Turk J Math 27 (2003) , 447 – 459. © TÜBİTAK

On Intuitionistic Fuzzy Subhypernear-rings of Hypernear-Rings

Kyung Ho Kim

Abstract

In this paper, we introduce the concept of an intuitionistic fuzzy subhypernearring of a hypernear-ring and obtain some results in this connection.

Key Words: Fuzzy subhypernear-ring, intuitionistic fuzzy subhypernear-ring, upper (resp. lower) *t*-level cut, homomorphism.

1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [3], several researchers were conducted on the generalizations of the notion of fuzzy set. The idea of "intuitionistic fuzzy set" was first published by Atanassov [1], as a generalization of the notion of fuzzy set. In this paper, using Atanassov's idea, we establish the intuitionistic fuzzification of the concept of subhypernear-rings in hypernear-rings and investigate some of their properties. Also, for any intuitionistic fuzzy set $A = (\mu_A, \gamma_A)$ and a homomorphism f from hypernear-ring R to hypernear-ring R', we define IFS $A^f = (\mu_A^f, \gamma_A^f)$ in R by $\mu_A^f(x) := \mu_A(f(x)), \ \gamma_A^f(x) := \gamma_A(f(x))$ for all $x \in R$. Then we show that If an IFS $A = (\mu_A, \gamma_A)$ in R' is an intuitionistic fuzzy subhypernear-ring of R', then an IFS $A^f = (\mu_A^f, \gamma_A^f)$ in R is an intuitionistic fuzzy subhypernear-ring of R. We consider the notion of equivalence relations on the family of all intuitionistic fuzzy subhypernear-rings of a hypernear-ring and investigate some related properties.

²⁰⁰⁰ Mathematics Subject Classification: 03F55, 06F05, 20M12, 03B52

2. Preliminaries

First we shall present the fundamental definitions.

A hyperstructure is a set H together with a map $+ : H \times H \longrightarrow \mathcal{P}^*(H)$ called hyperoperation, where $\mathcal{P}^*(H)$ denotes the set of all the nonempty subsets of H. A hypernear-ring is an algebraic structure $(R, +, \cdot)$ which satisfies the following axioms:

(H1) x + (y + z) = (x + y) + z,

(H2) There is $0 \in R$ such that x + 0 = 0 + x = x.

(H3) For every $x \in R$ there exists one and only one $x' \in R$ such that $0 \in x + x'$ where we shall write -x for x' and we call it the opposite of x,

(H4) $z \in x + y$ implies $y \in -x + z$ and $x \in z - y$,

(H5) With respect to the multiplication, (R, \cdot) is a semigroup having a bilaterally obsorbing element 0, that is, x0 = 0x = 0 for all $x \in R$.

(H6) The multiplication is distributive with respect to the hyperoperation + on the left side, that is, $x \cdot (y + z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

If $x \in R$ and A, B are subsets of R, then by A + B, A + x and x + B we mean

$$A + B = \bigcup_{a \in A, b \in B} a + b, A + x = A + \{x\}, x + B = \{x\} + B$$

A subhyper group $A \subseteq R$ is *normal* if we have $x + A - x \subseteq A$.

By a fuzzy set μ in a nonempty set X we mean a function $\mu : X \to [0, 1]$, and the complement of μ , denoted by $\overline{\mu}$, is the fuzzy set in X given by $\overline{\mu}(x) = 1 - \mu(x)$ for all $x \in X$.

A fuzzy set μ in R is called a *fuzzy subhypernear-ring* of R (see[2]) if it satisfies (F1) $\min\{\mu(x), \mu(y)\} \leq \inf_{\alpha \in x+y} \{\mu(\alpha)\},\$

- (F2) $\mu(x) \le \mu(-x),$
- (F3) $\min\{\mu(x), \mu(y)\} \le \mu(xy).$

An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having the form

$$A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}$$

where the functions $\mu_A : X \to [0, 1]$ and $\gamma_A : X \to [0, 1]$ denote the degree of membership and the degree of nonmembership, respectively, and

$$0 \le \mu_A(x) + \gamma_A(x) \le 1$$

for all $x \in X$.

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \gamma_A)$ for the IFS $A = \{(x, \mu_A(x), \gamma_A(x)) \mid x \in X\}.$

Definition 2.1 ([1]). Let X be a nonempty set and let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be IFSs in X. Then

- (i) $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$,
- (ii) A = B iff $A \subseteq B$ and $B \subseteq A$,
- (iii) $\overline{A} = \{(x, \gamma_A(x), \mu_A(x)) : x \in X\},\$
- (iv) $A \cap B = \{(x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x)) : x \in X\},\$
- (v) $A \cup B = \{(x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x)) : x \in X\},\$
- (vi) $\Box A = \{(x, \mu_A(x), 1 \mu_A(x)) : x \in X\},\$
- (vii) $\diamond A = \{(x, 1 \gamma_A(x), \gamma_A(x)) : x \in X\}.$

Definition 2.2 ([1]). Let $\{A_i : i \in \Lambda\}$ be an arbitrary family of IFSs in X. Then

- (i) $\cap A_i = \{(x, \wedge \mu_{A_i}(x), \lor \gamma_{A_i}(x)) : x \in X\},\$
- (ii) $\cup A_i = \{(x, \lor \mu_{A_i}(x), \land \gamma_{A_i}(x)) : x \in X\}.$

3. Intuitionistic fuzzy subhypernear-rings of hypernear-rings

In what follows, let R denote a hypernear-ring unless otherwise specified. We first consider the intuitionistic fuzzification of the notion of subhypernear-rings in a hypernear-rings as follows.

Definition 3.1. An IFS $A = (\mu_A, \gamma_A)$ in R is called an *intuitionistic fuzzy subhypernear*ring of R if it satisfies:

- (IF1) $\min\{\mu_A(x), \mu_A(y)\} \le \inf_{\alpha \in x+y} \{\mu_A(\alpha)\} \text{ and } \max\{\gamma_A(x), \gamma_A(y)\} \ge \sup_{\alpha \in x+y} \{\gamma_A(\alpha)\},$
- (IF2) $\mu_A(x) \le \mu_A(-x)$ and $\gamma_A(x) \ge \gamma_A(-x)$
- (IF3) $\min\{\mu_A(x), \mu_A(y)\} \le \mu_A(xy) \text{ and } \max\{\gamma_A(x), \gamma_A(y)\} \ge \gamma_A(xy)$

Lemma 3.2. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy subhypernear-ring of a hypernear-ring R. Then

$$\mu_A(x) \le \mu_A(0), \gamma_A(x) \ge \gamma_A(0)$$

for all $x \in R$.

Proof. We have

$$\mu_A(0) \ge \inf\{\mu_A(\alpha)\} \ge \min\{\mu_A(x), \mu_A(-x)\} = \mu_A(x)$$
$$\gamma_A(0) \le \sup\{\gamma_A(\alpha)\} \le \max\{\gamma_A(x), \gamma_A(-x)\} = \gamma_A(x).$$

Theorem 3.3. If $\{A_i\}_{i \in \Lambda}$ is a family of intuitionistic fuzzy subhypernear-rings of R, then $\cap A_i$ is an intuitionistic fuzzy subhypernear-ring of R.

Proof. Let $x, y, i \in R$. Then we have

$$\begin{split} \inf_{\alpha \in x+y} \{ \cap \mu_{A_i}(\alpha) \} &= \inf_{\alpha \in x+y} \{ \inf\{\mu_{A_i}(\alpha) \} \} \\ &= \inf\{ \inf_{\alpha \in x+y} \{ \mu_{A_i}(\alpha) \} \} \\ &\geq \inf\{ \min\{\mu_{A_i}(x), \mu_{A_i}(y) \} \} \\ &= \min\{ \inf\{\mu_{A_i}(x)\}, \inf\{\mu_{A_i}(y) \} \} = \min\{ \cap \mu_{A_i}(x), \cap \mu_{A_i}(y) \}, \end{split}$$

$$\begin{split} \sup_{\alpha \in x+y} \{ \cup \gamma_{A_i}(\alpha) \} &= \sup_{\alpha \in x+y} \{ \sup\{\gamma_{A_i}(\alpha)\} \} \\ &= \sup\{ \inf_{\alpha \in x+y} \{\gamma_{A_i}(\alpha)\} \} \\ &\leq \sup\{ \max\{\gamma_{A_i}(x), \gamma_{A_i}(y)\} \} \\ &= \max\{ \sup\{\gamma_{A_i}(x)\}, \sup\{\gamma_{A_i}(y)\} \} = \max\{ \cup \gamma_{A_i}(x), \cup \gamma_{A_i}(y) \}. \end{split}$$

Also, we have

$$\begin{split} &\cap \mu_{A_{i}}(x) = \inf\{\mu_{A_{i}}(x)\} \leq \inf\{\mu_{A_{i}}(-x)\} = \cap \mu_{A_{i}}(-x), \\ &\cup \gamma_{A_{i}}(x) = \sup\{\gamma_{A_{i}}(x)\} \geq \sup\{\gamma_{A_{i}}(-x)\} = \cup \gamma_{A_{i}}(-x), \end{split}$$

$$\begin{array}{lll} \cap \mu_{{}_{A_i}}(xy) & = & \inf\{\mu_{{}_{A_i}}(xy)\} \\ & \leq & \inf\{\min\{\mu_{{}_{A_i}}(x), \mu_{{}_{A_i}}(y)\}\} \\ & = & \min\{\inf\{\mu_{{}_{A_i}}(x)\}, \inf\{\mu_{{}_{A_i}}(y)\}\} \\ & = & \min\{\cap \mu_{{}_{A_i}}(x), \cap \mu_{{}_{A_i}}(y)\}, \end{array}$$

and

$$\begin{split} \cup \gamma_{A_{i}}(xy) &= \sup\{\gamma_{A_{i}}(xy)\} \\ &\geq \sup\{\max\{\gamma_{A_{i}}(x), \gamma_{A_{i}}(y)\}\} \\ &= \max\{\sup\{\gamma_{A_{i}}(x)\}, \sup\{\gamma_{A_{i}}(y)\}\} \\ &= \max\{\cup \gamma_{A_{i}}(x), \cup \gamma_{A_{i}}(y)\}, \end{split}$$

-	
г	

Lemma 3.4. An IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subhypernear-ring of R if and only if the fuzzy sets μ_A and $\overline{\gamma}_A$ are fuzzy subhypernear-rings of R.

Proof. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy subhypernear-ring of R. Clearly μ_A is a fuzzy subhypernear-ring of R. For every $x, y \in R$, we have

$$\sup_{\alpha \in x+y} \{ \overline{\gamma}_A(\alpha) \} = \sup_{\alpha \in x+y} \{ 1 - \gamma_A(\alpha) \}$$
$$= 1 - \max\{ \gamma_A(x), \gamma_A(y) \}$$
$$= \min\{ 1 - \gamma_A(x), 1 - \gamma_A(y) \}$$
$$= \min\{ \overline{\gamma}_A(x), \overline{\gamma}_A(y) \}.$$

Next,

$$\overline{\gamma}_A(x) = 1 - \gamma_A(x) \le 1 - \gamma_A(-x) = \overline{\gamma}_A(-x)$$

and $\overline{\gamma}_A(xy) = 1 - \gamma_A(xy) \ge 1 - \max\{\gamma_A(x), \gamma_A(y)\} = \min\{\overline{\gamma}_A(x), \overline{\gamma}_A(y)\}$. Hence $\overline{\gamma}_A$ is a fuzzy subhypernear-ring of R. Conversely, μ_A and γ_A are fuzzy subhypernear-rings of R. For every $x, y \in R$, we get $\inf_{\alpha \in x+y} \{\mu_A(\alpha)\} \ge \min\{\mu_A(x), \mu_A(y)\}$ and

$$1 - \sup_{\alpha \in x+y} \{ \gamma_A(\alpha) \} = \inf_{\alpha \in x+y} \{ \overline{\gamma}_A(\alpha) \}$$

$$\geq \min\{ \overline{\gamma}_A(x), \overline{\gamma}_A(y) \}$$

$$= \min\{ 1 - \gamma_A(x), 1 - \gamma_A(y) \}$$

$$= 1 - \max\{ \gamma_A(x), \gamma_A(y) \},$$

that is, $\sup_{\alpha \in x+y} \{\gamma_A(\alpha)\} \le \max\{\gamma_A(x), \gamma_A(y)\}$. Also, we have $\mu_A(x) \le \mu_A(-x)$ and

$$1 - \gamma_A(x) = \overline{\gamma}_A(x) \le \gamma_A(-x) = 1 - \gamma_A(-x),$$

that is, $\gamma_A(x) \geq \gamma_A(-x)$. Finally, we have

$$\min\{\mu_A(x), \mu_A(y)\} \le \mu_A(xy)$$

and

$$\begin{aligned} 1 - \gamma_A(xy) &= \overline{\gamma}_A(xy) \\ &\geq \min\{\overline{\gamma}_A(x), \overline{\gamma}_A(y)\} \\ &= \min\{1 - \gamma_A(x), 1 - \gamma_A(y)\} \\ &= \max\{\gamma_A(x), \gamma_A(y)\}, \end{aligned}$$

that is, $\gamma_A(xy) \leq \max\{\gamma_A(x), \gamma_A(y)\}$. Hence $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subhypernear-ring of R.

Theorem 3.5. Let $A = (\mu_A, \gamma_A)$ be an IFS in R. Then $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subhypernear-ring of R if and only if $\Box A = (\mu_A, \overline{\mu}_A)$ and $\Diamond A = (\overline{\gamma}_A, \gamma_A)$ are intuitionistic fuzzy subhypernear-rings R.

Proof. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subhypernear-ring of R, then $\mu_A = \overline{\mu}_A$ and γ_A are fuzzy subhypernear-ring of R from Lemma 3.4, hence $\Box A = (\mu_A, \overline{\mu}_A)$ and $\diamond A = (\overline{\gamma}_A, \gamma_A)$ are intuitionistic fuzzy subhypernear-ring of R. Conversely if $\Box A = (\mu_A, \overline{\mu}_A)$ and $\diamond A = (\overline{\gamma}_A, \gamma_A)$ are intuitionistic fuzzy subhypernear-ring of R, then the fuzzy sets μ_A and $\overline{\gamma}_A$ are fuzzy subhypernear-ring of R, hence $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subhypernear-ring of R. \Box

For any $t \in [0, 1]$ and a fuzzy set μ in a nonempty set R, the set

$$U(\mu; t) = \{x \in R \mid \mu(x) \ge t\} \text{ (resp. } L(\mu; t) = \{x \in R \mid \mu(x) \le t\})$$

is called an *upper* (resp. *lower*) *t*-*level cut* of μ .

Theorem 3.6. An IFS $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy subhypernear-ring of R if and only if for all $s, t \in [0, 1]$, the sets $U(\mu_A; t)$ and $L(\gamma_A; s)$ are either empty or subhypernear-ring of R.

Proof. Let the set $U(\mu_A; t)$ and $L(\gamma_A; s)$ be either empty or subhypernear-ring of R for each $s, t \in [0, 1]$. For any $x \in S$, let $\mu_A(x) = t$ and $\gamma_A(x) = s$. Then $x \in U(\mu_A; t) \cap L(\gamma_A; s)$, and so $U(\mu_A; t) \neq \emptyset \neq L(\gamma_A; s)$. If there are $x, y \in R$ such that

 $\inf_{\alpha \in x+y} \{\mu_A(\alpha)\} \le \min\{\mu_A(x), \mu_A(y)\}, \text{ then } \inf_{\alpha \in x+y} \{\mu_A(\alpha)\} < t_0 < \min\{\mu_A(x), \mu_A(y)\} \text{ by taking } t_0 := \frac{1}{2} \left\{ \inf_{\alpha \in x+y} \{\mu_A(\alpha)\} + \min\{\mu_A(x), \mu_A(y)\} \right\}. \text{ Hence } t_0 < \mu_A(x) \text{ and } t_0 < \mu_A(y), \text{ and so } x \in U(\mu_A; t_0) \text{ and } y \in U(\mu_A; t_0). \text{ Since } U(\mu_A; t_0) \text{ is a subhypernear-ring of } R, \text{ we have } x + y \in U(\mu_A; t_0). \text{ So, } \mu_A(x + y) \ge t_0. \text{ This leads to a contradiction. Now let } x \in R \text{ be such that } \mu_A(x) \ge \mu_A(-x). \text{ Puttting } s_0 := \frac{1}{2} \left\{ \mu_A(x) + \mu_A(-x) \right\}, \text{ then } \mu_A(-x) < s_0 < \mu_A(x), \text{ and so } x \in U(\mu_A; s_0) \text{ but } -x \notin U(\mu_A; s_0). \text{ This leads to a contradiction. If there are } x, y \in R \text{ such that } \min\{\mu_A(x), \mu_A(y)\} \ge \mu_A(xy), \text{ then } \mu_A(xy) < r_0 < \min\{\mu_A(x), \mu_A(y)\} \text{ by taking}$

$$r_0 := \frac{1}{2} \bigg\{ \mu_A(xy) + \min\{\mu_A(x), \mu_A(y)\} \bigg\}.$$

Hence $x \in U(\mu_A; r_0), y \in (\mu_A; r_0)$ and $xy \notin U(\mu_A; r_0)$. This leads to a contradiction. If there are $a, b \in R$ such that $\sup_{\alpha \in a+b} \{\gamma_A(\alpha)\} \le \max\{\gamma_A(a), \gamma_A(b)\}$, then $\sup_{\alpha \in a+b} \{\gamma_A(\alpha)\} > t_0 > \max\{\gamma_A(a), \gamma_A(b)\}$ by taking $u_0 := \frac{1}{2} \left\{ \sup_{\alpha \in a+b} \{\gamma_A(\alpha)\} + \max\{\gamma_A(a), \gamma_A(b)\} \right\}$. Hence $u_0 > \gamma_A(a)$ and $u_0 > \gamma_A(b)$, and so $a \in L(\gamma_A; u_0)$ and $b \in L(\gamma_A; u_0)$. Since $L(\gamma_A; u_0)$ is a subhypernear-ring of R, we have $a + b \in L(\gamma_A; u_0)$. So, $\gamma_A(a + b) \le u_0$. This leads to a contradiction. Now let $a \in R$ be such that $\gamma_A(a) \ge \gamma_A(-a)$. Putting $v_0 := \frac{1}{2} \left\{ \gamma_A(a) + \gamma_A(-a) \right\}$, then $\gamma_A(-a) > v_0 > \gamma_A(a)$, and so $a \in L(\gamma_A; v_0)$ but $-a \notin L(\gamma_A; v_0)$. This leads a contradiction. If there are $a, b \in R$ such that $\max\{\gamma_A(a), \gamma_A(b)\} \le \gamma_A(ab)$, then $\gamma_A(ab) > r_0 > \max\{\gamma_A(a), \gamma_A(b)\}$ by taking

$$w_0 := \frac{1}{2} \bigg\{ \gamma_A(ab) + \max\{\gamma_A(a), \gamma_A(b)\} \bigg\}.$$

Hence $a \in L(\gamma_A; w_0), b \in (\gamma_A; w_0)$ and $ab \notin L(\gamma_A; w_0)$. This leads to a contradiction and this completes the proof.

Theorem 3.7. Let $\{I_t \mid t \in \Lambda\}$ be a collection of subhypernear-rings of R such that

- (i) $R = \bigcup_{t \in \Lambda} I_t$,
- (ii) s > t if and only if $I_s \subset I_t$ for all $s, t \in \Lambda$.

Then an IFS $A = (\mu_A, \gamma_A)$ in R defined by

$$\mu_A(x) := \sup\{t \in \Lambda \mid x \in I_t\}, \ \gamma_A(x) := \inf\{t \in \Lambda \mid x \in I_t\}$$

for all $x \in R$ is an intuitionistic fuzzy subhypernear-ring of R.

Proof. According to Theorem 3.6, it is sufficient to show that nonempty level sets $U(\mu_A; t)$ and $L(\gamma_A; s)$ are subhypernear-rings of R of R for every $s, t \in [0, 1]$. In order to prove that $U(\mu_A; t) \ (\neq \emptyset)$ is a subhypernear-ring of R, we consider the following two cases:

(1°)
$$t = \sup\{q \in \Lambda \mid q < t\}, (2°) \quad t \neq \sup\{q \in \Lambda \mid q < t\}.$$

Case (1°) implies that

$$x \in U(\mu_A; t) \Leftrightarrow x \in I_q \quad \text{for all} \quad q < t \Leftrightarrow x \in \cap_{q < t} I_q,$$

so that $U(\mu_A; t) = \bigcap_{q < t} I_q$, which is a subhypernear-ring of R. For the case (2°) , we claim that $U(\mu_A; t) = \bigcup_{q \ge t} I_q$. If $x \in \bigcup_{q \ge t} I_q$, then $x \in I_q$ for some $q \ge t$. It follows that $\mu_A(x) \ge q \ge t$, so that $x \in U(\mu_A; t)$. This shows that $\bigcup_{q \ge t} I_q \subseteq U(\mu_A; t)$. Now assume that $x \notin \bigcup_{q \ge t} I_q$. Then $x \notin I_q$ for all $q \ge t$. Since $t \ne \sup\{q \in \Lambda \mid q < t\}$, there exists $\varepsilon > 0$ such that $(t - \varepsilon, t) \cap \Lambda = \emptyset$. Hence $x \notin I_q$ for all $q > t - \varepsilon$, which means that if $x \in I_q$, then $q \le t - \varepsilon$. Thus $\mu_A(x) \le t - \varepsilon < t$, and so $x \notin U(\mu_A; t)$. Therefore $U(\mu_A; t) \subseteq \bigcup_{q \ge t} I_q$, and thus $U(\mu_A; t) = \bigcup_{q \ge t} I_q$ which is a subhypernear-ring of R. Next we prove that $L(\gamma_A; s) \ (\neq \emptyset)$ is a subhypernear-ring of R. We consider the following two cases:

(3°)
$$s = \inf\{r \in \Lambda \mid s < r\}, (4°) \quad s \neq \inf\{r \in \Lambda \mid s < r\}.$$

For the case (3°) we have

$$x \in L(\gamma_A; s) \Leftrightarrow x \in I_r \text{ for all } s < r \Leftrightarrow x \in \cap_{g > t} I_r,$$

and hence $L(\gamma_A; s) = \bigcap_{s < r} I_r$ which is a subhypernear-rings of R. For the case (4°), there exists $\varepsilon > 0$ such that $(s, s + \varepsilon) \cap \Lambda = \emptyset$. We will show that $L(\gamma_A; s) = \bigcup_{s \ge r} I_r$. If $x \in \bigcup_{s \ge r} I_r$, then $x \in I_r$ for some $r \le s$. It follows that $\gamma_A(x) \le r \le s$ so that $x \in L(\gamma_A; s)$. Hence $\bigcup_{s \ge r} I_r \subseteq L(\gamma_A; s)$. Conversely if $x \notin \bigcup_{s \ge r} I_r$, then $x \notin I_r$ for all $r \le s$, which implies that $x \notin I_r$ for all $r < s + \varepsilon$, that is, if $x \in I_r$, then $r \ge s + \varepsilon$. Thus $\gamma_A(x) \ge s + \varepsilon > s$, that is, $x \notin L(\gamma_A; s)$. Therefore $L(\gamma_A; s) \subseteq \bigcup_{s \ge r} I_r$ and consequently $L(\gamma_A; s) = \bigcup_{s \ge r} I_r$ which is a subhypernear-ring of R. This completes the proof. \Box

A mapping f from a hypernear-ring R to a hypernear-ring R' is called a *homomorphism* if f(x+y) = f(x) + f(y), $f(x \cdot y) = f(x) \cdot f(y)$ and f(0) = 0 for all $x, y \in R$. From the above definition, we get f(-x) = -f(x).

Let f be a map from a set X to a set Y. If $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \mu_B)$ are IFSs in X and Y respectively, then the *preimage* of B under f, denoted by $f^{-1}(B)$, is an IFS in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)).$$

Theorem 3.8. Let $f : S \to S'$ be a homomorphism of hypernear-rings. If $B = (\mu_B, \gamma_B)$ is an intuitionistic fuzzy subhypernear-ring of R', then the preimage $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ of B under f is an intuitionistic fuzzy subhypernear-ring of R.

Proof. Assume that $B = (\mu_B, \gamma_B)$ is an intuitionistic fuzzy subhypernear-ring of R and let $x, y \in R$. Then we have

$$\inf_{\alpha \in x+y} \{ f^{-1}(\mu_B)(\alpha) \} = \inf_{f(\alpha) \in f(x)+f(y)} \{ \mu_B(f(\alpha)) \} \ge \min\{ \mu_B(f(x)), \mu_B(f(y)) \}$$
$$= \min\{ f^{-1}(\mu_B)(x), f^{-1}(\mu_B)(y) \},$$

$$\sup_{\alpha \in x+y} \{ f^{-1}(\gamma_B)(\alpha) \} = \sup_{f(\alpha) \in f(x)+f(y)} \{ \gamma_B(f(\alpha)) \} \le \sup\{ \gamma_B(f(x)), \gamma_B(f(y)) \}$$
$$= \sup\{ f^{-1}(\gamma_B)(x), f^{-1}(\gamma_B)(y) \}.$$

Also, we have

$$f^{-1}(\mu_B)(x) = \mu_B(f(x)) \le \mu_B(-f(x)) = \mu_B(f(-x))$$

= $f^{-1}(\mu_B)(-x)$

$$f^{-1}(\gamma_B)(x) = \gamma_B(f(x)) \ge \gamma_B(-f(x)) = \gamma_B(f(-x))$$
$$= f^{-1}(\gamma_B)(-x)$$

$$f^{-1}(\mu_B)(x \cdot y) = \mu_B(f(x \cdot y)) = \mu_B(f(x) \cdot f(y))$$

$$\geq \min\{\mu_B(f(x)), \mu_B(f(y))\}$$

$$= \min\{f^{-1}(\mu_B)(x), f^{-1}(\mu_B)(y)\},$$

$$f^{-1}(\gamma_B)(x \cdot y) = \gamma_B(f(x \cdot y)) = \gamma_B(f(x) \cdot f(y))$$

$$\leq \sup\{\gamma_B(f(x)), \gamma_B(f(y))\}$$

$$= \sup\{f^{-1}(\gamma_B)(x), f^{-1}(\gamma_B)(y)\}.$$

Therefore $f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B))$ is an intuitionistic fuzzy subhypernear-ring of R.

Let $f: S \to S'$ be a homomorphism of hypernear-rings. For any IFS $A = (\mu_A, \gamma_A)$ in R', we define a new IFS $A^f = (\mu_A^f, \gamma_A^f)$ in R by

$$\mu_A^f(x) := \mu_A(f(x)), \ \gamma_A^f(x) := \gamma_A(f(x))$$

for all $x \in R$.

Theorem 3.9. Let $f : R \to R'$ be a homomorphism of hypernear-rings. If an IFS $A = (\mu_A, \gamma_A)$ in R' is an intuitionistic fuzzy subhypernear-ring of R', then an IFS $A^f = (\mu_A^f, \gamma_A^f)$ in R is an intuitionistic fuzzy subhypernear-ring of R.

Proof. Let $x, y \in R$.

$$\inf_{\alpha \in x+y} \{ \mu_A^f(\alpha) \} = \inf_{f(\alpha) \in f(x) + f(y)} \{ \mu_A(f(\alpha)) \} \ge \min\{ \mu_A(f(x)), \mu_A(f(y)) \}$$

$$= \min\{ \mu_A^f(x), \mu_A^f(y) \},$$

$$\sup_{\alpha \in x+y} \{\gamma_A^f(\alpha)\} = \sup_{f(\alpha) \in f(x)+f(y)} \{\gamma_A(f(\alpha))\} \le \max\{\gamma_A(f(x)), \gamma_A(f(y))\}$$
$$= \max\{\gamma_A^f(x), \gamma_A^f(y)\}.$$

Also, we have

$$\mu_A^f(x) = \mu_A(f(x)) \le \mu_A(-f(x)) = \mu_A(f(-x))$$
$$= \mu_A^f(-x)$$
$$\gamma_A^f(x) = \gamma_A(f(x)) \ge \gamma_A(-f(x)) = \gamma_A(f(-x))$$
$$= \gamma_A^f(-x)$$

456

KIM

$$\mu_A(x \cdot y) = \mu_A(f(x \cdot y)) = \mu_A(f(x) \cdot f(y))$$

$$\geq \min\{\mu_A(f(x)), \mu_A(f(y))\}$$

$$= \min\{\mu_A)(x), \mu_A)(y)\},$$

$$\gamma_A(x \cdot y) = \gamma_A(f(x \cdot y)) = \gamma_A(f(x) \cdot f(y))$$

$$\begin{aligned} \gamma_A(x \cdot y) &= \gamma_A(f(x \cdot y)) = \gamma_A(f(x) \cdot f(y)) \\ &\leq \max\{\gamma_A(f(x)), \gamma_A(f(y))\} \\ &= \sup\{\gamma_A(x), \gamma_A(y)\}. \end{aligned}$$

Hence $A^f = (\mu^f_A, \gamma^f_A)$ is an intuitionistic fuzzy subhypernear-ring of R.

Let IF(R) be the family of all intuitionistic fuzzy subhypernear-rings of R and let $t \in [0, 1]$. Define binary relations U^t and L^t on IF(R) as follows:

$$(A, B) \in U^t \Leftrightarrow U(\mu_A; t) = U(\mu_B; t), \ (A, B) \in L^t \Leftrightarrow L(\gamma_A; t) = L(\gamma_B; t),$$

respectively, for $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ in IF(R). Then clearly U^t and L^t are equivalence relations on IF(R). For any $A = (\mu_A, \gamma_A) \in IF(R)$, let $[A]_{U^t}$ (resp. $[A]_{L^t}$) denote the equivalence class of A modulo U^t (resp. L^t), and denote by $IF(R)/U^t$ (resp. $IF(R)/L^t$) the system of all equivalence classes modulo U^t (resp. L^t); so

$$IF(R)/U^{t} := \{ [A]_{U^{t}} \mid A = (\mu_{A}, \gamma_{A}) \in IF(R) \}$$

(resp. $IF(R)/L^{t} := \{ [A]_{L^{t}} \mid A = (\mu_{A}, \gamma_{A}) \in IF(R) \}$).

Now let I(R) denote the family of all subhypernear-rings of R and let $t \in [0, 1]$. Define maps f_t and g_t from IF(R) to $I(R) \cup \{\emptyset\}$ by $f_t(A) = U(\mu_A; t)$ and $g_t(A) = L(\gamma_A; t)$, respectively, for all $A = (\mu_A, \gamma_A) \in IF(R)$. Then f_t and g_t are clearly well-defined.

Theorem 3.10. For any $t \in (0,1)$ the maps f_t and g_t are surjective from IF(S) to $I(R) \cup \{\emptyset\}$.

Proof. Let $t \in (0, 1)$. Note that $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1})$ is in IF(R), where $\mathbf{0}$ and $\mathbf{1}$ are fuzzy sets in R defined by $\mathbf{0}(x) = 0$ and $\mathbf{1}(x) = 1$ for all $x \in R$. Obviously $f_t(\mathbf{0}_{\sim}) = U(\mathbf{0}; t) = \emptyset = L(\mathbf{1}; t) = g_t(\mathbf{0}_{\sim})$. Let $G(\neq \emptyset) \in I(R)$. For $G_{\sim} = (\chi_G, \overline{\chi}_G) \in IF(S)$, we have $f_t(G_{\sim}) = U(\chi_G; t) = G$ and $g_t(G_{\sim}) = L(\overline{\chi}_G; t) = G$. Hence f_t and g_t are surjective. \Box

Theorem 3.11. The quotient sets $IF(R)/U^t$ and $IF(R)/L^t$ are equipotent to $I(R) \cup \{\emptyset\}$ for every $t \in (0, 1)$.

Proof. For $t \in (0,1)$ let f_t^* (resp. g_t^*) be a map from $IF(R)/U^t$ (resp. $IF(R)/L^t$) to $I(R) \cup \{\emptyset\}$ defined by $f_t^*([A]_{U^t}) = f_t(A)$ (resp. $g_t^*([A]_{L^t}) = g_t(A)$) for all $A = (\mu_A, \gamma_A) \in IF(R)$. If $U(\mu_A; t) = U(\mu_B; t)$ and $L(\gamma_A; t) = L(\gamma_B; t)$ for $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ in IF(R), then $(A, B) \in U^t$ and $(A, B) \in L^t$; hence $[A]_{U^t} = [B]_{U^t}$ and $[A]_{L^t} = [B]_{L^t}$. Therefore the maps f_t^* and g_t^* are injective. Now let $G(\neq \emptyset) \in I(R)$. For $G_{\sim} = (\chi_G, \overline{\chi}_G) \in IF(R)$, we have

$$f_t^*([G_{\sim}]_{U^t}) = f_t(G_{\sim}) = U(\chi_G; t) = G,$$

 $g_t^*([G_{\sim}]_{L^t}) = g_t(G_{\sim}) = L(\overline{\chi}_G; t) = G.$

Finally, for $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in IF(R)$ we get

$$\begin{split} f_t^*([\mathbf{0}_{\sim}]_{U^t}) &= f_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) = \emptyset, \\ g_t^*([\mathbf{0}_{\sim}]_{L^t}) &= g_t(\mathbf{0}_{\sim}) = L(\mathbf{0};t) = \emptyset. \end{split}$$

This shows that f_t^\ast and g_t^\ast are surjective, and we are done.

For any $t \in [0, 1]$, we define another relation R^t on IF(R) as follows:

$$(A, B) \in \mathbb{R}^t \Leftrightarrow U(\mu_A; t) \cap L(\gamma_A; t) = U(\mu_B; t) \cap L(\gamma_B; t)$$

for any $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in IF(R)$. Then the relation R^t is also an equivalence relation on IF(R).

Theorem 3.12. For any $t \in (0,1)$, the map $\phi_t : IF(R) \to I(R) \cup \{\emptyset\}$ defined by $\phi_t(A) = f_t(A) \cap g_t(A)$ for each $A = (\mu_A, \gamma_A) \in IF(R)$ is surjective. **Proof.** Let $t \in (0,1)$. For $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in IF(R)$,

$$\phi_t(\mathbf{0}_{\sim}) = f_t(\mathbf{0}_{\sim}) \cap g_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) \cap L(\mathbf{1};t) = \emptyset$$

For any $H \in IF(R)$, there exists $H_{\sim} = (\chi_H, \overline{\chi}_H) \in IF(R)$ such that

$$\phi_t(H_{\sim}) = f_t(H_{\sim}) \cap g_t(H_{\sim}) = U(\chi_H; t) \cap L(\overline{\chi}_H; t) = H.$$

This completes the proof.

Theorem 3.13. For any $t \in (0, 1)$, the quotient set $IF(R)/R^t$ is equipotent to $I(R) \cup \{\emptyset\}$.

458

Proof. Let $t \in (0,1)$ and let $\phi_t^* : IF(R)/R^t \to I(R) \cup \{\emptyset\}$ be a map defined by $\phi_t^*([A]_{R^t}) = \phi_t(A)$ for all $[A]_{R^t} \in IF(R)/R^t$. If $\phi_t^*([A]_{R^t}) = \phi_t^*([B]_{R^t})$ for any $[A]_{R^t}$, $[B]_{R^t} \in IF(R)/R^t$ then $f_t(A) \cap g_t(A) = f_t(B) \cap g_t(B)$, that is, $U(\mu_A; t) \cap L(\gamma_A; t) = U(\mu_B; t) \cap L(\gamma_B; t)$, hence $(A, B) \in R^t$. It follows that $[A]_{R^t} = [B]_{R^t}$ so that ϕ_t^* is injective. For $\mathbf{0}_{\sim} = (\mathbf{0}, \mathbf{1}) \in IF(R)$,

$$\phi_t^*([\mathbf{0}_{\sim}]_{R^t}) = \phi_t(\mathbf{0}_{\sim}) = f_t(\mathbf{0}_{\sim}) \cap g_t(\mathbf{0}_{\sim}) = U(\mathbf{0};t) \cap L(\mathbf{1};t) = \emptyset.$$

If $H \in IF(R)$, then for $H_{\sim} = (\chi_H, \overline{\chi}_H) \in IF(R)$, we have

$$\phi_t^*([H_{\sim}]_{R^t}) = \phi_t(H_{\sim}) = f_t(H_{\sim}) \cap g_t(H_{\sim}) = U(\chi_H; t) \cap L(\overline{\chi}_H; t) = H.$$

Hence ϕ_t^* is surjective, completing the proof.

References

- [1] K. T. Atanassov Intuitionistic fuzzy sets, Fuzzy sets and Systems 35 (1986), 87-96
- B. Davvaz, On Hypernear-rings and fuzzy hyperideals, The Journal of Fuzzy Mathematics 7(3) (1999), 745-753.
- [3] L. A. Zadeh, *Fuzzy sets*, Inform. and Control 8 (1965), 338-353.

Received 26.12.2002

Kyung Ho KIM Department of Mathematics, Chungju National University Chungju 380-702, Korea ghkim@gukwon.chungju.ac.kr