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Nihal Yılmaz Özgür∗, Recep Şahin

Abstract

Hecke groups H(λq) have been studied extensively for many aspects in the

literature, [5], [8]. The Hecke group H(λ3), the modular group PSL(2,Z), has

especially been of great interest in many fields of mathematics, for example number

theory, automorphic function theory and group theory. In this paper we consider

the extended Hecke groups H(λq) which are defined analogously with the extended

modular group. We find the conjugacy classes of torsion elements in H(λq). Using

this we give some results about the normal subgroups and Fuchsian subgroups of

H(λq).
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1. Introduction

Hecke introduced an infinite class of discrete groups H(λq) of linear fractional trans-
formations preserving the upper-half plane [2]. The Hecke group H(λ) is the group
generated by

x(z) = −1
z

and u(z) = z + λ,

where λ = λq = 2 cos π/q, q ≥ 3 integer, or λ ≥ 2. We consider the former case. These
Hecke groups H(λq) are Fuchsian groups of the first kind. Let

y = xu =
−1

z + λq
.
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Then H(λq) has a presentation

H(λq) =< x, y : x2 = yq = 1 > .

For q = 3, the resulting Hecke group H(λ3) is the modular group PSL(2,Z). In a sense
Hecke groups are generalizations of the modular group. Similar to the extended modular
group case, the extended Hecke group, denoted by H(λq), is the group obtained by adding
the reflection

r(z) = 1 / z

to the generators of H(λq), and the Hecke group H(λq) is a subgroup of index 2 in H(λq).
The extended Hecke group H(λq) has the presentation

H(λq) =< x, y, r : x2 = yq = r2 = (xr)2 = (yr)2 = 1 > . (1.1.1)

Again, for q = 3, we obtain the extended modular group studied in [3], [4].
In this paper, firstly we find the conjugacy classes of finite order elements of the

extended Hecke groups H(λq). In studying normal subgroups (especially Fuchsian ones),
it is important to find the conjugacy classes of torsion elements. Also we show that in
H(λp), p ≥ 3 prime number, every normal subgroup with torsion has finite index (in fact
the index is 2, 4 or 2p).

2. Conjugacy Classes

It is well known that the Hecke group H(λq) is a free product of a cyclic group of
order 2 and a cyclic group of order q, i.e. H(λq) ∼= Z2∗ Zq, [1]. The extended Hecke group
H(λq) is also known to be a free product with amalgamation as H(λq) ∼= D2 ∗Z2 Dq, [7],
[4].

One of the consequences of the amalgam decomposition is a classification of the
conjugacy classes of torsion elements in H(λq).

The following lemmas are trivial due to the presentation of H(λq) given in (1.1.1).

Lemma 2.1 In H(λq), we have ysr = ryq−s, 1 ≤ s ≤ q − 1.

Lemma 2.2 In H(λq), we have
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(i) ynr, 1 ≤ n ≤ q − 1, is conjugate to r by ytr where t = q.k+n
2 for some k ∈ Z

satisfying the condition t ∈ Z (note that t is not unique).
(ii) ys, 1 ≤ s ≤ q−1

2
, is conjugate to yq−s by r.

Now we can give the following theorem for the extended Hecke group H(λp) where
p ≥ 3 prime number. Note that, by the definition, H(λq) contains reflections.

Theorem 2.3 Let p ≥ 3 be prime number. There are exactly p+5
2

conjugacy classes

of torsion elements in H(λp), three for those of order 2 and p−1
2 for those of order p.

In particular, any elliptic transformation of order 2 is conjugate to x : z → −1/z and
any reflection is conjugate to one of r : z → 1/z or xr : z → −z while any elliptic

transformation of order p is conjugate to one of y : z → −1/(z + λp), y2 ,... or y
p−1

2 .

Proof. We consider the following presentation of H(λp) given in (1.1.1):

H(λp) =< x, y, r : x2 = yp = r2 = (xr)2 = (yr)2 = 1 > .

The decomposition of H(λp) ∼= D2 ∗Z2 Dp arose by letting

G1 = < x, r : x2 = r2 = (xr)2 = 1 > ∼= D2

and

G2 = < y, r : yp = r2 = (yr)2 = 1 > ∼= Dp.

From a theorem of Kurosh, see [6], we know that any element of finite order in a
generalized free product A ∗H B is conjugate to an element of finite order in one of
the factors. Now let g be any element of finite order in H(λp). Then g must be conjugate
to an element of finite order in one of the factors G1 and G2. Therefore to find the
conjugacy classes of finite order elements in H(λp), we must find the conjugacy classes
in these factors.

G1 has one conjugacy class of elliptic elements of order 2 with representative x, two
conjugacy classes of reflections with representatives r and xr.

Similarly, in G2, there are p classes of reflections with representatives r, yr, . . . , yp−1r

and p − 1 classes of elliptic elements of order p with representatives y, y2 , . . . , yp−1.

By Lemma 2.2 (i), ynr is conjugate to r, 1 ≤ n ≤ p − 1, then we have one conjugacy
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class of reflections with representative r. Also by Lemma 2.2 (ii), ys is conjugate to yp−s

and so we have p−1
2

conjugacy classes of elliptic elements of order p with representatives

y, y2 , ..., y
p−1

2 .

Therefore, in H(λp) as a whole there are: one class of elliptic elements of order 2 with
representative x; two classes of reflections with representatives r, xr; and, p−1

2 classes of

elliptic elements of order p with representatives y, y2, . . . , y
p−1

2 . 2

The situation is more complex for any odd q which is not prime.

For odd and composite values of q, there are ϕ(q)
2 conjugacy classes of elliptic elements

of order q with representatives y, yr1 , ..., yrϕ(q)/2 where (ri, q) = 1, 1 ≤ i ≤ ϕ(q)
2 and ϕ(q)

is the Euler function. There are: one conjugacy class of elliptic elements of order 2 with
representative x; two conjugacy classes of reflections with representatives r, xr; and, in

total q−1
2 −

ϕ(q)
2 conjugacy classes of elliptic elements of order ti where ti | q.

For even q, firstly let us start with q = 4 and q = 6.

Theorem 2.4 (i) In H(
√

2), there are two conjugacy classes of elliptic elements of order
2 with representatives x, y2, two conjugacy classes of reflections with representatives r,
xr and one class of elliptic elements of order 4 with representative y.

(ii) In H(
√

3), there are two conjugacy classes of elliptic elements of order 2 with
representatives x, y3, two conjugacy classes of reflections with representatives r, xr and
one class of elliptic elements of order 3 with representative y2 and one class of elliptic
elements of order 6 with representative y.

For any even q > 6, we can only say that there are ϕ(q)
2 conjugacy classes of elliptic

elements of order q with representatives y, yr1 , ...yrϕ(q)/2 where (ri, q) = 1. Also, there are
two conjugacy classes of elliptic elements of order 2 with representatives x, y

q
2 and two

conjugacy classes of reflections with representatives r, xr. Furthermore, there are totally
q
2 −

ϕ(q)
2 − 1 conjugacy classes of elliptic elements of order ti where ti | q and ti 6= 2.

Here we mention briefly conjugacy classes of torsion elements in Hecke groups H(λq).
Note that most of these results can be obtained by use of the notion of fundamental
region of Hecke groups. Similar to the extended Hecke group case, for any even q, we
can only say that there are ϕ(q) conjugacy classes of elliptic elements of order q with

476



YILMAZ ÖZGÜR, ŞAHİN

representative y, yr1 , ..., yrϕ(q) where (ri, q) = 1, two classes of elliptic elements of order 2
with representatives x, y

q
2 . Furthermore, there are in total q−ϕ(q)− 2 conjugacy classes

of elliptic elements of order ti where ti | q, ti 6= 2. If q is prime, then there are only
q conjugacy classes of torsion elements in H(λq), one for those of order 2 and q − 1
for those of order q. In particular, any elliptic transformation of order 2 is conjugate
to x : z → −1/z and any elliptic transformation of order q is conjugate to one of
y : z → −1/(z + λp), y2,...,yq−1. For odd and composite values of q, there are ϕ(q)
conjugacy classes of elliptic elements of order q with representatives y, yr1 , ..., yrϕ(q) where
(ri, q) = 1, 1 ≤ i ≤ ϕ(q). There are one conjugacy classes of elliptic elements of order
2 with representative x and totally q − 1− ϕ(q) conjugacy classes of elliptic elements of
order ti where ti | q.

Using Theorem 2.3 we get the following.

Theorem 2.5 If G is a normal subgroup of H(λp), p prime, and G has torsion, then the
index

∣∣H(λp) : G
∣∣ is finite.

Proof. Suppose g ∈ H(λp) and g has finite order. Since G / H(λp), if g ∈ G then
N(g) ⊆ G implies

∣∣H(λp) : G
∣∣ | ∣∣H(λp) : N(g)

∣∣ where N(g) is the normal closure of g in

H(λp).

Since
∣∣H(λp) : N(g)

∣∣ =
∣∣H(λp) : N(g∗)

∣∣ where g∗ is any conjugate of g, we complete

the argument by showing that
∣∣H(λp) : N(h)

∣∣ is finite. Here h is any of the class

representatives of torsion elements listed in Theorem 2.3. Now h = x, r, xr, y, y2, ..., y
p−1

2 .

The quotient group H(λp) / N(h) is the group obtained by adding the relation h = 1 to
the relations of H(λp), [6].

(1) Suppose h = x. Then

H(λp)/N(x) ∼=< x, y, r : x2 = yp = r2 = (xr)2 = (yr)2 = 1, x = 1 >

∼=< y, r : yp = r2 = (yr)2 = 1 >∼= Dp.

Therefore
∣∣H(λp) : N(x)

∣∣ = 2p.

(2) Suppose h = r. Then we find

H(λp)/N(r) ∼=< x, y : x2 = yp = r2 = (xr)2 = (yr)2 = 1, r = 1 >
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∼=< x : x2 = 1 >∼= C2

since y2 = yp = 1. Therefore
∣∣H(λp) : N(r)

∣∣ = 2.

(3) Let h = xr. Then

H(λp)/N(xr) ∼=< x, y, r : x2 = yp = r2 = (xr)2 = (yr)2 = 1, xr = 1 > .

As xr = 1 we see that x = r since r2 = 1. Therefore we get

H(λp)/N(xr) ∼=< x, y : x2 = yp = (xy)2 = 1 >∼= Dp,

so
∣∣H(λp) : N(xr)

∣∣ = 2p.

(4) Let h = y. Then

H(λp)/N(y) ∼=< x, r : x2 = r2 = (xr)2 = 1 >∼= D2,

so
∣∣H(λp) : N(y)

∣∣ = 4.

(5) Similarly, if h = ya, 2 ≤ a ≤ p−1
2 , then (a, p) = 1 and so we have

H(λp)/N(ya) ∼=< x, r : x2 = r2 = (xr)2 = 1 >∼= D2.

Hence
∣∣H(λp) : N(ya)

∣∣ = 4.

Thus in all cases, the index is finite. 2

We can restate this as in the following corollary.

Corollary 2.6 If G� H(λp) and G has an elliptic element or reflection then
∣∣H(λp) : G

∣∣
divides 4p (divides 2, 4,or 2p, depending on elliptic element or reflection).

Since the index of Hecke group H(λq) in H(λq) is 2 and since if G is normal in H(λq),
then is also normal in H(λq), we have

Corollary 2.7 If G / H(λp), p ≥ 3 prime number, and G has an elliptic element then
the index |H(λp) : G| divides 2p (divides 2 or p, depending on elliptic element).
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3. Fuchsian Subgroups

It is well-known that H(λq) is discontinuous in the upper half-plane and Fuchsian
with the real line as a fixed circle.

If C is a circle, we let P (C) be the Fuchsian stabilizer of C in H(λq), i.e. the subgroup
of H(λq) which maps both C and the interior of C on itself and PN (C) the normal closure
of P (C) in H(λq).

Now we can give the following corollary for the extended Hecke group H(λp) for prime
number p ≥ 3.

Corollary 3.1 If P (C) contains any elliptic element in H(λp) then the index∣∣H(λp) : PN (C)
∣∣ is finite. In particular,

∣∣H(λp) : PN(C)
∣∣ divides 2, 4, 2p.

Let L(C) be the general stabilizer of the circle C in H(λp), i.e. the subgroup of H(λp)
which maps C on itself and let LN (C) be its normal closure. Then we have

Theorem 3.2 If the circle C is fixed by either an elliptic or parabolic element or a
reflection in H(λp) then

∣∣H(λp) : LN (C)
∣∣ is finite (in fact

∣∣H(λp) : LN(C)
∣∣ | 4p ).

Proof. If the circle C is fixed by an elliptic element or reflection, then the result follows
from Theorem 2.5. Now let C is fixed by a parabolic map t. Any parabolic element
in H(λp) is conjugate to a translation t′ : z → z + α. So, if vtv−1 = t′, then v(C)
is a fixed circle of t′. The real line is fixed by t′. Further, the real line is fixed by
x : z → −1/z. Then v−1xv fixes C, so L(C) contains an elliptic map. From Theorem
2.5,

∣∣H(λp) : LN (C)
∣∣ is finite and in fact it divides 4p. 2
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