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Abstract

In this paper we study nonlinear second order difference equations subject to

separated linear boundary conditions. Sign properties of the associated Green’s

functions are investigated and existence results for positive solutions of the nonlinear

boundary value problem are established. Upper and lower bounds for these positive

solutions also are given.
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1. Introduction

Positive solutions of operator equations in Banach spaces are investigated in the
monographs by Krasnosel’skii [11] and Guo and Lakshmikantham [9] making use of the
theory of operators acting in Banach spaces with a cone and leaving this cone invariant.
The significance of this investigation is due to the fact that in analysing nonlinear
phenomena many mathematical models give rise to problems for which only nonnegative
solutions make sense. In [11] and subsequent studies (see, [9, 2]) the idea of the method
was used to prove the existence of positive solutions of nonlinear ordinary and partial
differential equations, integral and integro-differential equations, and difference equations.
At the beginning, a main example investigated by the cone method was the nonlinear
boundary value problem (BVP)
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−y′′ = f(x, y), x ∈ [a, b], (1.1)

y(a) = y(b) = 0. (1.2)

Later in [7, 8] instead of the simple boundary conditions of (1.2), general separated linear
boundary conditions

αy(a) − βy′ (a) = 0, γy(b) + δy
′
(b) = 0 (1.3)

were explored and the existence of positive solutions for the BVP (1.1), (1.3) was studied
by a similar method. In the sequel, a discrete analogue of the BVP (1.1), (1.3) was
considered. To formulate it, let a, b (a < b) be integers and let [a, b] denote the discrete
segment being the set {a, a+1, ..., b}. In [12] the existence of positive solutions is studied
for the discrete BVP

−42y(t − 1) = f(t, y(t)), t ∈ [a, b], (1.4)

αy(a − 1)− β4y(a − 1) = 0, γy(b) + δ4y(b) = 0, (1.5)

where {y(t)}b+1
t=a−1 is a desired solution and 4 denotes the forward difference operator

defined by

4y(t) = y(t + 1)− y(t). (1.6)

In [13, 6], in the BVP (1.4), (1.5) the equation

−4[p(t− 1)4y(t − 1)] = f(t, y(t)), t ∈ [a, b], (1.7)

is used. Further, in [4], the existence of positive solutions is examined for the more general
equation

−4[p(t− 1)4y(t − 1)] + q(t)y(t) = f(t, y(t)), t ∈ [a, b], (1.8)

under the periodic boundary conditions

y(a − 1) = y(b), p(a− 1)4y(a− 1) = p(b)4y(b). (1.9)
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Notice that (1.9) is an important representative of nonseparable linear boundary condi-
tions.

In this paper we investigate the existence of positive solutions for Equation (1.8)
subject to the boundary conditions (1.5). So our problem is more general than both the
problem (1.4), (1.5) and the problem (1.7), (1.5) as studied in [12, 13, 6]. Besides, what
is more essential, our results in this paper are different from those in [12, 13, 6].

The paper is organized as follows. In Section 2 we give some needed facts about second
order linear difference equations. Here, a uniqueness and existence theorem is presented,
and a variation of constants formula for the nonhomogeneous equation is given.

In Section 3 the Green’s function of the linear boundary value problem is constructed
and in some particular cases the Green’s function is explicitly calculated.

In Section 4 sign properties of the Green’s function are investigated and some inequal-
ities for it are proved.

In the last Section 5 existence results and upper and lower bounds for positive solutions
of the BVP (1.8), (1.5) are established.

Finally, for easy reference, we state here the fixed-point theorem [11, p. 148; 9, p. 94]
which is employed in this paper.

Theorem 1.1 (Krasnosel’skii Fixed Point Theorem) Let B be a Banach space, and
let ℘ ⊂ B be a cone in B. Assume Ω1, Ω2 are open subsets of B with 0 ∈ Ω1, Ω1 ⊂ Ω2

and let

A : ℘
⋂

(Ω2\Ω1)→ ℘

be a completely continuous operator such that either

• (i) ‖Ay‖ ≤ ‖y‖, y ∈ ℘ ∩ ∂Ω1, and ‖Ay‖ ≥ ‖y‖, y ∈ ℘ ∩ ∂Ω2;

or

• (ii) ‖Ay‖ ≥ ‖y‖, y ∈ ℘ ∩ ∂Ω1, and ‖Ay‖ ≤ ‖y‖, y ∈ ℘ ∩ ∂Ω2.

Then A has at least one fixed point in ℘
⋂

(Ω2\Ω1).
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2. Second Order Linear Difference Equations

The theorems given in this section either are in the references [1, 3, 10] or are not
difficult to verify.

Let Z denote the set of all integers. Consider on Z the second order linear homogeneous
difference equation given by

−4[p(t− 1)4y(t − 1)] + q(t)y(t) = 0, (2.1)

where 4 denotes the forward difference operator defined by (1.6). In equation (2.1) the
coefficients p(t), q(t) are complex-valued functions defined on Z and p(t) 6= 0 for all t ∈ Z;
y(t) is a desired solution.

For brevity let us set

y[4](t) = p(t)4y(t),

that is called the quasi 4-derivative of y(t).

Theorem 2.1 Let t0 be a fixed point in Z and c0, c1 be given constants. Then equation
(2.1) has a unique solution y such that

y(t0) = c0, y[4](t0) = c1.

For two functions y, z : Z→ C we define their Wronskian by

Wt(y, z) = y(t)z[4](t)− y[4](t)z(t)

for t ∈ Z.

Theorem 2.2 The Wronskian of any two solutions of equation (2.1) is independent of
t.

Corollary 2.1 If y and z are both solutions of Eq.(2.1), then either Wt(y, z) = 0 for all
t ∈ Z, or Wt(y, z) 6= 0 for all t ∈ Z.
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Theorem 2.3 Any two solutions of Eq.(2.1) are linearly independent if and only if their
Wronskian is nonzero.

Theorem 2.4 Eq. (2.1) has two linearly independent solutions and every solution of Eq.
(2.1) is a linear combination of these solutions.

We say that y1 and y2 form a fundamental set (or a fundamental system) of
solutions for Eq. (2.1) provided their Wronskian is nonzero.

Let us consider the nonhomogeneous equation

−4[p(t− 1)4y(t − 1)] + q(t)y(t) = h(t), (2.2)

where h : Z→ C is a given complex-valued function.

Theorem 2.5 Suppose that y1 and y2 form a fundamental set of solutions of the homo-
geneous Equation (2.1) and ω = Wt(y1 , y2).Then the general solution of the nonhomoge-
neous Equation (2.2) is given by

y(t) = c1y1(t) + c2y2(t) +
1
ω

t−1∑
s=t0

[y1(t)y2(s) − y1(s)y2(t)]h(s), (2.3)

where t0 is a fixed point in Z, and c1 and c2 are arbitrary constants.

3. Boundary Value Problems and Green’s Functions

Let a < b be fixed points in Z and let [a, b] denote the discrete interval being the
set {a, a+ 1, ..., b}. Consider the following boundary value problem (BVP):

−4[p(t− 1)4y(t − 1)] + q(t)y(t) = h(t), t ∈ [a, b], (3.1)

αy(a − 1)− βy[4](a− 1) = 0, γy(b) + δy[4](b) = 0, (3.2)

where α, β, γ, δ are complex constants such that | α | + | β |6= 0 and | γ | + | δ |6= 0. The
functions p(t), q(t) and h(t) are as in Section 2.
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Note that each solution y(t) of Eq. (3.1) must be a function defined on [a− 1, b+ 1].
Since

y(b) = y(b + 1)−4y(b),

the boundary conditions (3.2) (in particular), when

β = 0, δp(b) = γ,

will take the form

y(a − 1) = 0, y(b + 1) = 0,

and are called the conjugate (or Dirichlet) boundary conditions.

Turning to the BVP (3.1), (3.2), denote by ϕ(t) and ψ(t) the solutions of the corre-
sponding homogeneous equation

−4[p(t− 1)4y(t − 1)] + q(t)y(t) = 0, t ∈ [a, b], (3.3)

under the initial conditions

ϕ(a − 1) = β, ϕ[4](a − 1) = α; (3.4)

ψ(b) = δ, ψ[4](b) = −γ; (3.5)

so that ϕ and ψ satisfy the first and the second conditions of (3.2), respectively. Let us
set

D = −Wt(ϕ, ψ) = ϕ[4](t)ψ(t) − ϕ(t)ψ[4](t). (3.6)

Since the Wronskian of any two solutions of Eq. (3.3) is independent of t ∈ [a− 1, b],
taking in (3.6), t = a− 1 and t = b we find , because of (3.4) and (3.5),

D = αψ(a − 1)− βψ[4](a − 1) = γϕ(b) + δϕ[4](b). (3.7)
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According to Theorem 2.3, D 6= 0 if and only if ϕ and ψ are linearly independent.
The following theorem describes the condition D 6= 0 from another point of view.

Theorem 3.1 D 6= 0 if and only if the homogeneous Equation (3.3) has only trivial
solution satisfying the boundary conditions (3.2).

Proof. If D = 0, then by virtue of (3.4) and (3.7), ϕ(t) will be a nontrivial solution of the
BVP (3.3), (3.2). Let us now assume that D 6= 0. Then ϕ and ψ will form a fundamental
set of solutions of Eq.(3.3) and therefore any solution of the BVP (3.3), (3.2) will have
the form

y(t) = c1ϕ(t) + c2ψ(t),

where c1, c2 are constants. Substituting this expression of y(t) into the boundary condi-
tions (3.2) and taking into account that by (3.4), (3.5) ϕ(t) satisfies the first and ψ(t) the
second conditions of (3.2), we get

c2[αψ(a− 1)− βψ[4](a− 1)] = 0, c1[γϕ(b) + δϕ[4](b)] = 0,

or by (3.7) c2D = 0, c1D = 0. Hence c1 = c2 = 0, that is, the solution y(t) is trivial.
This completes the proof. 2

Theorem 3.2 If D 6= 0, then the nonhomogeneous BV P (3.1), (3.2) has a unique solu-
tion y(t) for which the formula

y(t) =
b∑

s=a

G(t, s)h(s), t ∈ [a− 1, b+ 1] (3.8)

holds, where

G(t, s) =
1
D


ϕ(t)ψ(s), a− 1 ≤ t ≤ s ≤ b+ 1,

ϕ(s)ψ(t), a− 1 ≤ s ≤ t ≤ b+ 1

(3.9)

and G(t, s) is called the Green’s function of the BV P (3.1), (3.2).
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Proof. Under the condition D 6= 0, the solutions ϕ(t) and ψ(t) of the homogeneous Eq.
(3.3) are linearly independent and, therefore by Theorem 2.5, the general solution of the
nonhomogeneous Eq. (3.1) has the form

y(t) = c1ϕ(t) + c2ψ(t) +
1
D

t∑
s=a

[ϕ(s)ψ(t) − ϕ(t)ψ(s)]h(s), t ∈ [a− 1, b+ 1], (3.10)

where c1 and c2 are arbitrary constants. Now we try to choose the constants c1 and c2

so that the function y(t) satisfies also the boundary conditions (3.2).

From (3.10) we have

y[4](t) = c1ϕ
[4](t) + c2ψ

[4](t) +
1
D

t∑
s=a

[ϕ(s)ψ[4](t) − ϕ[4](t)ψ(s)]h(s). (3.11)

Consequently

y(a − 1) = c1ϕ(a− 1) + c2ψ(a − 1) = c1β + c2ψ(a − 1),

y[4](a − 1) = c1ϕ
[4](a− 1) + c2ψ

[4](a− 1) = c1α+ c2ψ
[4](a− 1).

Substituting these values of y(a− 1) and y[4](a− 1) in the first condition of (3.2) we get

c2[αψ(a− 1)− βψ[4](a− 1)] = 0.

On the other hand, by (3.7)

αψ(a − 1)− βψ[4](a − 1) = D 6= 0.

Consequently c2 = 0 and (3.10), (3.11) take the forms

y(t) = c1ϕ(t) +
1
D

t∑
s=a

[ϕ(s)ψ(t) − ϕ(t)ψ(s)]h(s), (3.12)
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y[4](t) = c1ϕ
[4](t) +

1
D

t∑
s=a

[ϕ(s)ψ[4](t)− ϕ[4](t)ψ(s)]h(s).

Hence

y(b) = c1ϕ(b) +
1
D

b∑
s=a

[δϕ(s) − ϕ(b)ψ(s)]h(s),

y[4](b) = c1ϕ
[4](b) +

1
D

b∑
s=a

[−γϕ(s) − ϕ[4](b)ψ(s)]h(s),

and substituting these values of y(b) and y[4](b) in the second condition of (3.2) we get

c1[γϕ(b) + δϕ[4](b)]− γϕ(b) + δϕ[4](b)
D

b∑
s=a

ψ(s)h(s) = 0.

Since by (3.7)

γϕ(b) + δϕ[4](b) = D 6= 0,

hence

c1 =
1
D

b∑
s=a

ψ(s)h(s).

Putting this value of c1 in (3.12) we obtain

y(t) =
1
D

t∑
s=a

ϕ(s)ψ(t)h(s) +
1
D

b∑
s=t+1

ϕ(t)ψ(s)h(s),

that is, formulas (3.8), (3.9) hold. 2

It can be verified without difficulty that for the solution y(t) of the nonhomogeneous
equation (3.1) under the nonhomogeneous boundary conditions
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αy(a − 1)− βy[4](a− 1) = d1, γy(b) + δy[4](b) = d2

the formula

y(t) = w(t) +
b∑

s=a

G(t, s)h(s)

holds, where the function G(t, s) is defined by (3.9) and

w(t) =
d2

D
ϕ(t)− d1

D
ψ(t).

Consider the following two particular cases when the Green’s function G(t, s) of the BVP
(3.1), (3.2) can be calculated explicitly.

1. In the BVP (3.1), (3.2) let p(t) ≡ 1 and q(t) ≡ 0. Then we have

ϕ(t) = β + α(t− a+ 1), ψ(t) = δ + γ(b − t),

D = αβ + γδ + αγ(b− a+ 1),

G(t, s) =
1
D


[β + α(t− a+ 1)] [δ + γ(b − s)] , a− 1 ≤ t ≤ s ≤ b+ 1,

[β + α(s− a+ 1)] [δ + γ(b − t)] , a− 1 ≤ s ≤ t ≤ b+ 1.

2. Let now p(t) 6= 0 be arbitrary and q(t) ≡ 0. Then we have

ϕ(t) = β + α

t−1∑
k=a−1

1
p(k)

, ψ(t) = δ + γ

b−1∑
k=t

1
p(k)

,

D = αβ + γδ + αγ

b−1∑
k=a−1

1
p(k)

,
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G(t, s) =
1
D



[
β + α

t−1∑
k=a−1

1
p(k)

][
δ + γ

b−1∑
k=s

1
p(k)

]
, a− 1 ≤ t ≤ s ≤ b+ 1,

[
β + α

s−1∑
k=a−1

1
p(k)

][
δ + γ

b−1∑
k=t

1
p(k)

]
, a− 1 ≤ s ≤ t ≤ b+ 1.

4. Sign Properties of the Green’s Function

Consider the BVP (3.1), (3.2). In this section we assume that

p(t) > 0, q(t) ≥ 0; (4.1)

α, β, γ, δ ≥ 0, α+ β > 0, γ + δ > 0. (4.2)

Let ϕ(t) and ψ(t) be the solutions of the homogeneous Equation (3.3) satisfying initial
conditions (3.4) and (3.5), respectively.

Lemma 4.1 Under the conditions (4.1), (4.2) the solutions ϕ(t) and ψ(t) possess the
following properties:

ϕ(t) ≥ 0, t ∈ [a− 1, b+ 1]; ψ(t) ≥ 0, t ∈ [a− 1, b]; (4.3)

ϕ(t) > 0, t ∈ [a, b+ 1]; ψ(t) > 0, t ∈ [a− 1, b− 1]; (4.4)

ϕ[4](t) ≥ 0, t ∈ [a− 1, b]; ψ[4](t) ≤ 0, t ∈ [a− 1, b]. (4.5)

Proof. To investigate the properties of the solutions ϕ(t), ψ(t) and their derivatives we
deduce the “discrete integral equations ” for these functions (see [4, 5]). Summing the
equation

4[p(τ − 1)4y(τ − 1)] = q(τ )y(τ )

from a to k, and taking into account the initial condition ϕ[4](a− 1) = α, we get

ϕ[4](k) = α+
k∑

τ=a

q(τ )ϕ(τ ), (4.6)
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or

4ϕ(k) =
α

p(k)
+

1
p(k)

k∑
τ=a

q(τ )ϕ(τ ).

Hence summing from a− 1 to t− 1, and using the initial condition ϕ(a− 1) = β and the
formula

m∑
k=a

u(k)
k∑

τ=a

ϑ(τ ) =
m∑
τ=a

[
m∑
k=τ

u(k)

]
ϑ(τ ),

we find, for all t ≥ a− 1,

ϕ(t) = β + α

t−1∑
k=a−1

1
p(k)

+
t−1∑
τ=a

[
t−1∑
k=τ

1
p(k)

]
q(τ )ϕ(τ ). (4.7)

For the solution ψ(t) we can, in a similar way, obtain the equations

ψ[4](k) = −γ −
b∑

τ=k+1

q(τ )ψ(τ ), (4.8)

ψ(t) = δ + γ

b−1∑
k=t

1
p(k)

+
b∑

τ=t+1

[
τ−1∑
k=t

1
p(k)

]
q(τ )ψ(τ ). (4.9)

From (4.7) we have

ϕ(a − 1) = β ≥ 0, ϕ(a) = β +
α

p(a− 1)
> 0.

Therefore from (4.7), step by step, we get

ϕ(t) > 0 for t = a + 1, ..., b+ 1.
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Thus, ϕ(t) ≥ 0 for t ∈ [a − 1, b+ 1], and ϕ(t) > 0 for t ∈ [a, b+ 1]. Consequently, from
(4.6) we get also ϕ[4](k) ≥ 0 for k ∈ [a− 1, b]. So, the statements of the lemma for ϕ are
proved. The statements of the lemma for ψ can be proved in a similar way using (4.9)
and (4.8). Hence the lemma is proved. 2

Let us now investigate the sign of the number D defined by (3.7). Setting (4.6), (4.7)
and (4.8), (4.9) in (3.7), we find

D = αδ + βγ + αγ
b−1∑

k=a−1

1
p(k)

+ δq(b)ϕ(b) +
b−1∑
τ=a

[
δ + γ

b−1∑
k=τ

1
p(k)

]
q(τ )ϕ(τ ), (4.10)

and

D = αδ + βγ + αγ

b−1∑
k=a−1

1
p(k)

+
b∑

τ=a

[
β + α

τ−1∑
k=a−1

1
p(k)

]
q(τ )ψ(τ ). (4.11)

Hence, in the case q(t) ≡ 0 (a ≤ t ≤ b), we have

D = αδ + βγ + αγ

b−1∑
k=a−1

1
p(k)

. (4.12)

From formulas (4.10)–(4.12) the following result follows.

Lemma 4.2 Under the conditions (4.1) and (4.2):

• (i) If q(t) 6= 0 for some t (a ≤ t ≤ b) , then D > 0.

• (ii) If q(t) ≡ 0 (a ≤ t ≤ b), then D > 0 if and only if α+ γ > 0.

Now from the formula (3.9) for G(t, s), by Lemmas 4.1 and 4.2, we get the following
theorem.

Theorem 4.1 Let conditions (4.1) and (4.2) hold. In the case q(t) ≡ 0 (a ≤ t ≤ b),
let α+ γ > 0. Then:

• (i) G(t, s) ≥ 0 for t, s ∈ [a− 1, b].
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• (ii) G(t, s) > 0 for t, s ∈ [a, b− 1].

• (iii) If δ > 0, then G(t, s) > 0 for t, s ∈ [a, b].

Theorem 4.2 Let conditions (4.1) and (4.2) hold. Besides, in the case q(t) ≡ 0 (a ≤
t ≤ b) let α+ γ > 0. Then :

• (i) 0 ≤ G(t, s) ≤ G(s, s) for t, s ∈ [a− 1, b] ;

• (ii) G(t, s) ≥ σG(s, s) for t ∈ [a, b− 1] and s ∈ [a− 1, b],

where

σ = min{I1, I2} (4.13)

in which

I1 =
{
β +

α

p(a− 1)

}{
β + α

b−1∑
k=a−1

1
p(k)

+
b−1∑
τ=a

[
b−1∑
k=τ

1
p(k)

]
q(τ )ϕ(τ )

}−1

,

I2 =
{
δ +

γ + δq(b)
p(b− 1)

}{
δ + γ

b−1∑
k=a−1

1
p(k)

+
b∑

τ=a

[
τ−1∑

k=a−1

1
p(k)

]
q(τ )ψ(τ )

}−1

.

Proof. By Lemma 4.1, ϕ(t) is nondecreasing and ψ(t) is nonincreasing for t ∈ [a−1, b+1].
Besides ϕ(t) ≥ 0 for t ∈ [a− 1, b+ 1], and ψ(t) ≥ 0 for t ∈ [a− 1, b]. Therefore we have,
for a− 1 ≤ t ≤ s ≤ b,

G(t, s) =
1
D
ϕ(t)ψ(s) ≤ 1

D
ϕ(s)ψ(s) = G(s, s),

and we have, for a− 1 ≤ s ≤ t ≤ b,

G(t, s) =
1
D
ϕ(s)ψ(t) ≤ 1

D
ϕ(s)ψ(s) = G(s, s).

So the statement (i) of the theorem is proved.
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If G(s, s) = 0 for a given s ∈ [a − 1, b], then the statement (ii) of the theorem is
obvious for such values. Let now s ∈ [a− 1, b] and G(s, s) 6= 0. Consequently, G(s, s) > 0
for all such s. Let us take any t ∈ [a, b− 1]. Then we have, for s ∈ [a− 1, t],

G(t, s)
G(s, s)

=
ψ(t)
ψ(s)

≥ ψ(b − 1)
ψ(a − 1)

=
δ +

γ + δq(b)
p(b− 1)

δ + γ

b−1∑
k=a−1

1
p(k)

+
b∑

τ=a

[
τ−1∑
k=a−1

1
p(k)

]
q(τ )ψ(τ )

,

and we have for, s ∈ [t, b],

G(t, s)
G(s, s)

=
ϕ(t)
ϕ(s)

≥ ϕ(a)
ϕ(b)

=
β +

α

p(a− 1)

β + α

b−1∑
k=a−1

1
p(k)

+
b−1∑
τ=a

[
b−1∑
k=τ

1
p(k)

]
q(τ )ϕ(τ )

.

The theorem is proved. 2

Note that the number σ defined by (4.13) satisfies the inequality 0 < σ < 1.

5. Existence of Positive Solutions

In this section we consider the nonlinear BVP

−4[p(t− 1)4y(t − 1)] + q(t)y(t) = f(t, y(t)), t ∈ [a, b], (5.1)

αy(a − 1)− βy[4](a− 1) = 0, γy(b) + δy[4](b) = 0. (5.2)

We will assume that the following conditions are satisfied :

• (H1) p(t) > 0, q(t) ≥ 0.

• (H2) α, β, γ, δ ≥ 0, α+ β > 0, γ + δ > 0;

if q(t) ≡ 0 (a ≤ t ≤ b), then α+ γ > 0.

• (H3) f : [a, b]×R→ R is continuous with respect to ξ and f(t, ξ) ≥ 0 for
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ξ ∈ R+, where R+ denotes the set of nonnegative real numbers.

Regarding BVP (5.1), (5.2) denote by G(t, s) the Green’s function of the problem
(3.1), (3.2). By the Theorems 4.1 and 4.2 the inequalities

0 ≤ G(t, s) ≤ G(s, s) for t, s ∈ [a− 1, b]; (5.3)

G(t, s) ≥ σG(s, s) for t ∈ [a, b− 1] and s ∈ [a− 1, b] (5.4)

hold, where the number σ is defined by (4.13).

By Theorem 3.2, finding a solution y(t), t ∈ [a − 1, b+ 1] of the BVP (5.1), (5.2) is
equivalent to finding a solution y(t) of the summation equation

y(t) =
b∑

s=a

G(t, s)f(s, y(s)), t ∈ [a− 1, b+ 1].

Hence for the solution y(t), t ∈ [a− 1, b+ 1] of the BVP (5.1), (5.2) the equation

y(t) =
b∑

s=a

G(t, s)f(s, y(s)), t ∈ [a, b] (5.5)

holds. Conversely, if a function y(t), t ∈ [a, b] is a solution of Eq. (5.5), then the extension
y(t), t ∈ [a− 1, b+ 1] of this function, where

y(a − 1) =
b∑

s=a

G(a− 1, s)f(s, y(s)), (5.6)

y(b + 1) =
b∑

s=a

G(b+ 1, s)f(s, y(s)), (5.7)

will be the solution of the BVP (5.1), (5.2).

Thus between solutions of the BVP (5.1), (5.2) and the Equation (5.5), there is a
one-to-one correspondence. Consequently, the existence and uniqueness of solution of the
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BVP (5.1), (5.2) is equivalent to that for Eq. (5.5).

We investigate Eq. (5.5) in the b − a + 1 dimensional real Banach space B of real-
valued functions y(t) defined on [a,b] with the norm

‖ y ‖= max
a≤t≤b

| y(t) |.

Solving Eq. (5.5) in B is equivalent to finding fixed points of the operator A : B → B
defined by

Ay(t) =
b∑

s=a

G(t, s)f(s, y(s)), t ∈ [a, b] (5.8)

From the continuity of f(t, ξ) with respect to ξ it follows that the operator A defined
by (5.8) is completely continuous in B.

Let us set

℘ = {y ∈ B | y(t) ≥ 0 for t ∈ [a, b]}. (5.9)

Evidently ℘ is a cone in B. Moreover, for all y ∈ ℘, by (5.3) and (H3), we have from
(5.8), Ay(t) ≥ 0 for all t ∈ [a, b]. Therefore the operator A leaves the cone ℘ invariant,
i.e. A(℘) ⊂ ℘.

In the next theorem we will use the following well-known Contraction Mapping The-
orem named also as the Banach Fixed Point Theorem: Let E be a Banach space and K

be a nonemty closed subset of E. Assume A : K → K is a contraction, i.e. there is a

λ, 0 < λ < 1, such that ‖Ax−Ay‖ ≤ λ‖x− y‖ for all x, y in K. Then A has a unique

fixed point in K, that is, a unique point x0 ∈ K such that Ax0 = x0.

Theorem 5.1 Assume that conditions (H1), (H2) and (H3) are satisfied. Assume also
that the function f(t, ξ) satisfies with respect to ξ the Lipschitz condition

| f(t, ξ1) − f(t, ξ2) |≤ £ | ξ1 − ξ2 |, ξ1, ξ2 ∈ R,

where £ is a constant not depending on t, ξ1, ξ2. If
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£

(
max
a≤t≤b

b∑
s=a

G(t, s)

)
< 1,

then the BV P (5.1), (5.2) has a unique solution y(t), t ∈ [a− 1, b+ 1] such that

y(t) ≥ 0 for t ∈ [a, b].

Proof. For all y, z ∈ B and t ∈ [a, b] we have

| Ay(t) −Az(t) |≤
b∑

s=a

G(t, s) | f(s, y(s)) − f(s, z(s)) |

≤ £
b∑

s=a

G(t, s) | y(s) − z(s) |≤ £ ‖ y − z ‖
b∑

s=a

G(t, s)

≤ £ ‖ y − z ‖ max
a≤t≤b

b∑
s=a

G(t, s).

Hence

‖ Ay −Az ‖≤
(

£ max
a≤t≤b

b∑
s=a

G(t, s)

)
‖ y − z ‖.

Therefore applying the contraction mapping theorem to the operator A : ℘ → ℘ we get
the statement of the theorem. 2

To get an existence theorem without uniqueness of solution, we will apply in the next
theorem the following Brouwer Fixed Point Theorem: Let E be a finite dimensional

linear normed space and K be a nonempty bounded, closed, and convex subset of E.

Assume A : E → E is a continious (nonlinear, in general) operator. If the operator

A leaves the set K invariant, i.e. if A(K) ⊂ K, then A has at least one fixed point

in K.

Theorem 5.2 Assume that conditions (H1), (H2), and (H3) are satisfied. Assume also
that there is a number R > 0 such that
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(
max
a≤t≤b

b∑
s=a

G(t, s)

)
. max
a≤t≤b,0≤ξ≤R

f(t, ξ) ≤ R.

Then the BV P (5.1), (5.2) has at least one solution y(t), t ∈ [a− 1, b+ 1] such that

0 ≤ y(t) ≤ R, t ∈ [a, b].

Proof. Let us set

℘R = {y ∈ B |‖ y ‖≤ R, y(t) ≥ 0 for all t ∈ [a, b]}.

The set ℘R is bounded, closed, and convex. Moreover the operator A leaves the set ℘R
invariant. Indeed for each y ∈ ℘R we have Ay(t) ≥ 0 and

Ay(t) =
b∑

s=a

G(t, s)f(s, y(s)) ≤
(

max
a≤s≤b,0≤ξ≤R

f(s, ξ)
) b∑
s=a

G(t, s)

≤
(

max
a≤s≤b,0≤ξ≤R

f(s, ξ)
)

max
a≤t≤b

b∑
s=a

G(t, s) ≤ R.

Hence ‖ Ay ‖≤ R and therefore Ay ∈ ℘R. Besides the operator A is continuous.
Consequently, applying the Brouwer fixed point theorem to the operator A we get the
statement of the theorem. 2

Notice that the latter condition of Theorem 5.2 is satisfied for sufficiently large R if
| f(t, ξ) |≤ c1 + c2 | ξ |λ , where c1,c2, λ are positive constants and λ < 1.

Now together with the cone ℘ defined by (5.9) we define the second cone ℘0 in B by

℘0 = {y ∈ ℘ | min
a≤t≤b−1

y(t) ≥ σ ‖ y ‖},

where the number σ is defined by (4.13).

Lemma 5.1 Ay ∈ ℘0 for all y ∈ ℘. In particular, the operator A leaves the cone ℘0

invariant, i.e., A(℘0) ⊂ ℘0.
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Proof. For all y ∈ ℘ taking into account (5.3) and (H3) we have from (5.8), Ay(t) ≥ 0
for all t ∈ [a, b]. Further, making use of (5.4) and (5.3) we have from (5.8),

min
a≤t≤b−1

Ay(t) ≥ σ
b∑

s=a

G(s, s)f(s, y(s)) ≥ σ max
a≤t≤b

b∑
s=a

G(t, s)f(s, y(s)) = σ ‖ Ay ‖.

Therefore Ay ∈ ℘0. The lemma is proved. 2

Let us set

g =
b∑

s=a

G(s, s), g1 =
b−1∑
s=a

G(t0, s), (5.10)

where t0 is any fixed point in [a, b− 1].

In the next theorem we also assume the following condition on f(t, ξ).

• (H4) There exist numbers 0 < r < R <∞ such that for all t ∈ [a, b]:

f(t, ξ) ≤ 1
g
r if 0 ≤ ξ ≤ r; f(t, ξ) ≥ 1

σg1
R if R ≤ ξ <∞.

Theorem 5.3 Assume that conditions (H1)–(H4) are satisfied. Then the BV P (5.1),
(5.2) has at least one solution y(t), t ∈ [a− 1, b+ 1] such that

σr ≤ y(t) ≤ R

σ
for t ∈ [a, b− 1]. (5.11)

0 ≤ y(b) ≤ R

σ
. (5.12)

Proof. For y ∈ ℘0 with ‖ y ‖= r ( hence 0 ≤ y(s) ≤ r for s ∈ [a, b]) we have for all
t ∈ [a, b]

Ay(t) ≤
b∑

s=a

G(s, s)f(s, y(s)) ≤ r

g

b∑
s=a

G(s, s) = r =‖ y ‖. (5.13)
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Now if we let Ω1 = {y ∈ B |‖ y ‖< r}, then (5.13) shows that ‖ Ay ‖≤‖ y ‖, y ∈ ℘0

⋂
∂Ω1.

Further, let

R1 =
1
σ
R and Ω2 = {y ∈ B |‖ y ‖< R1}.

Then y ∈ ℘0 and ‖ y ‖= R1 implies

min
a≤s≤b−1

y(s) ≥ σ ‖ y ‖= σR1 = R,

hence y(s) ≥ R for all s ∈ [a, b− 1]. Therefore,

Ay(t0) =
b∑

s=a

G(t0, s)f(s, y(s)) ≥
b−1∑
s=a

G(t0, s)f(s, y(s))

≥ 1
σg1

R

b−1∑
s=a

G(t0, s) =
1
σ
R = R1 =‖ y ‖ .

Hence ‖ Ay ‖≥‖ y ‖ for all y ∈ ℘0

⋂
∂Ω2.

Consequently, by the first part of Theorem 1.1, it follows that A has a fixed point y
in ℘0

⋂
(Ω2 \Ω1). We have r ≤‖ y ‖≤ R1. Hence, since for y ∈ ℘0 we have y(t) ≥ σ ‖ y ‖,

t ∈ [a, b− 1], it follows that (5.11) and (5.12) hold. 2

Remark 5.1 The signs of y(a − 1) and y(b + 1) can be determined from the boundary
conditions (5.2).

Remark 5.2 If

lim
ξ→0+

f(t, ξ)
ξ

= 0 and lim
ξ→∞

f(t, ξ)
ξ

=∞

for all t ∈ [a, b], then the condition (H4) will be satisfied for r > 0 sufficiently small and
R > 0 sufficiently large.

Below in Theorem 5.4 we assume the following condition on f(t, ξ).
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• (H5) There exist numbers 0 < r < R < ∞ such that gr < σg1R and for all
t ∈ [a, b]:

f(t, ξ) ≥ 1
σg1

ξ if 0 ≤ ξ ≤ r; f(t, ξ) ≤ 1
g
R if 0 ≤ ξ ≤ R.

Theorem 5.4 Assume that conditions (H1)–(H3) and (H5) are satisfied. Then the
BV P (5.1), (5.2) has at least one solution y(t), t ∈ [a− 1, b+ 1] such that

σr ≤ y(t) ≤ R for t ∈ [a, b− 1]; 0 ≤ y(b) ≤ R.

Proof. For y ∈ ℘0 with ‖ y ‖= r ( hence 0 ≤ y(s) ≤ r for s ∈ [a, b]), we have

Ay(t0) =
b∑

s=a

G(t0, s)f(s, y(s)) ≥
b−1∑
s=a

G(t0, s)f(s, y(s)) ≥ 1
σg1

b−1∑
s=a

G(t0, s)y(s)

≥ 1
σg1

σ ‖ y ‖
b−1∑
s=a

G(t0, s) =‖ y ‖. (5.14)

Now if we let Ω1 = {y ∈ B |‖ y ‖< r}, then (5.14) shows that ‖ Ay ‖≥‖ y ‖, y ∈ ℘0

⋂
∂Ω1.

Further, let

Ω2 = {y ∈ B |‖ y ‖< R}.

Then for y ∈ ℘0 with ‖ y ‖= R (hence 0 ≤ y(s) ≤ R for s ∈ [a, b]), we have for all
t ∈ [a, b],

Ay(t) ≤
b∑

s=a

G(s, s)f(s, y(s)) ≤ 1
g
R

b∑
s=a

G(s, s) = R =‖ y ‖ .

Therefore ‖ Ay ‖≤‖ y ‖ for all y ∈ ℘0

⋂
∂Ω2.

Consequently, by the second part of Theorem 1.1, it follows that A has a fixed point
y in ℘0

⋂
(Ω2 \ Ω1). We have r ≤‖ y ‖≤ R. Hence, y(t) ≤ R for t ∈ [a, b], and since
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for y ∈ ℘0 we have y(t) ≥ σ ‖ y ‖ for t ∈ [a, b − 1], it follows that y(t) ≥ σr for
t ∈ [a, b− 1]. The theorem is proved. 2

Next we will assume that instead of (H2) the following more strong condition holds:

• (H2′) α, β, γ ≥ 0, δ > 0, α+ β > 0;

if q(t) ≡ 0 (a ≤ t ≤ b), then α+ γ > 0.

In this case by Theorem 4.1 we will have

G(t, s) > 0 for t, s ∈ [a, b]. (5.15)

Let us set

m = minG(t, s), M = maxG(t, s), t, s ∈ [a, b] (5.16)

and form the cone

℘1 = {y ∈ ℘ | min
a≤t≤b

y(t) ≥ m

M
‖ y ‖},

where the cone ℘ is defined by (5.9).

Lemma 5.2 Assume that conditions (H1), (H2′) and (H3) are satisfied and let A be
the operator defined by (5.8). Then Ay ∈ ℘1 for all y ∈ ℘ . In particular, the operator A
leaves the cone ℘1 invariant, i.e.,A(℘1) ⊂ ℘1.

Proof. For all y ∈ ℘ obviously we have Ay(t) ≥ 0 for all t ∈ [a, b]. Further,

min
a≤t≤b

Ay(t) ≥ m
b∑

s=a

f(s, y(s)) ≥ m

M

b∑
s=a

{
max
a≤t≤b

G(t, s)
}
f(s, y(s))

≥ m

M
max
a≤t≤b

b∑
s=a

G(t, s)f(s, y(s)) =
m

M
‖ Ay ‖.

Therefore, Ay ∈ ℘0. 2

In the next theorem we also assume the following condition on f(t, ξ).
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• (H6) There exist numbers 0 < r < R <∞ such that for all t ∈ [a, b]:

f(t, ξ) ≤ 1
(b− a+ 1)M

r if 0 ≤ ξ ≤ r;

f(t, ξ) ≥ M

(b− a+ 1)m2
R if R ≤ ξ <∞,

where m and M are defined by (5.16).

Theorem 5.5 Assume that conditions (H1), (H2′), (H3), and (H6) are satisfied. Then
the BV P (5.1), (5.2) has at least one solution y(t), t ∈ [a− 1, b+ 1] such that

m

M
r ≤ y(t) ≤ M

m
R, t ∈ [a, b] (5.17)

Proof. For y ∈ ℘1 with ‖ y ‖= r ( hence 0 ≤ y(s) ≤ r for s ∈ [a, b]), we have for all
t ∈ [a, b],

Ay(t) ≤M
b∑

s=a

f(s, y(s)) ≤M 1
(b− a+ 1)M

r

b∑
s=a

1 = r =‖ y ‖. (5.18)

Now if we let Ω1 = {y ∈ B |‖ y ‖< r}, then (5.18) shows that ‖ Ay ‖≤‖ y ‖, y ∈ ℘1

⋂
∂Ω1.

Further, let

R1 =
M

m
R and Ω2 = {y ∈ B |‖ y ‖< R1}.

Then y ∈ ℘1 and ‖ y ‖= R1 implies

min
t∈[a,b]

y(t) ≥ m

M
‖ y ‖= m

M
R1 = R,

hence y(s) ≥ R for all s ∈ [a, b]. Therefore, for all t ∈ [a, b],
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Ay(t) ≥ m
b∑

s=a

f(s, y(s)) ≥ m M

(b − a+ 1)m2
R

b∑
s=a

1 =
M

m
R = R1 =‖ y ‖.

Hence ‖ Ay ‖≥‖ y ‖ for all y ∈ ℘1

⋂
∂Ω2.

Consequently, by the first part of Theorem 1.1, it follows that A has a fixed point y in

℘1

⋂
(Ω2 \ Ω1). We have r ≤‖ y ‖≤ R1. Hence, since for y ∈ ℘1 we have y(t) ≥ m

M
‖ y ‖,

t ∈ [a, b], it follows that (5.17) holds. 2

Remark 5.3 From (5.6) and Theorem 4.1 it follows that together with (5.17) we also
have y(a − 1) ≥ 0.

Remark 5.4 If

lim
ξ→0+

f(t, ξ)
ξ

= 0 and lim
ξ→∞

f(t, ξ)
ξ

=∞

for all t ∈ [a, b], then the condition (H6) will be satisfied for r > 0 sufficiently small and
R > 0 sufficiently large.

Below in Theorem 5.6 we assume the following condition on f(t, ξ).

• (H7) There exist numbers 0 < r < R <∞ such that for all t ∈ [a, b]:

f(t, ξ) ≥ M

(b − a+ 1)m2
ξ if 0 ≤ ξ ≤ r;

f(t, ξ) ≤ 1
(b − a+ 1)M

ξ if R ≤ ξ <∞.

Theorem 5.6 Assume that conditions (H1), (H2′), (H3), and (H7) are satisfied.Then
the BV P (5.1), (5.2) has at least one solution y(t), t ∈ [a− 1, b+ 1] with property (5.17).

The proof is analogous to that of Theorem 5.5 and uses the second part of Theorem
1.1.
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Remark 5.5 If

lim
ξ→0+

f(t, ξ)
ξ

=∞ and lim
ξ→∞

f(t, ξ)
ξ

= 0

for all t ∈ [a, b], then the condition (H7) will be satisfied for r > 0 sufficiently small and
R > 0 sufficiently large.
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