-f\right\|_{q}+ \\
+\left\|f_{h}^{\prime}\right\|_{q} \frac{q x}{n+q}+\left\|f_{h}^{\prime \prime}\right\|_{q}\left(\frac{\left(4 e^{2}+1\right) q^{2} x^{2}}{(n+q)^{2}}+\frac{4 x}{n+q}\right) \leq \\
\leq \frac{5 q e^{q h} x}{n+q} \omega_{1}(f ; q ; h)+\left\{2+9 h^{-2}\left(\frac{\left(4 e^{2}+1\right) q^{2} x^{2}}{(n+q)^{2}}+\frac{4 x}{n+q}\right)\right\} \omega_{2}(f ; q ; h),
\end{gathered}
$$

for $x \in R_{0}, n \in N$ and $h>0$. Hence, for fixed $a>0, n \in N$ and $h=1 / \sqrt{n+q}$, we obtain

$$
\begin{aligned}
\sup _{0 \leq x \leq a} v_{q}(x) \mid S_{n, q}(f ; x)- & f(x) \left\lvert\, \leq M_{5}(a, q)\left\{\frac{1}{\sqrt{n+q}} \omega_{1}\left(f ; q ; \frac{1}{\sqrt{n+q}}\right)+\right.\right. \\
+ & \left.\omega_{2}\left(f ; q ; \frac{1}{\sqrt{n+q}}\right)\right\}
\end{aligned}
$$

which implies the desired estimation (23).
2.5. Applying Theorem 5 we shall give two approximation theorems for function f belonging to Hölder spaces $H_{q}^{2, \omega}$ and $\widetilde{H}_{q}^{2, \omega}$. For $f \in H_{q}^{2, \omega}$ with fixed $q>0, \omega \in \Omega_{2}$ and for a fixed $a>0$ we write

$$
\begin{gather*}
\|f\|_{q, a}:=\sup _{0 \leq x \leq a} v_{q}(x)|f(x)| \tag{27}\\
\|f\|_{q, a}^{* 2, \omega}:=\sup _{0<h \leq 1} \frac{\left\|\Delta_{h}^{2} f(\cdot)\right\|_{q, a}}{\omega(h)}, \tag{28}
\end{gather*}
$$

REMPULSKA, WALCZAK

$$
\begin{equation*}
\|f\|_{q, a}^{2, \omega}:=\|f\|_{q, a}+\|f\|_{q, a}^{* 2, \omega} \tag{29}
\end{equation*}
$$

Theorem 6 Suppose that $a, q>0$ are fixed numbers, $\omega, \mu \in \Omega_{2}$ are given functions such that $\lambda(\cdot)$ defined by (13) is increasing and $f \in H_{q}^{2, \omega}$. Then there exists a positive constant $M_{6} \equiv M_{6}(a, q, f, \mu(1))$ (depending only on indicated parameters) such that

$$
\begin{equation*}
\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}^{2, \mu} \leq M_{6} \lambda(1 / \sqrt{n+q}), \quad n \in N \tag{30}
\end{equation*}
$$

Proof. By our assumptions follows (14) and by Theorem 3 and (29) we have

$$
\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}^{2, \mu}=\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}+\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}^{* 2, \mu}
$$

for $n \in N$. But by (27) and (23) and (12) we get

$$
\begin{aligned}
& \quad\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a} \leq M_{4}(a, q) \omega_{2}(f ; q ; 1 / \sqrt{n+q}) \leq \\
& \leq M_{7}(a, q, f) \omega(1 / \sqrt{n+q}) \leq M_{7}(a, q, f) \mu(1) \lambda(1 / \sqrt{n+q}), \quad n \in N .
\end{aligned}
$$

Using definition (28) and denoting by

$$
A=\{h: 0<h \leq 1 / \sqrt{n+q}\}, \quad B=\{h: 1 / \sqrt{n+q}<h \leq 1\}
$$

we can write

$$
\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}^{* 2, \mu} \leq\left(\sup _{h \in A}+\sup _{h \in B}\right) \frac{\left\|\Delta_{h}^{2}\left[S_{n, q}(f ; \cdot)-f(\cdot)\right]\right\|_{q, a}}{\mu(h)}:=W_{1}+W_{2}
$$

By (27), (3), (7), (6) and Theorem 2 we deduce that

$$
\begin{gathered}
\left\|\Delta_{h}^{2}\left[S_{n, q}(f ; \cdot)-f(\cdot)\right]\right\|_{q, a} \leq\left\|\Delta_{h}^{2}\left[S_{n, q}(f ; \cdot)-f(\cdot)\right]\right\|_{q} \leq \\
\leq\left\|\Delta_{h}^{2} S_{n, q}(f ; \cdot)\right\|_{q}+\left\|\Delta_{h}^{2} f(\cdot)\right\|_{q} \leq \\
\leq \omega_{2}\left(S_{n, q}(f) ; q ; h\right)+\omega_{2}(f ; q ; h) \leq M_{8} \omega_{2}(f ; q ; h)
\end{gathered}
$$

for $h>0$. From this and by (12) we get

$$
W_{1} \leq M_{9}(f) \sup _{h \in A} \frac{\omega(h)}{\mu(h)} \leq M_{9}(f) \lambda(1 / \sqrt{n+q}), \quad n \in N
$$

Applying (8) and (27) we get $\left\|\Delta_{h}^{2} f(\cdot)\right\|_{q, a} \leq M_{10}(a, q)\|f\|_{q, a}$ and

$$
W_{2} \leq M_{10}(a, q) \sup _{h \in B} \frac{\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}}{\mu(h)},
$$

which by Theorem 5 and (12) implies

$$
\begin{gathered}
W_{2} \leq M_{11}(a, q) \omega_{2}(f ; q ; 1 / \sqrt{n+q}) / \mu(1 / \sqrt{n+q}) \leq \\
\leq M_{12}(a, q, f) \lambda(1 / \sqrt{n+q}), \quad n \in N .
\end{gathered}
$$

Combining these, we obtain estimation (30).

Analogously we can prove the following theorem
Theorem 7 Suppose that a, q, ω, μ and λ satisfy the assumptions of Theorem 6 . If $f \in \widetilde{H}_{q}^{2, \omega}$, then

$$
\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}^{2, \mu}=o(\lambda(1 / \sqrt{n+q})) \quad \text { as } \quad n \rightarrow \infty
$$

From Theorem 6 and Theorem 7 we derive the following corollary.
Corollary. Let $a, q>0$ be fixed numbers and let $\omega(t)=t^{\alpha}, \mu(t)=t^{\beta}$ for $t \geq 0$ and for fixed $0<\beta<\alpha \leq 2$.

1. If $f \in H_{q}^{2, \omega}$, then

$$
\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}^{2, \mu}=O\left((n+q)^{(\beta-\alpha) / 2}\right) \quad \text { as } n \rightarrow \infty
$$

2. If $f \in \widetilde{H}_{q}^{2, \omega}$, then

$$
\left\|S_{n, q}(f ; \cdot)-f(\cdot)\right\|_{q, a}^{2, \mu}=o\left((n+q)^{(\beta-\alpha) / 2}\right) \quad \text { as } n \rightarrow \infty
$$

Remark. Analogous theorems we can obtain for operators of Kantorovitch type:

$$
T_{n, q}(f ; x):=\sum_{k=0}^{\infty} p_{k}(n x)(n+q) \int_{k /(n+q)}^{(k+1) /(n+q)} f(t) d t, \quad x \in R_{0}, n \in N
$$

which are positive linear operators from the space C_{q} into C_{q} and $\left\|T_{n, q}\right\|_{q} \leq e\|f\|_{q}$ for every $f \in C_{q}$ and $n \in N$.

Similar theorems can also be obtained for Szasz-Mirakyan operators (1) in the Hölder polynomial weighted spaces related with the polynomial weighted spaces $C_{p}, p \in N_{0}$, and the weighted function $w_{p}(x):=1 /\left(1+x^{p}\right)$ if $p \geq 1$, and $w_{0}(x):=1$ for $x \in R_{0}$.

Cleary, approximation properties of other operators (e.g. operators considered in [3, $4,10]$) can be examined in suitable Hölder spaces.

References

[1] M. Becker, D. Kucharski, R.J. Nessel, Global approximation theorems for the SzaszMirakjan operators in exponential weight spaces, In: Linear Spaces and Approximation (Proc. Conf. Oberwolfach, 1977), Birkhuser Verlag, Basel ISNM, 40(1978), 319-333.
[2] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol. 9, Springer-Verlag, New York Inc. 1987.
[3] V. Gupta, R.P. Pant, Rate of convergence of the modified Szasz-Mirakyan operators on functions of bounded variation, J. Math. Anal. Appl., 233(199), 476-483.
[4] V. Gupta, G.S. Srivastava, Approximation by Durrmeyer type operators, Annal. Polonici Math., LXIV(1996), 153-159.
[5] B. Firlej, L. Rempulska, Approximation of functions of several variables by some operators of Szasz-Mirakyan type, Fasciculi Mate., 27(1997), 15-28.
[6] J. Prestin, S. Prössdorf, Error estimates in generalized trigonometric Hölder norms, Z. Anal. Anwendungen, 9(1990), 343-349.
[7] S. Prössdorf, Zur konvergenz der Fourierreihen hölderstetiger funktionen, Math. Nachr., 69(1975), 7-14.
[8] L. Rempulska, Z. Walczak, Approximation properties of certain modified Szasz-Mirakyan operators, Le Matematiche 55(2001)1, 121-132.
[9] A.F. Timann, Theory of Approximation of Functions of a Real Variable, New York 1963.
[10] [10] Z. Walczak, Approximation of functions of two variables by modified Szasz-Mirakyan operators, Fasciculi Math., 31(2001), 117-128.
L. REMPULSKA, Z. WALCZAK

Institute of Mathematics
Poznań University of Technology
Piotrowo 3A
60-965 Poznań-POLAND
e-mail: zwalczak@math.put.poznan.pl

[^0]: A.M.S. Subject Classification: 41A36

