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Abstract

In this paper, we introduce the concept of an intuitionistic fuzzy subhypernear-

ring of a hypernear-ring and obtain some results in this connection.
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1. Introduction

After the introduction of the concept of fuzzy sets by Zadeh [3], several researchers
were conducted on the generalizations of the notion of fuzzy set. The idea of “intuitionistic
fuzzy set” was first published by Atanassov [1], as a generalization of the notion of fuzzy
set. In this paper, using Atanassov’s idea, we establish the intuitionistic fuzzification
of the concept of subhypernear-rings in hypernear-rings and investigate some of their
properties. Also, for any intuitionistic fuzzy set A = (ua,v4) and a homomorphism

f from hypernear-ring R to hypernear-ring R’, we define IFS Af = uf ,’yf in R by
A VA

uﬁ(m) = pa(f(x)), 'yf‘(x) = va(f(z)) for all x € R. Then we show that If an IFS
A = (pa,v4) in R’ is an intuitionistic fuzzy subhypernear-ring of R’, then an IFS
Af = (uﬁ, 'yf;) in R is an intuitionistic fuzzy subhypernear-ring of R. We consider the
notion of equivalence relations on the family of all intuitionistic fuzzy subhypernear-rings

of a hypernear-ring and investigate some related properties.
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2. Preliminaries

First we shall present the fundamental definitions.

A hyperstructure is a set H together with a map + : H x H — P*(H) called
hyperoperation, where P*(H) denotes the set of all the nonempty subsets of H. A
hypernear-ring is an algebraic structure (R, +, ) which satisfies the following axioms:

H1) 2+ (y+2)=(x+vy) +z

(H2) Thereis0 € R such that x +0=0+z = =.

(H3) For every x € R there exists one and only one 2’ € R such that 0 € z+ 2’ where
we shall write —z for 2/ and we call it the opposite of z,

(H4) z€x+yimpliesy € —z+zand z € z — y,

(H5) With respect to the multiplication, (R,-) is a semigroup having a bilaterally
obsorbing element 0, that is, x0 = 0z = 0 for all x € R.

(H6) The multiplication is distributive with respect to the hyperoperation + on the
left side, that is, z- (y+2) =z -y+x-z for all z,y,z € R.

If x € R and A, B are subsets of R, then by A+ B, A+ x and x + B we mean
A+B= |J a+bA+z=A+{z},2+B={a}+B
a€A,bEB
A subhyper group A C R is normal if we have x + A —x C A.

By a fuzzy set pu in a nonempty set X we mean a function p : X — [0,1], and the
complement of p, denoted by T, is the fuzzy set in X given by fi(z) = 1 — u(x) for all
zeX.

A fuzzy set pin R is called a fuzzy subhypernear-ring of R (see[2]) if it satisfies

(F1) min{u(z), u(y)} < inf {u(a)},

(F2) p(z) < p(—2),

(F3) min{p(2), u(y)} < play).

An intuitionistic fuzzy set (briefly, IFS) A in a nonempty set X is an object having

the form
A ={(z,pa(x),74(2)) | 2 € X}
where the functions p4 : X — [0,1] and 4 : X — [0, 1] denote the degree of membership

and the degree of nonmembership, respectively, and

0 < pa(r)+yalz) <1
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for all z € X.
For the sake of simplicity, we shall use the symbol A = (ua,~va) for the IFS A =
{(z, pa(@),va(2)) | 2 € X}.

Definition 2.1 ([1]). Let X be a nonempty set and let A = (ua,v4) and B = (up,VB)
be IFSs in X. Then
(i) ACBiff pa(z) < pup(zr) and ya(x) > yp(z) for all z € X,
(il) A=Biff ACBand BC A,
(i) A = {(2,74(2), pa(2)) : 2 € XV,
(iv) ANB ={(z,pa(x) A pp(x),ya(z) VyB(2)) - 0 € X},
(v) AUB = {(z, pa(2) V s (2), 74 () Avp (@) : 7 € X},
(vi) DA = {(&, pa(z), 1 - pa()) : 2 € X},
(vii) CA={(z,1—va(z),v4(x)) : 2 € X}.
Definition 2.2 ([1]). Let {A; : ¢ € A} be an arbitrary family of IFSs in X. Then
() NA; = {(@ Apa(2), Vi, (2) s 7 € X},
(ii) UA; = {(z,Vpa, (@), Aya,(z)) : z € X}

3. Intuitionistic fuzzy subhypernear-rings of hypernear-rings

In what follows, let R denote a hypernear-ring unless otherwise specified. We first
consider the intuitionistic fuzzification of the notion of subhypernear-rings in a hypernear-

rings as follows.

Definition 3.1. AnIFS A = (ua,v4) in R is called an intuitionistic fuzzy subhypernear-
ring of R if it satisfies:

(IF1) min{pa(), pa(y)} < inf {pa(e)} and max{ya(z),74(y)} = aggy{m(a)},

(IF2) pa(z) < pa(—2z) and ya(z) > va(—2x)
(IF3) min{pa(z), pa(y)} < pa(zy) and max{ya(z), va(y)} > va(zy)

Lemma 3.2. Let A = (ua,y4) be an intuitionistic fuzzy subhypernear-ring of a
hypernear-ring R. Then

pa(r) < pa(0),va(x) > va(0)

for all z € R.
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14(0) = inf{pa(a)} = min{pa(z), pa(—2)} = pa(z)

74(0) < sup{ya(a)} < max{ya(z),ya(-z)} = va(2).

a

Theorem 3.3. If {A;}ica s a family of intuitionistic fuzzy subhypernear-rings of R,

then NA; is an intuitionistic fuzzy subhypernear-ring of R.

Proof. Let z,y,i € R. Then we have

inf {Np, (@)} =

acr+y

>

sup {Uy,, (@)}
acr+y

IN

Also, we have

Ny, (z) =

inf {inf{y, (a)}}

acr+y

inf{ inf {MA'i (a)}}

acr+y
inf{min{p, (z),n, (y)}}
min{inf{p, (z)}, inf{p,, (y)}} = min{Np,, (2), Np,, (9)}

sup {sup{v, (a)}}
aczr+y

sup{_inf {7, (@)}

sup{max{7,, (%), 74, (¥)}}
max{sup{7,, (v)},sup{7,, (y)}} = max{Uy, (2),Uv,, (y)}.

inf{MA,i (:E)} < inf{MA,i(_x)} = mMA,i(_x)ﬂ

Uv,, () = sup{v,, (#)} > sup{v,, (—2)} = Uy, (—2),

mMA,i (xzy) = inf{MA,i (zy)}

I IA
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and

Uv,, (zy) = sup{v,, (zy)}

sup{max{v, (2),7,,(y)}}
max{sup{7,, (¥)},sup{v,, (y)}}
max{Uy, (z),U7,, (¥},

v

O
Lemma 3.4. An IFS A = (ua,7va) is an intuitionistic fuzzy subhypernear-ring of R if
and only if the fuzzy sets ua and 74 are fuzzy subhypernear-rings of R.
Proof. Let A = (ua,7v4) be an intuitionistic fuzzy subhypernear-ring of R. Clearly

14 is a fuzzy subhypernear-ring of R. For every =,y € R, we have

L @)y = sup {1 - vale))
= 1—max{ya(z),va(y)}
= min{l —ya(z),1 —va(y)}
= min{F4(x),74(y)}
Next,

Ta(@) =1 =7a(2) <1 =7ya(=2) =7,4(-2)

and J4(zy) = 1 —ya(zy) = 1 — max{ya(z),74(y)} = min{7 (), 7a(y)}. Hence 7, is a
fuzzy subhypernear-ring of R. Conversely, a4 and 4 are fuzzy subhypernear-rings of R.

For every z,y € R, we get éngr {pa(a@)} > min{pa(z), pa(y)} and
aEx+y

1— sup {ya(a)} = agmlli Fala)}
aczr+y y
> min{7,(z),7a(y)}

min{1l —ya(x),1 —va(y)}

1-— max{WA (z),va(y)},

that is, sup {va(a} < max{ya(z),va(y)}. Also, we have pu(x) < pa(—z) and
acr+y

I —va(x) =74(x) <ya(—2) =1 —ya(~x),
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that is, ya(x) > ya(—=x). Finally, we have

min{pa(@), pa(y)} < palzy)

and

1—va(wy) = Falzy)
> min{7,(2), 74 (¥)}
= min{l —ya(z),1 —ya(y)}
= max{va(z),va(¥)},

that is, ya(zy) < max{va(x),va(y)}. Hence A = (ua,va) is an intuitionistic fuzzy
subhypernear-ring of R. O

Theorem 3.5. Let A = (pa,va) be an IFS in R. Then A = (a4, v4) is an intuitionistic
fuzzy subhypernear-ring of R if and only if OA = (ua,iy) and CA = (F4,74) are
intuitionistic fuzzy subhypernear-rings R.

Proof. If A= (ua,vya) is an intuitionistic fuzzy subhypernear-ring of R, then pua = 714
and 74 are fuzzy subhypernear-ring of R from Lemma 3.4, hence OA = (pa,fiy)
and OA = (74,74) are intuitionistic fuzzy subhypernear-ring of R. Conversely if
OA = (ua,fs) and CA = (74,74) are intuitionistic fuzzy subhypernear-ring of R,
then the fuzzy sets pa and 7,4 are fuzzy subhypernear-ring of R, hence A = (ua,v4) is

an intuitionistic fuzzy subhypernear-ring of R. a

For any ¢ € [0,1] and a fuzzy set p in a nonempty set R, the set
Ult) = {o € R| p(x) > 1} (resp. L(it) = {w € B | pu(x) < 1))

is called an upper (resp. lower) t-level cut of p.

Theorem 3.6. An IFS A = (pa,ya) is an intuitionistic fuzzy subhypernear-ring of
R if and only if for all s,t € [0,1], the sets U(ua;t) and L(ya;s) are either empty or
subhypernear-ring of R.

Proof. Let the set U(ua;t) and L(va;s) be either empty or subhypernear-ring of
R for each s,t € [0,1]. For any = € S, let pa(x) = ¢t and ya(z) = s. Then = €
U(pa;t) N L(ya;s), and so U(ua;t) # 0 # L(ya;s). If there are z,y € R such that
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oinf {na(e)} < min{pa(z), pa(y)}, then inf {pa(e)} <to < min{pa(@), pa(y)} by

taking to := %{a inf {na(a)} +min{ua(@), pa (y)} Hence to < pa(x) and to < pa(y),

and so x € U(ua;to) and y € U(ua;to). Since U(pa;to) is a subhypernear-ring of R,
we have x +y € U(pa;to). So, pa(x +y) > to. This leads to a contradiction. Now

let © € R be such that pa(x) > pa(—z). Puttting s := %{MA(ir) + MA(—x)}, then

pa(—z) < so < pa(x), and so z € U(pa;so) but —x ¢ U(pa;so). This leads to
a contradiction. If there are x,y € R such that min{ua(z), pa(y)} > pa(zy), then
pa(zy) <ro <minfpa(z), na(y)} by taking

ro 1= %{MA (zy) + min{pa(z), MA(y)}}-

Hence z € U(pa;ro),y € (a;ro) and zy ¢ U(pa; o). This leads to a contradiction. If

there are a,b € R such that sup {ya(a)} < max{va(a),va(b)}, then sup {ya(a)} >
aca+bd aca+bd

to > max{ya(a),va(b)} by taking ug := %{ sup b{vA(a)} + max{ya (a),vA(b)}. Hence
aca+

ug > ya(a) and uy > v4(b), and so a € L(ya;uo) and b € L(ya;uo). Since L(ya;up) is a
subhypernear-ring of R, we have a +b € L(ya;uo). So, va(a + b) < ug. This leads to a

contradiction. Now let a € R be such that v4(a) > va(—a). Puttting vy := %{%4 (a) +

WA(—a)}, then v4(—a) > vo > ya(a), and so a € L(ya;v9) but —a ¢ L(ya;v9). This

leads a contradiction. If there are a,b € R such that max{va(a),v4(b)} < va(ab), then
~v4(ab) > ro > max{ya(a),va(b)} by taking

wn = g {atad) + maxtrata) 1a 0

Hence a € L(ya;wo),b € (ya;wo) and ab ¢ L(ya;wp). This leads to a contradiction and
this completes the proof. O

Theorem 3.7. Let {I; |t € A} be a collection of subhypernear-rings of R such that
(i) R=Utenl:,
(ii) s>t if and only if Iy C Iy for all s,t € A.
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Then an IFS A = (ua,va) in R defined by
pa(x) :=sup{t € Az € L}, va(x):=inf{t € A |z € I}

for all x € R is an intuitionistic fuzzy subhypernear-ring of R.

Proof.  According to Theorem 3.6, it is sufficient to show that nonempty level sets
U(pa;t) and L(ya;s) are subhypernear-rings of R of R for every s, ¢ € [0,1]. In order
to prove that U(ua;t) (# () is a subhypernear-ring of R, we consider the following two

cases:
(1°) t=sup{ge A|g<t}, (2°) t#sup{ge A|qg<t}.

Case (1°) implies that
xeU(uast)y e xel, forall ¢ <texeNgely,

so that U(ua;t) = Ng<tly, which is a subhypernear-ring of R. For the case (2°), we claim
that U(ua;t) = Ugsely. If © € Ugsily, then @ € I; for some ¢ > t. It follows that
pna(z) > q > t, so that © € U(pa;t). This shows that Ug>¢ly, € U(pa;t). Now assume
that © & Ug>¢ly. Then x ¢ I, for all ¢ > t. Since t # sup{q € A | ¢ < t}, there exists
e > 0 such that (¢t —¢,t) N A = (). Hence z ¢ I, for all ¢ > ¢ — ¢, which means that
if v € I, then ¢ <t —e. Thus pa(z) <t—e <t, and so z & U(pa;t). Therefore
U(pa;t) € Ugsely, and thus U(pa;t) = Ug>el; which is a subhypernear-ring of R. Next
we prove that L(y4;s) (#£ 0) is a subhypernear-ring of R. We consider the following two
cases:

(3°) s=inf{reA|s<r}, (4°) s#inf{re A|s<r}.

For the case (3°) we have
x € L(yas;s) @ xel, forall s<rexeNgsd,,

and hence L(va;s) = Ns<rI, which is a subhypernear-rings of R. For the case (4°),
there exists € > 0 such that (s,s +¢&) N A = (. We will show that L(ya;s) = Us>pI,.
If © € Ugsply, then o € I, for some r < s. It follows that va(z) < r < s so that
x € L(ya;s). Hence Us>rI, C L(vya;s). Conversely if © ¢ Ug>, I, then = ¢ I, for all
r < s, which implies that « ¢ I, for all » < s+ ¢, that is, if x € I,., then r > s + €.
Thus y4(x) > s+¢€ > s, that is, © ¢ L(va;s). Therefore L(ya;s) C Us>rI, and conse-
quently L(va4;s) = Ug>,I which is a subhypernear-ring of R. This completes the proof. O
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A mapping f from a hypernear-ring R to a hypernear-ring R’ is called a homomor-
phismif f(z+y) = f(z) + f(y), f(z-y) = f(z)- f(y) and f(0) =0 for all z,y € R. From
the above definition, we get f(—z) = —f(x).

Let f be a map from aset X toaset Y. If A= (ua,va) and B = (up, up) are IFSs
in X and Y respectively, then the preimage of B under f, denoted by f~!(B), is an IFS
in X defined by

f7HB) = (F ), [ (vB)-

Theorem 3.8. Let f : S — S be a homomorphism of hypernear-rings. If B =
(up,yB) is an intuitionistic fuzzy subhypernear-ring of R, then the preimage f~1(B) =
(f~Yug), f1(yB)) of B under f is an intuitionistic fuzzy subhypernear-ring of R.

Proof.  Assume that B = (up,yp) is an intuitionistic fuzzy subhypernear-ring of R

and let z,y € R. Then we have

inf {f~(up)(@)} = inf  {pp(f(a))} = min{up(f(2)), us(f(v))}

acz+y fle)ef(z)+1(y)

= min{fil(MB)(x)a fﬁl(MB)(y)}a

sup {f'(yp)()} = sup  {yB(f(@))} < sup{yB(f(2)),v5(f(¥)}

aEx+y fla)ef(z)+f(v)

= sup{f (v8)(@), f (vB) ()}

Also, we have

fHuB)(@) = up(f(2) < up(=f(2)) = pp(f(-2))
= [ Hup)(~2)

fHs)(@) = ve(f(2) =v8(—f(2) = v8(f(—2))

= [B)(-2)
F )@ y) = pp(flr-y) =ps(f) f(y)
> min{up(f(2)), pe(f(Y)}

= min{f ™ (up)(@), f~ (uB)®)},
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o) (@ y) B(f(z-y) =v(f(x) - f(y))
sup{ys(f (7)), v8(f(¥))}

sup{f~" (y5)(x), f~ (v8)(W)}-

Therefore f~1(B) = (f~'(up), f~1(yp)) is an intuitionistic fuzzy subhypernear-ring of
R. O

IN

Let f: S — S’ be a homomorphism of hypernear-rings. For any IFS A = (u4,7v4) in
R’, we define a new IFS Af = (uﬁ, %{1) in R by

for all z € R.

Theorem 3.9. Let f : R — R’ be a homomorphism of hypernear-rings. If an IFS
A = (pa,v4) in R is an intuitionistic fuzzy subhypernear-ring of R', then an IFS
Af = (uﬁ, %{1) in R is an intuitionistic fuzzy subhypernear-ring of R.

Proof. Letx,y€ R.

inf {ph(a)} = inf  {pa(f(@))} = min{pa(f(x)), na(f())}

aczty fle)ef(z)+1(y)

= min{y/,(z), uhy ()},

sup {7 ()} sup  {ya(f(a)} < max{ya(f(2)), va(f(¥))}

aEx+y fla)ef(z)+f(y)
= max{7}(z),7,(¥)}.

Also, we have
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Hence Af = (uﬁ, vﬁ) is an intuitionistic fuzzy subhypernear-ring of R. O

Let IF(R) be the family of all intuitionistic fuzzy subhypernear-rings of R and let
t € [0,1]. Define binary relations U* and L' on IF(R) as follows:

(A,B) e U' & U(ua;t) =U(up;t), (A, B) € L' & L(vya;t) = L(vp;t),

respectively, for A = (ua,va) and B = (up,vg) in IF(R). Then clearly Ut and L! are
equivalence relations on IF(R). For any A = (ua,v4) € IF(R), let [A]y: (vesp. [A]Le)
denote the equivalence class of A modulo U* (resp. L), and denote by IF(R)/U" (resp.
IF(R)/L") the system of all equivalence classes modulo U (resp. L'); so

IF(R)/U" == {[Aly+ | A= (pa,7a) € IF(R)}

(resp. IF(R)/L* :={[A]pe | A= (ua,va) € IF(R)}).
Now let I(R) denote the family of all subhypernear-rings of R and let ¢ € [0,1]. Define
maps f; and g; from IF(R) to I(R) U {0} by fi(A) = U(pa;t) and g:(A) = L(ya;t),
respectively, for all A = (ua,va) € IF(R). Then f; and g; are clearly well-defined.

Theorem 3.10. For any t € (0,1) the maps fir and g, are surjective from IF(S) to
I(R) U {0}.

Proof. Lett € (0,1). Note that 0. = (0,1) is in JF(R), where 0 and 1 are fuzzy
sets in R defined by 0(z) = 0 and 1(z) =1 for all x € R. Obviously f;(0~) = U(0;t) =
0 = L(1;t) = g4(0.). Let G(# 0) € I(R). For G. = (xa,Xg) € IF(S), we have
ft(G.) =U(xg;t) = G and g:(G~) = L(Xq;t) = G. Hence f; and g, are surjective. O
Theorem 3.11. The quotient sets IF(R)/U" and IF(R)/L! are equipotent to I(R)U{0}
for every t € (0,1).
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Proof. Fort € (0,1) let f; (resp. g;) be a map from IF(R)/U* (vesp. IF(R)/L")
to I(R) U {0} defined by f;([A]ye) = fi(A) (vesp. g;([A]r) = g1(A)) for all A =
(a,v4) € IF(R). If U(pa;t) = U(up;t) and L(va;t) = L(yg;t) for A = (ua,va) and
B = (up,vs) in IF(R), then (A,B) € U' and (A, B) € L*; hence [A]y: = [B]y+ and
[A]+ = [B]:. Therefore the maps f;* and g are injective. Now let G(#£ () € I(R). For
G~ = (xa¢,Xg) € IF(R), we have

fi(GAlue) = fi(Gr) = Ulxe;t) = G,

9(([G~]Le) = 9:(Gr) = LiXgit) = G-
Finally, for 0.=(0,1) € IF(R) we get

f([0-]ue) = fi(0~) = U(052) = 0,

9; ([0~] ) = g:(0.) = L(0;t) = 0.

This shows that f; and g; are surjective, and we are done. O

For any t € [0, 1], we define another relation R' on IF(R) as follows:
(A, B) € R" & U(pa;t) N L(va;t) = U(up; t) 0 L(yp;t)

for any A = (ua,va), B= (uB,v8) € IF(R). Then the relation R’ is also an equivalence
relation on IF(R).

Theorem 3.12. For any t € (0,1), the map ¢, : IF(R) — I(R) U {0} defined by
d1(A) = fr(A) N ge(A) for each A = (pua,v4) € IF(R) is surjective.

Proof. Lett e (0,1). For 0.=(0,1) € IF(R),
d+(0.) = f1(0.) N g:(0.) = U(0;t) N L(1;¢) = 0.
For any H € IF(R), there exists H. = (xm, Xp) € IF(R) such that
¢i(Hv) = fi(Ho) N ge(Ha) = Uxm; t) 0 L(Xpgst) = H.
This completes the proof. O

Theorem 3.13. For anyt € (0,1), the quotient set IF(R)/R? is equipotent to I(R)U{0}.
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Proof. Let t € (0,1) and let ¢ : IF(R)/R" — I(R) U {0} be a map defined by
7 ([Alge) = ¢i(A) for all [A]g: € IF(R)/R'. If ¢} ([Alg:) = ¢;([B]gt) for any [A]ge,
[Blre € IF(R)/R" then f;(A) N g:(A) = f:(B) N gi(B), that is, U(ua;t) N L(ya;t) =
U(pp;t) N L(vs;t), hence (A, B) € R'. 1t follows that [A]g: = [B]g: so that ¢} is
injective. For 0.=(0,1) € IF(R),
¢; ([0~]re) = ¢:(0~) = fi(0~) N g:(0~) = U(0;£) N L(1;) = 0.
If H € IF(R), then for H. = (x,Xy) € IF(R), we have
¢ ([H]re) = ¢e(H) = fi(Ho) N ge(He) = Uxa; 1) 0 L(Xg5 t) = H.

Hence ¢ is surjective, completing the proof. O
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