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Abstract

In this article, we establish an inequality between the sectional curvature function

K and the shape operator AH at the mean curvature vector for slant submanifolds

in generalized complex space forms. Also a sharp relationship between the k-Ricci

curvature and the shape operator AH is proved.
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1. Preliminaries

In the introduction of [2], B. Y. Chen recalls as one of the basic problems in subman-
ifold theory:

“Find simple relationships between the main extrinsic invariants and the main intrinsic
invariants of a submanifold”.

In the above mentioned paper, B. Y. Chen establishes a relationship between sectional
curvature function K and the shape operator AH for submanifolds in real space forms.

Also, in [3], B. Y. Chen proves a sharp inequality between the k-Ricci curvature and
the shape operator AH .
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In [6], we establish a relationship between the sectional curvature function K and the
shape operator AH and a sharp relationship between the k-Ricci curvature and the shape
operator AH , respectively, for slant submanifolds in complex space forms.

Let M̃ be an almost Hermitian manifold with almost complex structure J and Rie-
mannian metric g. One denotes by ∇̃ the operator of covariant differentiation with respect
to g in M̃.

Definition. If the almost complex structure J satisfies

(∇̃XJ)Y + (∇̃Y J)X = 0,

for any vector fields X and Y on M̃ , then the manifold M̃ is called a nearly-Kaehler
manifold [5], [11].

Remark. The above condition is equivalent to

(∇̃XJ)X = 0, ∀X ∈ ΓTM̃.

For an almost complex structure J on the manifold M̃ , the Nijenhuis tensor field is
defined by

NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ],

for any vector fields X, Y tangent to M̃, where [, ] is the Lie bracket.

A necessary and sufficient condition for a nearly-Kaehler manifold to be Kaehler is
the vanishing of the Nijenhuis tensor NJ .

Any 4-dimensional nearly-Kaehler manifold is a Kaehler manifold.

Example. Let S6 be the 6-dimensional unit sphere defined as follows:

Let E7 be the set of all purely imaginary Cayley numbers. Then E7 is a 7-dimensional
subspace of the Cayley algebra C.

Let {1, e0, e1, ..., e6} be a basis of the Cayley algebra, 1 being the unit element of C.

If X =
∑6
i=0 x

iei and Y =
∑6

i=0 y
iei are two elements of E7, one defines the scalar

product in E7 by

< X, Y >=
6∑
i=0

xiyi,

510



MIHAI

and the vector product by

X × Y =
∑
i 6=j

xiyjei ∗ ej ,

∗ being the multiplication operation of C.

Consider the 6-dimensional unit sphere S6 in E7:

S6 = {X ∈ E7 | < X,X >= 1}.

The scalar product in E7 induces the natural metric tensor field g on S6.
The tangent space TXS6 at X ∈ S6 can naturally be identified with the subspace of

E7 orthogonal to X.

Define the endomorphism JX on TXS6 by

JXY = X × Y, for Y ∈ TXS6.

It is easy to see that

g(JXY, JXZ) = g(Y, Z), Y, Z ∈ TXS6 .

The correspondence X 7→ JX defines a tensor field J such that J2 = −I.

Consequently, S6 admits an almost Hermitian structure (J, g).

This structure is a non-Kaehlerian nearly-Kaehlerian structure (its Betti numbers of
even order are 0).

We will consider a class of almost Hermitian manifolds, called RK-manifolds, which
contains nearly-Kaehler manifolds.

Definition [10]. A RK-manifold (M̃, J, g) is an almost Hermitian manifold for which

the curvature tensor R̃ is invariant by J , i.e.

R̃(JX, JY, JZ, JW ) = R̃(X, Y, Z,W ),

for any X, Y, Z,W ∈ ΓTM̃.

An almost Hermitian manifold M̃ is of pointwise constant type if, for any p ∈ M̃ and
X ∈ TpM̃ , we have

λ(X, Y ) = λ(X,Z),
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where
λ(X, Y ) = R̃(X, Y, JX, JY )− R̃(X, Y,X, Y )

and Y and Z are unit tangent vectors on M̃ at p, orthogonal to X and JX, i.e.

g(Z, Z) = g(Y, Y ) = 1,

g(X, Y ) = g(JX, Y ) = g(X,Z) = g(JX, Z) = 0.

The manifold M̃ is said to be of constant type if for any unit X, Y ∈ ΓTM̃ with
g(X, Y ) = g(JX, Y ) = 0, λ(X, Y ) is a constant function.

Recall the following result [10].

Theorem. Let M̃ be a RK-manifold. Then M̃ is of pointwise constant type if and only
if there exists a function α on M̃ such that

λ(X, Y ) = α[g(X,X)g(Y, Y )− (g(X, Y ))2 − (g(X, JY ))2],

for any X, Y ∈ ΓTM̃.

Moreover, M̃ is of constant type if and only if the above equality holds good for a
constant α.

In this case, α is the constant type of M̃.

Definition. A generalized complex space form is a RK-manifold of constant holomorphic
sectional curvature and of constant type.

We will denote a generalized complex space form by M̃(c, α), where c is the constant
holomorphic sectional curvature and α the constant type, respectively.

Each complex space form is a generalized complex space form. The converse statement
is not true. The sphere S6 endowed with the standard nearly-Kaehler structure is an
example of generalized complex space form which is not a complex space form.

Let M̃(c, α) be a generalized complex space form of constant holomorphic sectional

curvature c and of constant type α. Then the curvature tensor R̃ of M̃(c, α) has the
following expression [10]:

R̃(X, Y )Z =
c+ 3α

4
[g(Y, Z)X − g(X,Z)Y ]+ (1.1)
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+
c− α

4
[g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ].

Let M be an n-dimensional submanifold of an 2m-dimensional generalized complex
space form M̃(c, α). We denote by K(π) the sectional curvature of M associated with a
plane section π ⊂ TpM, p ∈M . Let ∇ and h be the Levi-Civita connection of M and the
second fundamental form, respectively.

Then the equation of Gauss is given by

R̃(X, Y, Z,W ) = R(X, Y, Z,W )+ (1.2)

+g(h(X,W ), h(Y, Z)) − g(h(X,Z), h(Y,W )),

for any vectors X, Y, Z,W tangent to M , where R is the Riemann curvature tensor of M .
We denote by H the mean curvature vector at p ∈ M , i.e.

H(p) =
1
n

n∑
i=1

h(ei, ei), (1.3)

where {e1, ..., e2m} is an orthonormal basis of the tangent space TpM̃(c, α), such that
{e1, ..., en} are tangent to M .

Also, we set

hrij = g(h(ei, ej), er), i, j = 1, ..., n; r = n+ 1, ..., 2m, (1.4)

and

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)). (1.5)

For any p ∈ M and for any X ∈ TpM , we put JX = PX + FX, where PX ∈
TpM,FX ∈ T⊥p M.

We put

‖P ‖2 =
n∑

i,j=1

g2(Pei, ej). (1.6)

Suppose L is a k-plane section of TpM and X a unit vector in L. We choose an
orthonormal basis {e1, ..., ek} of L such that e1 = X.

Define the Ricci curvature RicL of L at X by

RicL(X) = K12 +K13 + ...+ K1k, (1.7)
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where Kij denotes the sectional curvature of the 2-plane section spanned by ei, ej. We
simply called such a curvature a k-Ricci curvature.

The scalar curvature τ of the k-plane section L is given by

τ (L) =
∑

1≤i<j≤k
Kij . (1.8)

For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on an n-dimensional
Riemannian manifold M is defined by

Θk(p) =
1

k − 1
inf
L,X

RicL(X), p ∈ M, (1.9)

where L runs over all k-plane sections in TpM and X runs over all unit vectors in L.

Recall that for a submanifold M in a Riemannian manifold, the relative null space of
M at a point p ∈M is defined by

N(p) = {X ∈ TpM | h(X, Y ) = 0, ∀Y ∈ TpM}. (1.10)

2. Sectional curvature and shape operator

The notion of a slant submanifold of an almost Hermitian manifold was introduced
by B. Y. Chen [1].

Definition. A submanifold M of an almost Hermitian manifold M̃ is said to be a slant
submanifold if for any p ∈ M and any nonzero vector X ∈ TpM , the angle between JX

and the tangent space TpM is constant (= θ).

We prove an inequality for an n-dimensional slant submanifoldM into a 2m-dimensional
generalized complex space form M̃(c, α) of constant holomorphic sectional curvature c and
of constant type α.

Theorem 2.1. Let x : M → M̃(c, α) be an isometric immersion of an n-dimensional

θ-slant submanifold into a 2m-dimensional generalized complex space form M̃(c, α) of
constant holomorphic sectional curvature c > α > 0. If there exists a point p ∈ M and
a number b > c+3α

4 + 3 c−α2n cos2 θ such that K ≥ b at p, then the shape operator at the
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mean curvature vector satisfies

AH >
n− 1
n

[b− c+ 3α
4
− 3

c− α
4(n− 1)

cos2 θ]In, at p, (2.1)

where In is the identity map.

Proof. Let p ∈ M and a number b > c+3α
4 + 3 c−α2u cos2 θ such that K ≥ b at p. We

choose an orthonormal basis {e1, ..., en, en+1, ..., e2m} at p such that en+1 is parallel to
the mean curvature vector H and e1, ..., en diagonalize the shape operator An+1.

Then we have

An+1 =


a1 0 ... 0
0 a2 ... 0
...

...
. . .

...
0 0 ... an

 , (2.2)

Ar = (hrij), i, j = 1, ..., n, r= n+ 2, ..., 2m, trace Ar =
n∑
i=1

hrii = 0. (2.3)

For i 6= j, we denote by

uij = aiaj . (2.4)

From Gauss equation for X = Z = ei, Y = W = ej , we get

uij ≥ b−
c + 3α

4
− 3

c− α
4

g2(ei, Jej)−
2m∑

r=n+2

[hriih
r
jj − (hrij)

2]. (2.5)

We prove that uij have the following properties:

1. For any fixed i ∈ {1, ..., n}, we have

∑
i 6=j

uij ≥ (n− 1)(b− c+ 3α
4

) − 3
c− α

4
cos2 θ > 0.

2. uij 6= 0, for i 6= j.

3. For distinct i, j, k ∈ {1, ..., n}, a2
i =

uijuik
ujk

.
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4. We denote by Sk = {B ⊂ {1, ..., n}; |B| = k} and for any B ∈ Sk we denote by
B = {1, ..., n}\B. Then, for a fixed k, 1 ≤ k ≤

[
n
2

]
and each B ∈ Sk, we have∑

j∈B

∑
t∈B

ujt > 0.

5. For distinct i, j ∈ {1, ..., n}, uij > 0.

1. From (2.3), (2.4) and (2.5), we have:

∑
j 6=i

uij ≥ (n− 1)(b− c+ 3α
4

)− 3
c− α

4
‖Pei‖2 −

2m∑
r=n+2

[hrii(
∑
j 6=i

hrjj)−
∑
j 6=i

(hrij)
2] =

= (n− 1)(b− c+ 3α
4

) − 3
c− α

4
cos2 θ −

2m∑
r=n+2

[hrii(−hrii)−
∑
j 6=i

(hrij)
2] =

= (n− 1)(b− c + 3α
4

)− 3
c− α

4
cos2 θ+

2m∑
r=n+2

n∑
j=1

(hrij)
2 ≥

≥ (n− 1)(b− c+ 3α
4

)− 3
c− α

4
cos2 θ > 0.

2. If uij = 0, for i 6= j, then ai = 0 or aj = 0. ai = 0 implies that uit = aiat = 0, ∀t ∈
{1, ..., n}, t 6= i.

It follows that ∑
j 6=i

uij = 0,

in contradiction with 1.

3.
uijuik
ujk

=
aiajaiak
ajak

= a2
i .

4. Since we can change the order of e1, ..., en, we may assume B = {1, ..., k} and
B = {k + 1, ..., n}. Then

∑
j∈B

∑
t∈B

ujt = k(n− k)(b− c+ 3α
4

)− 3
c− α

4

k∑
j=1

n∑
t=k+1

g2(Jej , et)−

−
2m∑

r=n+2

{
k∑
j=1

n∑
t=k+1

[hrjjh
r
tt − (hrjt)

2]} ≥
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≥ k(n− k)(b− c+ 3α
4

) − 3k
c− α

4
cos2 θ+

+
2m∑

r=n+2

[
k∑
j=1

n∑
t=k+1

(hrjt)
2 +

k∑
j=1

(hrjj)
2] ≥

≥ k(n− k)(b− c+ 3α
4

)− 3k
c− α

4
cos2 θ > 0.

5. Assume u1n < 0. From 3, we get u1iuin < 0, for 1 < i < n.

Without loss of generality, we may assume u12, ..., u1l, u(l+1)n, ..., u(n−1)n > 0,

u1(l+1), ..., u1n, u2n, ..., uln < 0,
(2.6)

for some
[
n+1

2

]
≤ l ≤ n− 1.

If l = n−1, then u1n+u2n+ ...+u(n−1)n < 0, which contradicts to 1. Thus, l < n−1.
From 3, we get

a2
n =

uinutn
uit

> 0, (2.7)

where 2 ≤ i ≤ l, l+ 1 ≤ t ≤ n− 1. By (2.6) and (2.7), we obtain uit < 0, which implies

l∑
i=1

n∑
t=l+1

uit =
l∑

i=2

n−1∑
t=l+1

uit +
l∑

i=1

uin +
n∑

t=l+1

u1t < 0.

This contradicts to 4.

Now, we return to the proof of Theorem 2.1.
From 5, it follows that a1, ..., an have the same sign. Assume aj > 0, ∀j ∈ {1, ..., n}.

Then

∑
j 6=i

uij = ai(a1 + ...+ an)− a2
i ≥ (n− 1)(b− c+ 3α

4
) − 3

c− α
4

cos2 θ.

From the above relation and from (2.2), we have

ain ‖H‖ ≥ (n− 1)(b − c+ 3α
4

) − 3
c− α

4
cos2 θ + a2

i >
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> (n− 1)(b− c+ 3α
4

)− 3
c− α

4
cos2 θ.

This equation implies

ai ‖H‖ >
n− 1
n

[b− c+ 3α
4
− 3

c− α
4(n− 1)

cos2 θ],

and consequently (2.1). �

In particular, for α = 0, we refind Theorem 3.1 from [6].

For totally real submanifolds, we have the following

Corollary 2.2. Let x : M → M̃(c, α) be an isometric immersion of an n-dimensional

totally real submanifold into an 2m-dimensional generalized complex space form M̃(c, α).
If there exists a point p ∈ M and a number b > c+3α

4 such that K ≥ b at p, then the
shape operator at the mean curvature vector satisfies

AH >
n− 1
n

(b− c+ 3α
4

)In, at p,

where In is the identity map.

3. k-Ricci curvature and shape operator

We prove an inequality for a slant submanifold M of a 2m-dimensional generalized
complex space form M̃(c, α) of constant holomorphic sectional curvature c and of constant
type α.

Theorem 3.1. Let x : M → M̃(c, α) be an isometric immersion of an n-dimensional

θ-slant submanifold M into a 2m-dimensional generalized complex space form M̃(c, α).
Then, for any integer k, 2 ≤ k ≤ n, and any point p ∈M , we have:

i) If Θk(p) 6= c+3α
4 + 3 c−α

4(n−1) cos2 θ, then the shape operator at the mean curvature

satisfies

AH >
n− 1
n

[Θk(p) − c+ 3α
4
− 3

c− α
4(n− 1)

cos2 θ]In, at p, (3.1)

where In denotes the identity map of TpM.
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ii) If Θk(p) = c+3α
4 + 3 c−α

4(n−1) cos2 θ, then AH ≥ 0 at p.

iii) A unit vector X ∈ TpM satisfies

AHX =
n− 1
n

[Θk(p) − c+ 3α
4
− 3

c− α
4(n− 1)

cos2 θ]X (3.2)

if and only if Θk(p) = c+3α
4 + 3 c−α

4(n−1) cos2 θ and X ∈ N(p).

iv) AH = n−1
n [Θk(p)− c+3α

4 −3 c−α
4(n−1) cos2 θ]In at p if and only if p is a totally geodesic

point.

Proof. i) Let {e1, ...en} be an orthonormal basis of TpM . Denote by Li1...ik the k-plane
section spanned by ei1 , ..., eik. It is easily seen by the definitions

τ (Li1...ik) =
1
2

∑
i∈{i1,...,ik}

RicLi1...ik (ei), (3.3)

τ (p) =
1

Ck−2
n−2

∑
1≤i1<...<ik≤n

τ (Li1...ik). (3.4)

Combining (3.3) and (3.4), we find

τ (p) ≥ n(n− 1)
2

Θk(p). (3.5)

From the equation of Gauss for X = Z = ei, Y = W = ej , by summing, we obtain

n2 ‖H‖2 = 2τ + ‖h‖2 − c+ 3α
4

n(n− 1)− 3
c− α

4
‖P ‖2 . (3.6)

We choose an orthonormal basis {e1, ..., en, en+1, ..., e2m} at p such that en+1 is parallel
to the mean curvature vector H(p) and e1, ..., en diagonalize the shape operator An+1.

Then we have the relations (2.2) and (2.3).
From (3.6), we get

n2 ‖H‖2 = 2τ +
n∑
i=1

a2
i +

2m∑
r=n+2

n∑
i,j=1

(hrij)
2− (3.7)

−c + 3α
4

n(n− 1)− 3
c− α

4
‖P ‖2 .
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On the other hand, since

0 ≤
∑
i<j

(ai − aj)2 = (n − 1)
∑
i

a2
i − 2

∑
i<j

aiaj ,

we obtain

n2 ‖H‖2 = (
n∑
i=1

ai)2 =
n∑
i=1

a2
i + 2

∑
i<j

aiaj ≤ n
n∑
i=1

a2
i , (3.8)

which implies
n∑
i=1

a2
i ≥ n ‖H‖

2
.

We have from (3.7)

n2 ‖H‖2 ≥ 2τ + n ‖H‖2 − c+ 3α
4

n(n− 1)− 3
c− α

4
‖P ‖2 , (3.9)

or, equivalently,

‖H‖2 ≥ 2τ
n(n− 1)

− c+ 3α
4
− 3

c− α
4n(n− 1)

‖P ‖2 . (3.10)

Since M is a slant submanifold, from (3.5) and (3.10), we obtain

‖H‖2 (p) ≥ Θk(p) − c+ 3α
4
− 3

c− α
4n(n− 1)

‖P ‖2 = (3.11)

= Θk(p) − c+ 3α
4
− 3

c− α
4(n− 1)

cos2 θ.

This shows that H(p) = 0 may occurs only when Θk(p) ≤ c+3α
4

+ 3 c−α
4(n−1)

cos2 θ.

Consequently, if H(p) = 0, statements i) and ii) hold automatically. Therefore, without
loss of generality, we may assume H(p) 6= 0.

From the equation of Gauss we get

aiaj = Kij −
c+ 3α

4
− 3

c− α
4

g2(ei, Jej) −
2m∑

r=n+2

[hriih
r
jj − (hrij)

2]. (3.12)
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By (3.12), we obtain

a1(ai2 + ...+ aik) = RicL1i2...ik
(e1)− (k − 1)

c+ 3α
4
− (3.13)

−3
c− α

4

k∑
j=2

g2(e1, Jeij)−
2m∑

r=n+2

k∑
j=2

[hr11h
r
ijij
− (hr1ij)

2],

which yields

a1(a2 + ...+ an) =
1

Ck−2
n−2

∑
2≤i2<...<ik≤n

RicL1i2...ik
(e1)− (3.14)

−(n − 1)
c + 3α

4
− 3

c− α
4

n∑
j=2

g2(e1, Jej) +
2m∑

r=n+2

n∑
j=1

(hr1j)
2.

We find

a1(a2 + ...+ an) ≥ (n− 1)[Θk(p) − c + 3α
4
− 3

c− α
4(n− 1)

cos2 θ]. (3.15)

Then
a1(a1 + a2 + ...+ an) = a2

1 + a1(a2 + ...+ an) ≥ (3.16)

≥ a2
1 + (n − 1)[Θk(p) − c+ 3α

4
− 3

c− α
4(n− 1)

cos2 θ] ≥

≥ (n− 1)[Θk(p)− c+ 3α
4
− 3

c− α
4(n− 1)

cos2 θ].

Since n ‖H‖ = a1 + ...+ an, the above equation implies

AH ≥
n− 1
n

[Θk(p) − c+ 3α
4
− 3

c− α
4(n− 1)

cos2 θ]In.

The equality does not hold, because in our case H(p) 6= 0.
The assertion ii) is obvious.
iii) Let X ∈ TpM a unit vector satisfying (3.2). By (3.16) and (3.14) one has a1 = 0

and hr1j = 0, ∀j ∈ {1, ..., n}, r ∈ {n+ 2, ..., 2m}, respectively. The above conditions imply

Θk(p) = c+3α
4 + 3 c−α

4(n−1) cos2 θ and X ∈ N(p).

The converse is clear.
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iv) The equality (3.2) holds for any X ∈ TpM if and only if N(p) = TpM , i.e. p is a
totally geodesic point. �

Remark. If we denote by λi the eigenvalues of AH , i.e. λi = ai ‖H‖ , i ∈ {1, ..., n}, we
obtain the following inequality for arbitrary submanifolds of generalized complex space
forms:

λi ≥
n− 1
n

[Θk(p) − c+ 3α
4
− 3

c− α
4(n− 1)

‖Pei‖2].

In particular, for α = 0, we obtain Theorem 4.1 from [6].

Corollary 3.2. Let x : M → M̃(c, α) be an isometric immersion of an n-dimensional

totally real submanifold M into a generalized complex space form M̃(c, α). Then, for any
integer k, 2 ≤ k ≤ n, and any point p ∈M , we have:

i) If Θk(p) 6= c+3α
4 , then the shape operator at the mean curvature vector satisfies

AH >
n− 1
n

[Θk(p)− c+ 3α
4

]In, at p,

where In denotes the identity map of TpM.

ii) If Θk(p) = c+3α
4 , then AH ≥ 0 at p.

iii) A unit vector X ∈ TpM satisfies

AHX =
n− 1
n

[Θk(p) − c+ 3α
4

]X

if and only if Θk(p) = c+3α
4 and X ∈ N(p).

iv) AH = n−1
n [Θk(p)− c+3α

4 ]In at p if and only if p is a totally geodesic point.
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