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Abstract

In this paper, we introduce the concept of an intuitionistic fuzzy subhypernear-

ring of a hypernear-ring and obtain some results in this connection.
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1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [3], several researchers
were conducted on the generalizations of the notion of fuzzy set. The idea of “intuitionistic
fuzzy set” was first published by Atanassov [1], as a generalization of the notion of fuzzy
set. In this paper, using Atanassov’s idea, we establish the intuitionistic fuzzification
of the concept of subhypernear-rings in hypernear-rings and investigate some of their
properties. Also, for any intuitionistic fuzzy set A = (µA, γA) and a homomorphism

f from hypernear-ring R to hypernear-ring R′, we define IFS Af = (µfA, γ
f
A) in R by

µfA(x) := µA(f(x)), γfA(x) := γA(f(x)) for all x ∈ R. Then we show that If an IFS
A = (µA, γA) in R′ is an intuitionistic fuzzy subhypernear-ring of R′, then an IFS

Af = (µfA, γ
f
A) in R is an intuitionistic fuzzy subhypernear-ring of R. We consider the

notion of equivalence relations on the family of all intuitionistic fuzzy subhypernear-rings
of a hypernear-ring and investigate some related properties.
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2. Preliminaries

First we shall present the fundamental definitions.
A hyperstructure is a set H together with a map + : H × H −→ P∗(H) called

hyperoperation, where P∗(H) denotes the set of all the nonempty subsets of H. A
hypernear-ring is an algebraic structure (R,+, ·) which satisfies the following axioms:

(H1) x+ (y + z) = (x+ y) + z,
(H2) There is 0 ∈ R such that x+ 0 = 0 + x = x.

(H3) For every x ∈ R there exists one and only one x′ ∈ R such that 0 ∈ x+x′ where
we shall write −x for x′ and we call it the opposite of x,

(H4) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y,
(H5) With respect to the multiplication, (R, ·) is a semigroup having a bilaterally

obsorbing element 0, that is, x0 = 0x = 0 for all x ∈ R.
(H6) The multiplication is distributive with respect to the hyperoperation + on the

left side, that is, x · (y + z) = x · y + x · z for all x, y, z ∈ R.

If x ∈ R and A,B are subsets of R, then by A+ B,A+ x and x+B we mean

A +B =
⋃

a∈A,b∈B
a+ b, A+ x = A+ {x}, x+ B = {x}+B

A subhyper group A ⊆ R is normal if we have x+A − x ⊆ A.

By a fuzzy set µ in a nonempty set X we mean a function µ : X → [0, 1], and the
complement of µ, denoted by µ, is the fuzzy set in X given by µ(x) = 1 − µ(x) for all
x ∈ X.

A fuzzy set µ in R is called a fuzzy subhypernear-ring of R (see[2]) if it satisfies
(F1) min{µ(x), µ(y)} ≤ inf

α∈x+y
{µ(α)},

(F2) µ(x) ≤ µ(−x),
(F3) min{µ(x), µ(y)} ≤ µ(xy).

An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having
the form

A = {(x, µA(x), γA(x)) | x ∈ X}

where the functions µA : X → [0, 1] and γA : X → [0, 1] denote the degree of membership
and the degree of nonmembership, respectively, and

0 ≤ µA(x) + γA(x) ≤ 1
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for all x ∈ X.

For the sake of simplicity, we shall use the symbol A = (µA, γA) for the IFS A =
{(x, µA(x), γA(x)) | x ∈ X}.

Definition 2.1 ([1]). Let X be a nonempty set and let A = (µA, γA) and B = (µB , γB)
be IFSs in X. Then

(i) A ⊆ B iff µA(x) ≤ µB(x) and γA(x) ≥ γB(x) for all x ∈ X,
(ii) A = B iff A ⊆ B and B ⊆ A,

(iii) A = {(x, γA(x), µA(x)) : x ∈ X},
(iv) A ∩B = {(x, µA(x) ∧ µB(x), γA(x) ∨ γB(x)) : x ∈ X},
(v) A ∪B = {(x, µA(x) ∨ µB(x), γA(x) ∧ γB(x)) : x ∈ X},
(vi) 2A = {(x, µA(x), 1− µA(x)) : x ∈ X},
(vii) 3A = {(x, 1− γA(x), γA(x)) : x ∈ X}.

Definition 2.2 ([1]). Let {Ai : i ∈ Λ} be an arbitrary family of IFSs in X. Then

(i) ∩Ai = {(x,∧µAi(x),∨γAi(x)) : x ∈ X},
(ii) ∪Ai = {(x,∨µAi(x),∧γAi(x)) : x ∈ X}.

3. Intuitionistic fuzzy subhypernear-rings of hypernear-rings

In what follows, let R denote a hypernear-ring unless otherwise specified. We first
consider the intuitionistic fuzzification of the notion of subhypernear-rings in a hypernear-
rings as follows.

Definition 3.1. An IFS A = (µA, γA) in R is called an intuitionistic fuzzy subhypernear-
ring of R if it satisfies:

(IF1) min{µA(x), µA(y)} ≤ inf
α∈x+y

{µA(α)} and max{γA(x), γA(y)} ≥ sup
α∈x+y

{γA(α)},

(IF2) µA(x) ≤ µA(−x) and γA(x) ≥ γA(−x)

(IF3) min{µA(x), µA(y)} ≤ µA(xy) and max{γA(x), γA(y)} ≥ γA(xy)

Lemma 3.2. Let A = (µA, γA) be an intuitionistic fuzzy subhypernear-ring of a
hypernear-ring R. Then

µA(x) ≤ µA(0), γA(x) ≥ γA(0)

for all x ∈ R.
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Proof. We have

µA(0) ≥ inf{µA(α)} ≥ min{µA(x), µA(−x)} = µA(x)

γA(0) ≤ sup{γA(α)} ≤ max{γA(x), γA(−x)} = γA(x).

2

Theorem 3.3. If {Ai}i∈Λ is a family of intuitionistic fuzzy subhypernear-rings of R,
then ∩Ai is an intuitionistic fuzzy subhypernear-ring of R.

Proof. Let x, y, i ∈ R. Then we have

inf
α∈x+y

{∩µ
Ai

(α)} = inf
α∈x+y

{inf{µ
Ai

(α)}}

= inf{ inf
α∈x+y

{µ
Ai

(α)}}

≥ inf{min{µ
Ai

(x), µ
Ai

(y)}}

= min{inf{µAi (x)}, inf{µAi (y)}} = min{∩µAi (x),∩µAi (y)},

sup
α∈x+y

{∪γAi (α)} = sup
α∈x+y

{sup{γAi (α)}}

= sup{ inf
α∈x+y

{γAi (α)}}

≤ sup{max{γAi (x), γAi (y)}}

= max{sup{γAi (x)}, sup{γAi (y)}} = max{∪γAi (x),∪γAi (y)}.

Also, we have

∩µ
Ai

(x) = inf{µ
Ai

(x)} ≤ inf{µ
Ai

(−x)} = ∩µ
Ai

(−x),

∪γAi (x) = sup{γAi (x)} ≥ sup{γAi (−x)} = ∪γAi (−x),

∩µAi (xy) = inf{µAi (xy)}

≤ inf{min{µAi (x), µAi (y)}}
= min{inf{µ

Ai
(x)}, inf{µ

Ai
(y)}}

= min{∩µAi (x),∩µAi (y)},
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and

∪γAi (xy) = sup{γAi (xy)}
≥ sup{max{γ

Ai
(x), γ

Ai
(y)}}

= max{sup{γAi (x)}, sup{γAi (y)}}

= max{∪γAi (x),∪γAi (y)},

2

Lemma 3.4. An IFS A = (µA, γA) is an intuitionistic fuzzy subhypernear-ring of R if
and only if the fuzzy sets µA and γA are fuzzy subhypernear-rings of R.

Proof. Let A = (µA, γA) be an intuitionistic fuzzy subhypernear-ring of R. Clearly
µA is a fuzzy subhypernear-ring of R. For every x, y ∈ R, we have

sup
α∈x+y

{γA(α)} = sup
α∈x+y

{1− γA(α)}

= 1−max{γA(x), γA(y)}

= min{1− γA(x), 1− γA(y)}

= min{γA(x), γA(y)}.

Next,

γA(x) = 1− γA(x) ≤ 1− γA(−x) = γA(−x)

and γA(xy) = 1− γA(xy) ≥ 1−max{γA(x), γA(y)} = min{γA(x), γA(y)}. Hence γA is a
fuzzy subhypernear-ring of R. Conversely, µA and γA are fuzzy subhypernear-rings of R.
For every x, y ∈ R, we get inf

α∈x+y
{µA(α)} ≥ min{µA(x), µA(y)} and

1− sup
α∈x+y

{γA(α)} = inf
α∈x+y

{γA(α)}

≥ min{γA(x), γA(y)}

= min{1− γA(x), 1− γA(y)}

= 1−max{γA(x), γA(y)},

that is, sup
α∈x+y

{γA(α} ≤ max{γA(x), γA(y)}. Also, we have µA(x) ≤ µA(−x) and

1− γA(x) = γA(x) ≤ γA(−x) = 1− γA(−x),
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that is, γA(x) ≥ γA(−x). Finally, we have

min{µA(x), µA(y)} ≤ µA(xy)

and

1− γA(xy) = γA(xy)

≥ min{γA(x), γA(y)}

= min{1− γA(x), 1− γA(y)}

= max{γA(x), γA(y)},

that is, γA(xy) ≤ max{γA(x), γA(y)}. Hence A = (µA, γA) is an intuitionistic fuzzy
subhypernear-ring of R. 2

Theorem 3.5. Let A = (µA, γA) be an IFS in R. Then A = (µA, γA) is an intuitionistic
fuzzy subhypernear-ring of R if and only if 2A = (µA, µA) and 3A = (γA, γA) are
intuitionistic fuzzy subhypernear-rings R.

Proof. If A = (µA, γA) is an intuitionistic fuzzy subhypernear-ring of R, then µA = µA

and γA are fuzzy subhypernear-ring of R from Lemma 3.4, hence 2A = (µA, µA)
and 3A = (γA, γA) are intuitionistic fuzzy subhypernear-ring of R. Conversely if
2A = (µA, µA) and 3A = (γA, γA) are intuitionistic fuzzy subhypernear-ring of R,
then the fuzzy sets µA and γA are fuzzy subhypernear-ring of R, hence A = (µA, γA) is
an intuitionistic fuzzy subhypernear-ring of R. 2

For any t ∈ [0, 1] and a fuzzy set µ in a nonempty set R, the set

U(µ; t) = {x ∈ R | µ(x) ≥ t} (resp. L(µ; t) = {x ∈ R | µ(x) ≤ t})

is called an upper (resp. lower) t-level cut of µ.

Theorem 3.6. An IFS A = (µA, γA) is an intuitionistic fuzzy subhypernear-ring of
R if and only if for all s, t ∈ [0, 1], the sets U(µA; t) and L(γA; s) are either empty or
subhypernear-ring of R.

Proof. Let the set U(µA; t) and L(γA; s) be either empty or subhypernear-ring of
R for each s, t ∈ [0, 1]. For any x ∈ S, let µA(x) = t and γA(x) = s. Then x ∈
U(µA; t) ∩ L(γA; s), and so U(µA; t) 6= ∅ 6= L(γA; s). If there are x, y ∈ R such that
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inf
α∈x+y

{µA(α)} ≤ min{µA(x), µA(y)}, then inf
α∈x+y

{µA(α)} < t0 < min{µA(x), µA(y)} by

taking t0 := 1
2

{
inf

α∈x+y
{µA(α)}+ min{µA(x), µA(y)

}
. Hence t0 < µA(x) and t0 < µA(y),

and so x ∈ U(µA; t0) and y ∈ U(µA; t0). Since U(µA; t0) is a subhypernear-ring of R,
we have x + y ∈ U(µA; t0). So, µA(x + y) ≥ t0. This leads to a contradiction. Now

let x ∈ R be such that µA(x) ≥ µA(−x). Puttting s0 := 1
2

{
µA(x) + µA(−x)

}
, then

µA(−x) < s0 < µA(x), and so x ∈ U(µA; s0) but −x /∈ U(µA; s0). This leads to
a contradiction. If there are x, y ∈ R such that min{µA(x), µA(y)} ≥ µA(xy), then
µA(xy) < r0 < min{µA(x), µA(y)} by taking

r0 :=
1
2

{
µA(xy) + min{µA(x), µA(y)}

}
.

Hence x ∈ U(µA; r0), y ∈ (µA; r0) and xy /∈ U(µA; r0). This leads to a contradiction. If
there are a, b ∈ R such that sup

α∈a+b
{γA(α)} ≤ max{γA(a), γA(b)}, then sup

α∈a+b
{γA(α)} >

t0 > max{γA(a), γA(b)} by taking u0 := 1
2

{
sup
α∈a+b

{γA(α)} + max{γA(a), γA(b)
}
. Hence

u0 > γA(a) and u0 > γA(b), and so a ∈ L(γA; u0) and b ∈ L(γA; u0). Since L(γA; u0) is a
subhypernear-ring of R, we have a + b ∈ L(γA; u0). So, γA(a + b) ≤ u0. This leads to a

contradiction. Now let a ∈ R be such that γA(a) ≥ γA(−a). Puttting v0 := 1
2

{
γA(a) +

γA(−a)
}
, then γA(−a) > v0 > γA(a), and so a ∈ L(γA; v0) but −a /∈ L(γA; v0). This

leads a contradiction. If there are a, b ∈ R such that max{γA(a), γA(b)} ≤ γA(ab), then
γA(ab) > r0 > max{γA(a), γA(b)} by taking

w0 :=
1
2

{
γA(ab) + max{γA(a), γA(b)}

}
.

Hence a ∈ L(γA;w0), b ∈ (γA;w0) and ab /∈ L(γA;w0). This leads to a contradiction and
this completes the proof. 2

Theorem 3.7. Let {It | t ∈ Λ} be a collection of subhypernear-rings of R such that
(i) R = ∪t∈ΛIt,
(ii) s > t if and only if Is ⊂ It for all s, t ∈ Λ.
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Then an IFS A = (µA, γA) in R defined by

µA(x) := sup{t ∈ Λ | x ∈ It}, γA(x) := inf{t ∈ Λ | x ∈ It}

for all x ∈ R is an intuitionistic fuzzy subhypernear-ring of R.

Proof. According to Theorem 3.6, it is sufficient to show that nonempty level sets
U(µA; t) and L(γA; s) are subhypernear-rings of R of R for every s, t ∈ [0, 1]. In order
to prove that U(µA; t) (6= ∅) is a subhypernear-ring of R, we consider the following two
cases:

(1◦) t = sup{q ∈ Λ | q < t}, (2◦) t 6= sup{q ∈ Λ | q < t}.

Case (1◦) implies that

x ∈ U(µA; t)⇔ x ∈ Iq for all q < t⇔ x ∈ ∩q<tIq ,

so that U(µA; t) = ∩q<tIq, which is a subhypernear-ring of R. For the case (2◦), we claim
that U(µA; t) = ∪q≥tIq. If x ∈ ∪q≥tIq , then x ∈ Iq for some q ≥ t. It follows that
µA(x) ≥ q ≥ t, so that x ∈ U(µA; t). This shows that ∪q≥tIq ⊆ U(µA; t). Now assume
that x 6∈ ∪q≥tIq. Then x 6∈ Iq for all q ≥ t. Since t 6= sup{q ∈ Λ | q < t}, there exists
ε > 0 such that (t − ε, t) ∩ Λ = ∅. Hence x 6∈ Iq for all q > t − ε, which means that
if x ∈ Iq, then q ≤ t − ε. Thus µA(x) ≤ t − ε < t, and so x 6∈ U(µA; t). Therefore
U(µA; t) ⊆ ∪q≥tIq , and thus U(µA; t) = ∪q≥tIq which is a subhypernear-ring of R. Next
we prove that L(γA; s) (6= ∅) is a subhypernear-ring of R. We consider the following two
cases:

(3◦) s = inf{r ∈ Λ | s < r}, (4◦) s 6= inf{r ∈ Λ | s < r}.

For the case (3◦) we have

x ∈ L(γA; s)⇔ x ∈ Ir for all s < r ⇔ x ∈ ∩q≥tIr,

and hence L(γA; s) = ∩s<rIr which is a subhypernear-rings of R. For the case (4◦),
there exists ε > 0 such that (s, s + ε) ∩ Λ = ∅. We will show that L(γA; s) = ∪s≥rIr.
If x ∈ ∪s≥rIr , then x ∈ Ir for some r ≤ s. It follows that γA(x) ≤ r ≤ s so that
x ∈ L(γA; s). Hence ∪s≥rIr ⊆ L(γA; s). Conversely if x /∈ ∪s≥rIr, then x /∈ Ir for all
r ≤ s, which implies that x /∈ Ir for all r < s + ε, that is, if x ∈ Ir , then r ≥ s + ε.
Thus γA(x) ≥ s + ε > s, that is, x /∈ L(γA; s). Therefore L(γA; s) ⊆ ∪s≥rIr and conse-
quently L(γA; s) = ∪s≥rIr which is a subhypernear-ring ofR. This completes the proof. 2
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A mapping f from a hypernear-ring R to a hypernear-ring R′ is called a homomor-
phism if f(x+ y) = f(x) + f(y), f(x · y) = f(x) · f(y) and f(0) = 0 for all x, y ∈ R. From
the above definition, we get f(−x) = −f(x).

Let f be a map from a set X to a set Y . If A = (µA, γA) and B = (µB, µB) are IFSs
in X and Y respectively, then the preimage of B under f, denoted by f−1(B), is an IFS
in X defined by

f−1(B) = (f−1(µB), f−1(γB)).

Theorem 3.8. Let f : S → S′ be a homomorphism of hypernear-rings. If B =
(µB , γB) is an intuitionistic fuzzy subhypernear-ring of R′, then the preimage f−1(B) =
(f−1(µB), f−1(γB)) of B under f is an intuitionistic fuzzy subhypernear-ring of R.

Proof. Assume that B = (µB , γB) is an intuitionistic fuzzy subhypernear-ring of R
and let x, y ∈ R. Then we have

inf
α∈x+y

{f−1(µB)(α)} = inf
f(α)∈f(x)+f(y)

{µB(f(α))} ≥ min{µB(f(x)), µB(f(y))}

= min{f−1(µB)(x), f−1(µB)(y)},

sup
α∈x+y

{f−1(γB)(α)} = sup
f(α)∈f(x)+f(y)

{γB(f(α))} ≤ sup{γB(f(x)), γB(f(y))}

= sup{f−1(γB)(x), f−1(γB)(y)}.

Also, we have

f−1(µB)(x) = µB(f(x)) ≤ µB(−f(x)) = µB(f(−x))

= f−1(µB)(−x)

f−1(γB)(x) = γB(f(x)) ≥ γB(−f(x)) = γB(f(−x))

= f−1(γB)(−x)

f−1(µB)(x · y) = µB(f(x · y)) = µB(f(x) · f(y))

≥ min{µB(f(x)), µB(f(y))}

= min{f−1(µB)(x), f−1(µB)(y)},
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f−1(γB)(x · y) = γB(f(x · y)) = γB (f(x) · f(y))

≤ sup{γB(f(x)), γB (f(y))}
= sup{f−1(γB)(x), f−1(γB)(y)}.

Therefore f−1(B) = (f−1(µB), f−1(γB)) is an intuitionistic fuzzy subhypernear-ring of
R. 2

Let f : S → S′ be a homomorphism of hypernear-rings. For any IFS A = (µA, γA) in

R′, we define a new IFS Af = (µfA, γ
f
A) in R by

µfA(x) := µA(f(x)), γfA(x) := γA(f(x))

for all x ∈ R.

Theorem 3.9. Let f : R → R′ be a homomorphism of hypernear-rings. If an IFS
A = (µA, γA) in R′ is an intuitionistic fuzzy subhypernear-ring of R′, then an IFS

Af = (µfA, γ
f
A) in R is an intuitionistic fuzzy subhypernear-ring of R.

Proof. Let x, y ∈ R.

inf
α∈x+y

{µfA(α)} = inf
f(α)∈f(x)+f(y)

{µA(f(α))} ≥ min{µA(f(x)), µA(f(y))}

= min{µfA(x), µfA(y)},

sup
α∈x+y

{γfA(α)} = sup
f(α)∈f(x)+f(y)

{γA(f(α))} ≤ max{γA(f(x)), γA(f(y))}

= max{γfA(x), γfA(y)}.

Also, we have

µfA(x) = µA(f(x)) ≤ µA(−f(x)) = µA(f(−x))

= µfA(−x)

γfA(x) = γA(f(x)) ≥ γA(−f(x)) = γA(f(−x))

= γfA(−x)
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µA(x · y) = µA(f(x · y)) = µA(f(x) · f(y))

≥ min{µA(f(x)), µA(f(y))}
= min{µA)(x), µA)(y)},

γA(x · y) = γA(f(x · y)) = γA(f(x) · f(y))

≤ max{γA(f(x)), γA(f(y))}
= sup{γA(x), γA(y)}.

Hence Af = (µfA, γ
f
A) is an intuitionistic fuzzy subhypernear-ring of R. 2

Let IF (R) be the family of all intuitionistic fuzzy subhypernear-rings of R and let
t ∈ [0, 1]. Define binary relations U t and Lt on IF (R) as follows:

(A,B) ∈ U t ⇔ U(µA; t) = U(µB ; t), (A,B) ∈ Lt ⇔ L(γA; t) = L(γB ; t),

respectively, for A = (µA, γA) and B = (µB, γB) in IF (R). Then clearly U t and Lt are
equivalence relations on IF (R). For any A = (µA, γA) ∈ IF (R), let [A]Ut (resp. [A]Lt)
denote the equivalence class of A modulo U t (resp. Lt), and denote by IF (R)/U t (resp.
IF (R)/Lt) the system of all equivalence classes modulo U t (resp. Lt); so

IF (R)/U t := {[A]Ut | A = (µA, γA) ∈ IF (R)}

(resp. IF (R)/Lt := {[A]Lt | A = (µA, γA) ∈ IF (R)}).

Now let I(R) denote the family of all subhypernear-rings of R and let t ∈ [0, 1]. Define
maps ft and gt from IF (R) to I(R) ∪ {∅} by ft(A) = U(µA; t) and gt(A) = L(γA; t),
respectively, for all A = (µA, γA) ∈ IF (R). Then ft and gt are clearly well-defined.

Theorem 3.10. For any t ∈ (0, 1) the maps ft and gt are surjective from IF (S) to
I(R) ∪ {∅}.
Proof. Let t ∈ (0, 1). Note that 0∼ = (0, 1) is in IF (R), where 0 and 1 are fuzzy
sets in R defined by 0(x) = 0 and 1(x) = 1 for all x ∈ R. Obviously ft(0∼) = U(0; t) =
∅ = L(1; t) = gt(0∼). Let G(6= ∅) ∈ I(R). For G∼ = (χG, χG) ∈ IF (S), we have
ft(G∼) = U(χG; t) = G and gt(G∼) = L(χG; t) = G. Hence ft and gt are surjective. 2

Theorem 3.11. The quotient sets IF (R)/U t and IF (R)/Lt are equipotent to I(R)∪{∅}
for every t ∈ (0, 1).
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Proof. For t ∈ (0, 1) let f∗t (resp. g∗t ) be a map from IF (R)/U t (resp. IF (R)/Lt)
to I(R) ∪ {∅} defined by f∗t ([A]Ut) = ft(A) (resp. g∗t ([A]Lt) = gt(A)) for all A =
(µA, γA) ∈ IF (R). If U(µA; t) = U(µB; t) and L(γA; t) = L(γB ; t) for A = (µA, γA) and
B = (µB, γB) in IF (R), then (A,B) ∈ U t and (A,B) ∈ Lt; hence [A]Ut = [B]Ut and
[A]Lt = [B]Lt. Therefore the maps f∗t and g∗t are injective. Now let G(6= ∅) ∈ I(R). For
G∼ = (χG, χG) ∈ IF (R), we have

f∗t ([G∼]Ut) = ft(G∼) = U(χG; t) = G,

g∗t ([G∼]Lt) = gt(G∼) = L(χG; t) = G.

Finally, for 0∼=(0, 1) ∈ IF (R) we get

f∗t ([0∼]Ut) = ft(0∼) = U(0; t) = ∅,

g∗t ([0∼]Lt) = gt(0∼) = L(0; t) = ∅.

This shows that f∗t and g∗t are surjective, and we are done. 2

For any t ∈ [0, 1], we define another relation Rt on IF (R) as follows:

(A,B) ∈ Rt ⇔ U(µA; t) ∩ L(γA; t) = U(µB ; t) ∩ L(γB ; t)

for any A = (µA, γA), B = (µB, γB) ∈ IF (R). Then the relation Rt is also an equivalence
relation on IF (R).

Theorem 3.12. For any t ∈ (0, 1), the map φt : IF (R) → I(R) ∪ {∅} defined by
φt(A) = ft(A) ∩ gt(A) for each A = (µA, γA) ∈ IF (R) is surjective.

Proof. Let t ∈ (0, 1). For 0∼=(0, 1) ∈ IF (R),

φt(0∼) = ft(0∼) ∩ gt(0∼) = U(0; t)∩ L(1; t) = ∅.

For any H ∈ IF (R), there exists H∼ = (χH , χH) ∈ IF (R) such that

φt(H∼) = ft(H∼) ∩ gt(H∼) = U(χH ; t) ∩ L(χH ; t) = H.

This completes the proof. 2

Theorem 3.13. For any t ∈ (0, 1), the quotient set IF (R)/Rt is equipotent to I(R)∪{∅}.
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Proof. Let t ∈ (0, 1) and let φ∗t : IF (R)/Rt → I(R) ∪ {∅} be a map defined by
φ∗t ([A]Rt) = φt(A) for all [A]Rt ∈ IF (R)/Rt. If φ∗t ([A]Rt) = φ∗t ([B]Rt) for any [A]Rt,
[B]Rt ∈ IF (R)/Rt then ft(A) ∩ gt(A) = ft(B) ∩ gt(B), that is, U(µA; t) ∩ L(γA; t) =
U(µB ; t) ∩ L(γB ; t), hence (A,B) ∈ Rt. It follows that [A]Rt = [B]Rt so that φ∗t is
injective. For 0∼=(0, 1) ∈ IF (R),

φ∗t ([0∼]Rt) = φt(0∼) = ft(0∼) ∩ gt(0∼) = U(0; t) ∩ L(1; t) = ∅.

If H ∈ IF (R), then for H∼ = (χH , χH) ∈ IF (R), we have

φ∗t ([H∼]Rt) = φt(H∼) = ft(H∼) ∩ gt(H∼) = U(χH ; t) ∩ L(χH ; t) = H.

Hence φ∗t is surjective, completing the proof. 2
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