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Abstract

In this article, we establish an inequality between the sectional curvature function
K and the shape operator Ag at the mean curvature vector for slant submanifolds
in generalized complex space forms. Also a sharp relationship between the k-Ricci

curvature and the shape operator Ay is proved.
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1. Preliminaries

In the introduction of [2], B. Y. Chen recalls as one of the basic problems in subman-
ifold theory:

“Find simple relationships between the main extrinsic invariants and the main intrinsic
invariants of a submanifold”.

In the above mentioned paper, B. Y. Chen establishes a relationship between sectional
curvature function K and the shape operator Ay for submanifolds in real space forms.

Also, in [3], B. Y. Chen proves a sharp inequality between the k-Ricci curvature and

the shape operator Ay.
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In [6], we establish a relationship between the sectional curvature function X and the
shape operator Ay and a sharp relationship between the k-Ricci curvature and the shape

operator Ay, respectively, for slant submanifolds in complex space forms.

Let M be an almost Hermitian manifold with almost complex structure J and Rie-
mannian metric g. One denotes by V the operator of covariant differentiation with respect
to g in M.

Definition. If the almost complex structure .J satisfies
(VxJ)Y + (VyJ)X =0,

for any vector fields X and Y on M , then the manifold M is called a nearly-Kaehler
manifold [5], [11].

Remark. The above condition is equivalent to

(VxJ)X =0, VX eITM.

For an almost complex structure J on the manifold M , the Nijenhuis tensor field is
defined by

N;(X,)Y)=[JX,JY]|-JJX,Y]- JX,JY] - [X,Y],
for any vector fields X, Y tangent to M , where [,] is the Lie bracket.

A necessary and sufficient condition for a nearly-Kaehler manifold to be Kaehler is

the vanishing of the Nijenhuis tensor N;.

Any 4-dimensional nearly-Kaehler manifold is a Kaehler manifold.

Example. Let S be the 6-dimensional unit sphere defined as follows:

Let E7 be the set of all purely imaginary Cayley numbers. Then E is a 7-dimensional
subspace of the Cayley algebra C.

Let {1, eq, €1, ...,e5} be a basis of the Cayley algebra, 1 being the unit element of C.

If X = Z?:o zle; and Y = Z?:o y'e; are two elements of E”, one defines the scalar
product in E7 by
6
<X, Y >= inyi,
i=0
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and the vector product by

X x Y:inyjei*ej,
i#]

* being the multiplication operation of C.

Consider the 6-dimensional unit sphere S% in E7:
SS={XeE"| <X,X>=1}

The scalar product in E induces the natural metric tensor field g on S6.

The tangent space TxS% at X € S can naturally be identified with the subspace of
E” orthogonal to X.

Define the endomorphism Jx on TxS% by

JxY =X xY, for Y € TxSS.
It is easy to see that
g(JXY, sz) ZQ(K Z), Y, Z € TX,S'G.

The correspondence X — Jx defines a tensor field J such that J? = —1.
Consequently, S% admits an almost Hermitian structure (J, g).
This structure is a non-Kaehlerian nearly-Kaehlerian structure (its Betti numbers of

even order are 0).

We will consider a class of almost Hermitian manifolds, called RK-manifolds, which

contains nearly-Kaehler manifolds.

Definition [10]. A RK-manifold (M, J,g) is an almost Hermitian manifold for which
the curvature tensor R is invariant by J, i.e.

R(JX,JY,JZ,JW) = R(X,Y, Z,W),

forany X, Y, Z W € I'TM.

An almost Hermitian manifold M is of pointwise constant type if, for any p € M and
X € T,M, we have
MX,Y) = )X, 2),
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where

AMX,)Y)=R(X,Y,JX,JY) - R(X,Y,X,Y)
and Y and Z are unit tangent vectors on M at p, orthogonal to X and JX, i.e.
9(2,2) =g(Y.Y) =1,
g X, Y)=9(JX,)Y)=9g(X,Z) =g(JX,Z) =0.
The manifold M is said to be of constant type if for any unit X,Y € I'TM with
9(X,Y)=¢(JX,Y) =0, A(X,Y) is a constant function.
Recall the following result [10].

Theorem. Let M be a RK -manifold. Then M is of pointwise constant type if and only

if there exists a function a on M such that
AX,Y) = alg(X, X)g(Y.Y) = (9(X,Y))* = (9(X, JY))?],

for any X,Y € I'TM.
Moreover, M is of constant type if and only if the above equality holds good for a
constant o.

In this case, « is the constant type of M.

Definition. A generalized complex space form is a RK-manifold of constant holomorphic

sectional curvature and of constant type.

We will denote a generalized complex space form by M (¢, ), where c is the constant

holomorphic sectional curvature and o the constant type, respectively.

Each complex space form is a generalized complex space form. The converse statement
is not true. The sphere S endowed with the standard nearly-Kaehler structure is an

example of generalized complex space form which is not a complex space form.

Let M (¢, ) be a generalized complex space form of constant holomorphic sectional

curvature ¢ and of constant type «. Then the curvature tensor R of M (¢, @) has the

following expression [10]:

R Y)Z = 20, 2)X - g(x, 2)Y )+ (L1)
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C—«

4

+ [9(X, J2)JY — g(Y,JZ)JX +29(X, JY)J Z].

Let M be an n-dimensional submanifold of an 2m-dimensional generalized complex
space form M (¢, ). We denote by K () the sectional curvature of M associated with a
plane section m C T,M,p € M. Let V and h be the Levi-Civita connection of M and the
second fundamental form, respectively.

Then the equation of Gauss is given by

R(X,Y,Z,W) = R(X,Y, Z,W)+ (1.2)

+g(h(X, W)a h(K Z)) - g(h(Xa Z)a h(K W)),

for any vectors X, Y, Z, W tangent to M, where R is the Riemann curvature tensor of M.

We denote by H the mean curvature vector at p € M, i.e.

H(p) = Zh(ei;ei); (1.3)

S|

where {ey, ..., €2} is an orthonormal basis of the tangent space T,,M(c, «), such that
{e1,...,en} are tangent to M.

Also, we set
hi; = g(h(eisej),er), 4,5 =1,...,n; r=n+1,..,2m, (1.4)

and
n

2
HhH = Z g(h(eiaej)ah(eiaej))' (15)
ij=1
For any p € M and for any X € T,M, we put JX = PX + FX, where PX €
T,M,FX e Tle.
We put
n
2
IPI* =" g*(Pei.e;). (1.6)
ij=1
Suppose L is a k-plane section of T, M and X a unit vector in L. We choose an

orthonormal basis {eq, ..., ex} of L such that e; = X.
Define the Ricci curvature Ricy, of L at X by

RiCL(X) = Ko+ K13+ ... + Ky, (1.7)
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where K;; denotes the sectional curvature of the 2-plane section spanned by e;,e;. We
simply called such a curvature a k-Ricci curvature.

The scalar curvature 7 of the k-plane section L is given by

(L) = Y Ky (1.8)

1<i<j<k

For each integer k, 2 < k < n, the Riemannian invariant © on an n-dimensional

Riemannian manifold M is defined by

1

Ok(p) = . }Jn)f( Ric(X), pe M, (1.9)
where L runs over all k-plane sections in T, M and X runs over all unit vectors in L.

Recall that for a submanifold M in a Riemannian manifold, the relative null space of
M at a point p € M is defined by

N(p) = {X € T,M|h(X,Y) =0,YY € T,M}. (1.10)

2. Sectional curvature and shape operator

The notion of a slant submanifold of an almost Hermitian manifold was introduced
by B. Y. Chen [1].

Definition. A submanifold M of an almost Hermitian manifold M is said to be a slant
submanifold if for any p € M and any nonzero vector X € T,M, the angle between JX
and the tangent space T, M is constant (= 6).

We prove an inequality for an n-dimensional slant submanifold M into a 2m-dimensional
generalized complex space form M (¢, «) of constant holomorphic sectional curvature ¢ and

of constant type a.

Theorem 2.1. Letz : M — M(c, a) be an isometric immersion of an n-dimensional

0-slant submanifold into a 2m-dimensional generalized complex space form M(c,a) of
constant holomorphic sectional curvature ¢ > o > 0. If there exists a point p € M and
a number b > # + 35" cos? @ such that K > b at p, then the shape operator at the
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mean curvature vector satisfies

n—1 c+ 3« c—Q
Ag > b— -
" n [ 4 4(n —1)

cos? 0)1,,, at p, (2.1)
where I, is the identity map.

Proof. Let p € M and a number b > # + 35> cos? @ such that K > b at p. We
choose an orthonormal basis {e1, ..., en, €nt1, ..., €2m} at p such that e, is parallel to
the mean curvature vector H and ey, ..., e, diagonalize the shape operator A, ;1.

Then we have

a1 0 0
0 as 0
An+1 = . . . . ) (2'2)
0O 0 .. ap
n
Ar = (hi;), 4,5 =1,...,n,r=n+2,..,2m,trace A, = th =0. (2.3)
i=1
For i # j, we denote by
Uij = A3Qj . (24)
From Gauss equation for X = Z =¢;,Y = W = e;, we get
c+3a c—« el
uij = b— 4 3 4 92(@ia Jej) — Z [h;‘ §j - (th)Q]- (2.5)
r=n-+2
We prove that u;; have the following properties:
1. For any fixed i € {1, ...,n}, we have
3 _
Zuii >(n—-1)0b- c+4 Oé) — 3¢ 4a00529 > 0.
i#j
2. u;; #0, for i # 3.
3. For distinct 7, j, k € {1,...,n},a2 = Lk
Uik
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4. We denote by Sy = {B C {1,...,n};|B] = k} and for any B € Si we denote by
B ={1,..,n}\ B. Then, for a fixed k,1 < k < [%] and each B € Sk, we have

> Y0
JEBteB

5. For distinct 4,5 € {1,...,n},u;; > 0.

1. From (2.3), (2.4) and (2.5), we have:

2m

c+ 3« c—« 2
Suiy > (= ) - 25 -3 pe - 3 (k) - S (4% =
i r=nt2 A j#i
c+3a c—« 2 i T T r\2
=(n-1)(b- 4 )—3 4 o8 0— Z [his(—hi;) — Z(hij) =
r=n-+2 JF#
c+ 3« c—a o & 2
=n-1)0b- ) )—3 1 cos 0+ Z Z(hij) >
r=n+2 j=1
3 _
Z(n—l)(b—c+ Oé)—?)C 2 05?60 > 0.
4 4
2. If u;; = 0, for 7 # j, then a; = 0 or a; = 0. a; = 0 implies that u;; = a;a; =0,Vt €

{1,..,n}kt#1.
It follows that

Zuij = 0,

J#i
in contradiction with 1.
Ui i Wik a;a5a;ap
3. 2 = J = a%.
Ujk Qg
4. Since we can change the order of ey, ...,e,, we may assume B = {1,...,k} and

B={k+1,...,n}. Then

k n
ZZuﬁ:kz(n—kz)(b—c—zga)—?)claz Z g*(Jej, er)—

JEBteB j=1t=k+1

2m k n
- Z {Z Z [h};hie —(h§t)2]} >

r=n+2 j=1t=k+1
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3 _
— C+4 Oé)—3k:c 4a00529+

—a
cos? 0 > 0.

5. Assume uy, < 0. From 3, we get uy;u;n <0, for 1 <i < n.

Without loss of generality, we may assume

UL2y wees ULl U(I41)ms - U(n—1)n > 0,
(2.6)

UL (41)5 ++5 Ulny U2py +oes Uln < O,

for some ["T'H] <l<n-1.
If I =n—1, then ui, +u2p +... +Un—1), < 0, which contradicts to 1. Thus, I <n—1.

From 3, we get
a2 = Ll o g, (2.7)
Uit

where 2 <i<[;l+1<t<n-—1. By (2.6) and (2.7), we obtain u;; < 0, which implies

l n I n—1 l n
DD wa= D it Y umt Y <0
i=1 t=I+1 =2 t=I+1 =1 t=I+1

This contradicts to 4.

Now, we return to the proof of Theorem 2.1.
From 5, it follows that as, ..., a,, have the same sign. Assume a; > 0,Vj € {1,...,n}.
Then

c+ 3« cC—«

Zuijzai(al—l—...—i—an)—afZ(n—l)(b ) )—3 ) cos? 6.
J#i
From the above relation and from (2.2), we have
3 _
an||[H|| > (n—1)(b— C+4 Oé) — 3¢ 4a00529+a? >
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c+ 3a c—«

> (n—1)(b— 1 )—3 1 cos? 6.
This equation implies
n—1 c+ 3a c— 9
| H|| > b— — 0],
o [ H > T = S 8 e st )
and consequently (2.1). [ |

In particular, for « = 0, we refind Theorem 3.1 from [6].

For totally real submanifolds, we have the following

Corollary 2.2. Let x : M — M(c, a) be an isometric immersion of an n-dimensional

totally real submanifold into an 2m-dimensional generalized complex space form M(c, ).

If there exists a point p € M and a number b > # such that K > b at p, then the

shape operator at the mean curvature vector satisfies

n—1 c+ 3«
n 4

)Ina at p,

where I, is the identity map.

3. k-Ricci curvature and shape operator

We prove an inequality for a slant submanifold M of a 2m-dimensional generalized
complex space form M (¢, ) of constant holomorphic sectional curvature ¢ and of constant

type a.

Theorem 3.1. Letz : M — M(c,a) be an isometric immersion of an n-dimensional

0-slant submanifold M into a 2m-dimensional generalized complex space form M(c,a).

Then, for any integer k,2 < k <n, and any point p € M, we have:

i) If Or(p) # C+43“ + 34(%__‘*1) cos? 6, then the shape operator at the mean curvature

satisfies

o) - c+43a - 4(n_—a1)

A > cos?0]1,,, at p, (3.1)

where I,, denotes the identity map of T, M.
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i) If Ox(p) = <22 + 316D cos? 0, then Ag > 0 at p.

iii) A unit vector X € T,M satisfies

c+ 3« c—«

PR T cos? ] X (3.2)

Apx =1

Lo -

if and only if O (p) = <22 +34( 5 cos 20 and X € N(p).

iv) Ag = =[Ok (p) — <
point.

Ty ©08 201, at p if and only if p is a totally geodesic

Proof. i) Let {e1,...e,} be an orthonormal basis of T, M. Denote by L;,. ;. the k-plane

section spanned by e;,, ..., e;,. It is easily seen by the definitions
1 .
T(Lilm’ik) = 5 Z RZCLq,l...qzk (ei)a (33)
i€{it,... ik}

1
7(p) = ] Z T(Liy.in)- (3.4)

n—2 1<i1<...<ix<n
Combining (3.3) and (3.4), we find

n(n—1)

5 Ok (p). (3.5)

7(p) >

From the equation of Gauss for X = Z =e;,Y = W = e;, by summing, we obtain

2 2 2 c+ 3«
n =" =27 + |8 = ——n(n —1) (3.6)
We choose an orthonormal basis {e1, ..., €n, €n41, ..., €2m} at p such that e, 1 is parallel
to the mean curvature vector H(p) and ey, ..., e, diagonalize the shape operator A,y.

Then we have the relations (2.2) and (2.3).
From (3.6), we get

n?||H|? —27‘—1—2@ + Z Z (3.7)
r=n+21i,j=1

c+ 3a
4

n(n—1)

519



MIHAI

On the other hand, since
0< Z(ai —a;)?=(n— 1)2@? —QZ%‘G]‘,
i<j i i<j

we obtain

n n n

n® || H|* = (Z a;)® =) ai + 22%‘%‘ < nzaf, (3.8)
1

i=1 = 1<j i=1

which implies
n
2
S a? = nH|?
i=1

We have from (3.7)

9 5 ¢+ 3« c— « 9
n?[|H|" > 27 +n[|H|" = —=n(n—1) = 3=—— || P, (3.9)
or, equivalently,
2T c+ 3a c—« 2
H|? > - — P|?. 3.10
I > oy = S s P (3.10)

Since M is a slant submanifold, from (3.5) and (3.10), we obtain

9 c+ 3« c—« 9
111 () 2 O(p) = 7 =32 1P (3.11)
- ct+3a  c—a 9
= Or(p) 1 in=1) cos” 6.

This shows that H(p) = 0 may occurs only when Oy(p) < <32 4 34(%__“1) cos? 6.

Consequently, if H(p) = 0, statements i) and ii) hold automatically. Therefore, without
loss of generality, we may assume H (p) # 0.

From the equation of Gauss we get

2m
c+ 3a c—«
aiaj = Kij — — = = 3——¢(es, Je;) = Y [hihj; — (hi)*): (3.12)
r=n—+2
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By (3.12), we obtain

c+ 3a

al(ai2+"'+a’ik) :Ricqu,Q...qzk(el)_(k_l) 4

k
cC—«
-3 4 92 61, Je’t, Z Z hqlh;z] hL]) ]’

j=2 r=n-+2 j=2

which yields

1 .
al(a2 + .+ an) = Ck 2 Z RZCqu,Q...qzk (61)_

n—2 2<ip<...<ip<n

c+ 3« C— Qe o & a2
—(n—1)—— 3~ > e e+ Y Y (A%
j=2

r=n+2 j=1
We find
c+ 3« c—a
ai(az + ... +ap) > (n—1)[Ok(p) — ) —34(n_1)(:0529].
Then

ar(ar+az+...+a,) = a? +ai(ag + ...+ ay) >
c+ 3« c—«

> ai + (n — 1)[Ok(p) — 1 —34(n_1)(:0529] >
> (n—1)[Ok(p) — ‘ —Z3a - 34(cn—_oz1) cos? 6].

Since n ||H|| = a1 + ... + an, the above equation implies

n—1 c+ 3a c—« 9
[Ok(p) — 1 _34(n— 0 cos” 0|1,

The equality does not hold, because in our case H(p) # 0.

The assertion ii) is obvious.

(3.13)

(3.14)

(3.15)

(3.16)

iii) Let X € T, M a unit vector satisfying (3.2). By (3.16) and (3.14) one has a3 = 0
and hi; = 0,VYj € {1,...,n},r € {n+2,...,2m}, respectively. The above conditions imply

Ok(p) = 3« + =D cos?0 and X € N(p).

The converse is clear.
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iv) The equality (3.2) holds for any X € T,,M if and only if N(p) = T,M, ie. pisa
totally geodesic point. |

Remark. If we denote by \; the eigenvalues of Ay, ie. \; = a; ||H|, i € {1,...,n}, we
obtain the following inequality for arbitrary submanifolds of generalized complex space
forms:

n—1 c+ 3o c—«o

[Or(p) -3 || Pe; |-

>
A 2 4 4(n—1)

In particular, for « = 0, we obtain Theorem 4.1 from [6].

Corollary 3.2. Let x : M — M(C, a) be an isometric immersion of an n-dimensional

totally real submanifold M into a generalized complex space form M(c, «). Then, for any

integer k,2 < k < n, and any point p € M, we have:

i) If ©k(p) # C+43“, then the shape operator at the mean curvature vector satisfies

n—1 c+ 3«
[Ok(p) —

A > 1, atp,
where I,, denotes the identity map of T,M.

i) If Ok (p) = C+43‘X, then Ay > 0 at p.

i4i) A unit vector X € T,M satisfies

n—1 c+ 3«
[Ok(p) — 1

AgX = 1X
if and only if Ok(p) = <52 and X € N(p).

w) Ag = 2=L[Ok(p) — 2211, at p if and only if p is a totally geodesic point.
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