Shape Operator A_H for Slant Submanifolds in Generalized Complex Space Forms

Adela Mihai*

Abstract

In this article, we establish an inequality between the sectional curvature function K and the shape operator A_H at the mean curvature vector for slant submanifolds in generalized complex space forms. Also a sharp relationship between the k-Ricci curvature and the shape operator A_H is proved.

Key Words: Shape operator, slant submanifolds, generalized complex space form, k-Ricci curvature.

1. Preliminaries

In the introduction of [2], B. Y. Chen recalls as one of the basic problems in submanifold theory:

"Find simple relationships between the main extrinsic invariants and the main intrinsic invariants of a submanifold".

In the above mentioned paper, B. Y. Chen establishes a relationship between sectional curvature function K and the shape operator A_H for submanifolds in real space forms.

Also, in [3], B. Y. Chen proves a sharp inequality between the k-Ricci curvature and the shape operator A_H .

Mathematics Subject Classification 2000 53C40, 53C15.

 $^{^* \}mathrm{Supported}$ by a JSPS postdoctoral fellowship.

In [6], we establish a relationship between the sectional curvature function K and the shape operator A_H and a sharp relationship between the k-Ricci curvature and the shape operator A_H , respectively, for slant submanifolds in complex space forms.

Let \widetilde{M} be an almost Hermitian manifold with almost complex structure J and Riemannian metric g. One denotes by $\widetilde{\nabla}$ the operator of covariant differentiation with respect to g in \widetilde{M} .

Definition. If the almost complex structure J satisfies

$$(\widetilde{\nabla}_X J)Y + (\widetilde{\nabla}_Y J)X = 0,$$

for any vector fields X and Y on \widetilde{M} , then the manifold \widetilde{M} is called a *nearly-Kaehler* manifold [5], [11].

Remark. The above condition is equivalent to

$$(\widetilde{\nabla}_X J)X = 0, \quad \forall X \in \Gamma T M.$$

For an almost complex structure J on the manifold \widetilde{M} , the Nijenhuis tensor field is defined by

$$N_J(X,Y) = [JX, JY] - J[JX,Y] - J[X, JY] - [X,Y],$$

for any vector fields X, Y tangent to \widetilde{M} , where [,] is the Lie bracket.

A necessary and sufficient condition for a nearly-Kaehler manifold to be Kaehler is the vanishing of the Nijenhuis tensor N_J .

Any 4-dimensional nearly-Kaehler manifold is a Kaehler manifold.

Example. Let S^6 be the 6-dimensional unit sphere defined as follows:

Let \mathbf{E}^7 be the set of all purely imaginary Cayley numbers. Then \mathbf{E}^7 is a 7-dimensional subspace of the Cayley algebra C.

Let $\{1, e_0, e_1, ..., e_6\}$ be a basis of the Cayley algebra, 1 being the unit element of C.

If $X = \sum_{i=0}^{6} x^{i} e_{i}$ and $Y = \sum_{i=0}^{6} y^{i} e_{i}$ are two elements of \mathbf{E}^{7} , one defines the *scalar* product in \mathbf{E}^{7} by

$$\langle X, Y \rangle = \sum_{i=0}^{6} x^{i} y^{i},$$

and the vector product by

$$X \times Y = \sum_{i \neq j} x^i y^j e_i * e_j,$$

* being the multiplication operation of C.

Consider the 6-dimensional unit sphere S^6 in \mathbf{E}^7 :

$$S^6 = \{ X \in \mathbf{E}^7 \mid \langle X, X \rangle = 1 \}.$$

The scalar product in \mathbf{E}^7 induces the natural metric tensor field g on S^6 .

The tangent space $T_X S^6$ at $X \in S^6$ can naturally be identified with the subspace of \mathbf{E}^7 orthogonal to X.

Define the endomorphism J_X on $T_X S^6$ by

$$J_X Y = X \times Y$$
, for $Y \in T_X S^6$.

It is easy to see that

$$g(J_XY, J_XZ) = g(Y, Z), \ Y, Z \in T_XS^6.$$

The correspondence $X \mapsto J_X$ defines a tensor field J such that $J^2 = -I$.

Consequently, S^6 admits an almost Hermitian structure (J, g).

This structure is a non-Kaehlerian nearly-Kaehlerian structure (its Betti numbers of even order are 0).

We will consider a class of almost Hermitian manifolds, called RK-manifolds, which contains nearly-Kaehler manifolds.

Definition [10]. A *RK-manifold* (\widetilde{M}, J, g) is an almost Hermitian manifold for which the curvature tensor \widetilde{R} is invariant by J, i.e.

$$\widehat{R}(JX, JY, JZ, JW) = \widehat{R}(X, Y, Z, W),$$

for any $X, Y, Z, W \in \Gamma T \widetilde{M}$.

An almost Hermitian manifold \widetilde{M} is of *pointwise constant type* if, for any $p \in \widetilde{M}$ and $X \in T_p \widetilde{M}$, we have

$$\lambda(X,Y) = \lambda(X,Z),$$

where

$$\lambda(X,Y) = \widetilde{R}(X,Y,JX,JY) - \widetilde{R}(X,Y,X,Y)$$

and Y and Z are unit tangent vectors on \widetilde{M} at p, orthogonal to X and JX, i.e.

$$g(Z, Z) = g(Y, Y) = 1,$$

$$g(X,Y) = g(JX,Y) = g(X,Z) = g(JX,Z) = 0$$

The manifold \widetilde{M} is said to be of *constant type* if for any unit $X, Y \in \Gamma T \widetilde{M}$ with $g(X,Y) = g(JX,Y) = 0, \lambda(X,Y)$ is a constant function.

Recall the following result [10].

Theorem. Let \widetilde{M} be a RK-manifold. Then \widetilde{M} is of pointwise constant type if and only if there exists a function α on \widetilde{M} such that

$$\lambda(X,Y) = \alpha[g(X,X)g(Y,Y) - (g(X,Y))^2 - (g(X,JY))^2],$$

for any $X, Y \in \Gamma T \widetilde{M}$.

Moreover, \widetilde{M} is of constant type if and only if the above equality holds good for a constant α .

In this case, α is the constant type of M.

Definition. A *generalized complex space form* is a *RK*-manifold of constant holomorphic sectional curvature and of constant type.

We will denote a generalized complex space form by $\widetilde{M}(c, \alpha)$, where c is the constant holomorphic sectional curvature and α the constant type, respectively.

Each complex space form is a generalized complex space form. The converse statement is not true. The sphere S^6 endowed with the standard nearly-Kaehler structure is an example of generalized complex space form which is not a complex space form.

Let $\widetilde{M}(c, \alpha)$ be a generalized complex space form of constant holomorphic sectional curvature c and of constant type α . Then the curvature tensor \widetilde{R} of $\widetilde{M}(c, \alpha)$ has the following expression [10]:

$$\widetilde{R}(X,Y)Z = \frac{c+3\alpha}{4} [g(Y,Z)X - g(X,Z)Y] +$$
(1.1)

$$+\frac{c-\alpha}{4}[g(X,JZ)JY - g(Y,JZ)JX + 2g(X,JY)JZ]$$

Let M be an n-dimensional submanifold of an 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. We denote by $K(\pi)$ the *sectional curvature* of M associated with a plane section $\pi \subset T_pM, p \in M$. Let ∇ and h be the Levi-Civita connection of M and the second fundamental form, respectively.

Then the equation of Gauss is given by

$$\hat{R}(X, Y, Z, W) = R(X, Y, Z, W) +$$

$$+g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)),$$
(1.2)

for any vectors X, Y, Z, W tangent to M, where R is the Riemann curvature tensor of M. We denote by H the mean curvature vector at $p \in M$, i.e.

$$H(p) = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i), \qquad (1.3)$$

where $\{e_1, ..., e_{2m}\}$ is an orthonormal basis of the tangent space $T_p \widetilde{M}(c, \alpha)$, such that $\{e_1, ..., e_n\}$ are tangent to M.

Also, we set

$$h_{ij}^r = g(h(e_i, e_j), e_r), \quad i, j = 1, ..., n; \quad r = n+1, ..., 2m,$$
 (1.4)

and

$$||h||^{2} = \sum_{i,j=1}^{n} g(h(e_{i}, e_{j}), h(e_{i}, e_{j})).$$
(1.5)

For any $p \in M$ and for any $X \in T_pM$, we put JX = PX + FX, where $PX \in T_pM, FX \in T_p^{\perp}M$.

We put

$$||P||^{2} = \sum_{i,j=1}^{n} g^{2}(Pe_{i}, e_{j}).$$
(1.6)

Suppose L is a k-plane section of T_pM and X a unit vector in L. We choose an orthonormal basis $\{e_1, ..., e_k\}$ of L such that $e_1 = X$.

Define the *Ricci curvature* Ric_L of L at X by

$$Ric_L(X) = K_{12} + K_{13} + \dots + K_{1k},$$
(1.7)

where K_{ij} denotes the *sectional curvature* of the 2-plane section spanned by e_i, e_j . We simply called such a curvature a *k*-*Ricci curvature*.

The scalar curvature τ of the k-plane section L is given by

$$\tau(L) = \sum_{1 \le i < j \le k} K_{ij}.$$
(1.8)

For each integer $k, 2 \leq k \leq n$, the Riemannian invariant Θ_k on an *n*-dimensional Riemannian manifold M is defined by

$$\Theta_k(p) = \frac{1}{k-1} \inf_{L,X} Ric_L(X), \quad p \in M,$$
(1.9)

where L runs over all k-plane sections in T_pM and X runs over all unit vectors in L.

Recall that for a submanifold M in a Riemannian manifold, the *relative null space* of M at a point $p \in M$ is defined by

$$N(p) = \{ X \in T_p M | h(X, Y) = 0, \forall Y \in T_p M \}.$$
(1.10)

2. Sectional curvature and shape operator

The notion of a slant submanifold of an almost Hermitian manifold was introduced by B. Y. Chen [1].

Definition. A submanifold M of an almost Hermitian manifold \widetilde{M} is said to be a *slant* submanifold if for any $p \in M$ and any nonzero vector $X \in T_pM$, the angle between JX and the tangent space T_pM is constant $(= \theta)$.

We prove an inequality for an *n*-dimensional slant submanifold M into a 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature c and of constant type α .

Theorem 2.1. Let $x : M \to \widetilde{M}(c, \alpha)$ be an isometric immersion of an n-dimensional θ -slant submanifold into a 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature $c > \alpha > 0$. If there exists a point $p \in M$ and a number $b > \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{2n}\cos^2\theta$ such that $K \ge b$ at p, then the shape operator at the

mean curvature vector satisfies

$$A_H > \frac{n-1}{n} \left[b - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)} \cos^2\theta \right] I_n, \ at \ p,$$
(2.1)

where I_n is the identity map.

Proof. Let $p \in M$ and a number $b > \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{2u}\cos^2\theta$ such that $K \ge b$ at p. We choose an orthonormal basis $\{e_1, ..., e_n, e_{n+1}, ..., e_{2m}\}$ at p such that e_{n+1} is parallel to the mean curvature vector H and $e_1, ..., e_n$ diagonalize the shape operator A_{n+1} .

Then we have

$$A_{n+1} = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_n \end{pmatrix},$$
 (2.2)

$$A_r = (h_{ij}^r), i, j = 1, ..., n, r = n + 2, ..., 2m, \text{trace } A_r = \sum_{i=1}^n h_{ii}^r = 0.$$
(2.3)

For $i \neq j$, we denote by

$$u_{ij} = a_i a_j. (2.4)$$

From Gauss equation for $X = Z = e_i, Y = W = e_j$, we get

$$u_{ij} \ge b - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4}g^2(e_i, Je_j) - \sum_{r=n+2}^{2m} [h_{ii}^r h_{jj}^r - (h_{ij}^r)^2].$$
(2.5)

We prove that u_{ij} have the following properties: 1. For any fixed $i \in \{1, ..., n\}$, we have

$$\sum_{i \neq j} u_{ij} \ge (n-1)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4}\cos^2\theta > 0.$$

2. $u_{ij} \neq 0$, for $i \neq j$.

3. For distinct $i, j, k \in \{1, ..., n\}, a_i^2 = \frac{u_{ij}u_{ik}}{u_{jk}}.$

4. We denote by $S_k = \{B \subset \{1, ..., n\}; |B| = k\}$ and for any $B \in S_k$ we denote by $\overline{B} = \{1, ..., n\} \setminus B$. Then, for a fixed $k, 1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor$ and each $B \in S_k$, we have

$$\sum_{j\in B}\sum_{t\in\overline{B}}u_{jt}>0.$$

- 5. For distinct $i, j \in \{1, ..., n\}, u_{ij} > 0$.
- 1. From (2.3), (2.4) and (2.5), we have:

$$\begin{split} \sum_{j \neq i} u_{ij} &\geq (n-1)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4} \|Pe_i\|^2 - \sum_{r=n+2}^{2m} [h_{ii}^r (\sum_{j \neq i} h_{jj}^r) - \sum_{j \neq i} (h_{ij}^r)^2] = \\ &= (n-1)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4}\cos^2\theta - \sum_{r=n+2}^{2m} [h_{ii}^r (-h_{ii}^r) - \sum_{j \neq i} (h_{ij}^r)^2] = \\ &= (n-1)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4}\cos^2\theta + \sum_{r=n+2}^{2m} \sum_{j=1}^n (h_{ij}^r)^2 \geq \\ &\geq (n-1)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4}\cos^2\theta > 0. \end{split}$$

2. If $u_{ij} = 0$, for $i \neq j$, then $a_i = 0$ or $a_j = 0$. $a_i = 0$ implies that $u_{it} = a_i a_t = 0, \forall t \in \{1, ..., n\}, t \neq i$.

It follows that

$$\sum_{j \neq i} u_{ij} = 0,$$

in contradiction with 1.

3.
$$\frac{u_{ij}u_{ik}}{u_{jk}} = \frac{a_i a_j a_i a_k}{a_j a_k} = a_i^2.$$

4. Since we can change the order of $e_1, ..., e_n$, we may assume $B = \{1, ..., k\}$ and $\overline{B} = \{k + 1, ..., n\}$. Then

$$\sum_{j \in B} \sum_{t \in \overline{B}} u_{jt} = k(n-k)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4} \sum_{j=1}^{k} \sum_{t=k+1}^{n} g^2(Je_j, e_t) - \sum_{r=n+2}^{2m} \{\sum_{j=1}^{k} \sum_{t=k+1}^{n} [h_{jj}^r h_{tt}^r - (h_{jt}^r)^2]\} \ge 0$$

$$\geq k(n-k)(b - \frac{c+3\alpha}{4}) - 3k\frac{c-\alpha}{4}\cos^2\theta + \\ + \sum_{r=n+2}^{2m} \left[\sum_{j=1}^{k} \sum_{t=k+1}^{n} (h_{jt}^r)^2 + \sum_{j=1}^{k} (h_{jj}^r)^2\right] \geq \\ \geq k(n-k)(b - \frac{c+3\alpha}{4}) - 3k\frac{c-\alpha}{4}\cos^2\theta > 0.$$

5. Assume $u_{1n} < 0$. From 3, we get $u_{1i}u_{in} < 0$, for 1 < i < n. Without loss of generality, we may assume

$$\begin{cases} u_{12}, ..., u_{1l}, u_{(l+1)n}, ..., u_{(n-1)n} > 0, \\ u_{1(l+1)}, ..., u_{1n}, u_{2n}, ..., u_{\ln} < 0, \end{cases}$$
(2.6)

for some $\left[\frac{n+1}{2}\right] \le l \le n-1$.

If l = n - 1, then $u_{1n} + u_{2n} + \ldots + u_{(n-1)n} < 0$, which contradicts to 1. Thus, l < n - 1. From 3, we get

$$a_n^2 = \frac{u_{in}u_{tn}}{u_{it}} > 0, (2.7)$$

where $2 \le i \le l, l+1 \le t \le n-1$. By (2.6) and (2.7), we obtain $u_{it} < 0$, which implies

$$\sum_{i=1}^{l} \sum_{t=l+1}^{n} u_{it} = \sum_{i=2}^{l} \sum_{t=l+1}^{n-1} u_{it} + \sum_{i=1}^{l} u_{in} + \sum_{t=l+1}^{n} u_{1t} < 0.$$

This contradicts to 4.

Now, we return to the proof of Theorem 2.1.

From 5, it follows that $a_1, ..., a_n$ have the same sign. Assume $a_j > 0, \forall j \in \{1, ..., n\}$. Then

$$\sum_{j \neq i} u_{ij} = a_i(a_1 + \dots + a_n) - a_i^2 \ge (n-1)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4}\cos^2\theta.$$

From the above relation and from (2.2), we have

$$a_i n \|H\| \ge (n-1)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4}\cos^2\theta + a_i^2 >$$

$$> (n-1)(b - \frac{c+3\alpha}{4}) - 3\frac{c-\alpha}{4}\cos^2\theta.$$

This equation implies

$$a_i \|H\| > \frac{n-1}{n} [b - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)}\cos^2\theta],$$

and consequently (2.1).

In particular, for $\alpha = 0$, we refind Theorem 3.1 from [6].

For totally real submanifolds, we have the following

Corollary 2.2. Let $x : M \to \widetilde{M}(c, \alpha)$ be an isometric immersion of an n-dimensional totally real submanifold into an 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. If there exists a point $p \in M$ and a number $b > \frac{c+3\alpha}{4}$ such that $K \ge b$ at p, then the shape operator at the mean curvature vector satisfies

$$A_H > \frac{n-1}{n} (b - \frac{c+3\alpha}{4}) I_n, \ at \ p,$$

where I_n is the identity map.

3. k-Ricci curvature and shape operator

We prove an inequality for a slant submanifold M of a 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature c and of constant type α .

Theorem 3.1. Let $x : M \to \widetilde{M}(c, \alpha)$ be an isometric immersion of an n-dimensional θ -slant submanifold M into a 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. Then, for any integer $k, 2 \leq k \leq n$, and any point $p \in M$, we have:

i) If $\Theta_k(p) \neq \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{4(n-1)}\cos^2\theta$, then the shape operator at the mean curvature satisfies

$$A_H > \frac{n-1}{n} [\Theta_k(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)}\cos^2\theta]I_n, \ at \ p,$$
(3.1)

where I_n denotes the identity map of T_pM .

- ii) If $\Theta_k(p) = \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{4(n-1)}\cos^2\theta$, then $A_H \ge 0$ at p.
- iii) A unit vector $X \in T_pM$ satisfies

$$A_H X = \frac{n-1}{n} [\Theta_k(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)}\cos^2\theta] X$$
(3.2)

if and only if $\Theta_k(p) = \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{4(n-1)}\cos^2\theta$ and $X \in N(p)$.

iv) $A_H = \frac{n-1}{n} [\Theta_k(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)}\cos^2\theta] I_n$ at p if and only if p is a totally geodesic point.

Proof. i) Let $\{e_1, \ldots e_n\}$ be an orthonormal basis of T_pM . Denote by $L_{i_1\ldots i_k}$ the k-plane section spanned by e_{i_1}, \ldots, e_{i_k} . It is easily seen by the definitions

$$\tau(L_{i_1\dots i_k}) = \frac{1}{2} \sum_{i \in \{i_1,\dots,i_k\}} Ric_{L_{i_1\dots i_k}}(e_i),$$
(3.3)

$$\tau(p) = \frac{1}{C_{n-2}^{k-2}} \sum_{1 \le i_1 < \dots < i_k \le n} \tau(L_{i_1 \dots i_k}).$$
(3.4)

Combining (3.3) and (3.4), we find

$$\tau(p) \ge \frac{n(n-1)}{2} \Theta_k(p). \tag{3.5}$$

From the equation of Gauss for $X = Z = e_i, Y = W = e_j$, by summing, we obtain

$$n^{2} \|H\|^{2} = 2\tau + \|h\|^{2} - \frac{c+3\alpha}{4}n(n-1) - 3\frac{c-\alpha}{4} \|P\|^{2}.$$
 (3.6)

We choose an orthonormal basis $\{e_1, ..., e_n, e_{n+1}, ..., e_{2m}\}$ at p such that e_{n+1} is parallel to the mean curvature vector H(p) and $e_1, ..., e_n$ diagonalize the shape operator A_{n+1} . Then we have the relations (2.2) and (2.3).

From (3.6), we get

$$n^{2} ||H||^{2} = 2\tau + \sum_{i=1}^{n} a_{i}^{2} + \sum_{r=n+2}^{2m} \sum_{i,j=1}^{n} (h_{ij}^{r})^{2} - \frac{c+3\alpha}{4} n(n-1) - 3\frac{c-\alpha}{4} ||P||^{2}.$$
(3.7)

On the other hand, since

$$0 \le \sum_{i < j} (a_i - a_j)^2 = (n - 1) \sum_i a_i^2 - 2 \sum_{i < j} a_i a_j$$

we obtain

$$n^{2} \|H\|^{2} = (\sum_{i=1}^{n} a_{i})^{2} = \sum_{i=1}^{n} a_{i}^{2} + 2\sum_{i< j} a_{i}a_{j} \le n\sum_{i=1}^{n} a_{i}^{2},$$
(3.8)

which implies

$$\sum_{i=1}^{n} a_i^2 \ge n \, \|H\|^2 \, .$$

We have from (3.7)

$$n^{2} \|H\|^{2} \ge 2\tau + n \|H\|^{2} - \frac{c + 3\alpha}{4} n(n-1) - 3\frac{c - \alpha}{4} \|P\|^{2}, \qquad (3.9)$$

or, equivalently,

$$\|H\|^{2} \ge \frac{2\tau}{n(n-1)} - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4n(n-1)}\|P\|^{2}.$$
(3.10)

Since M is a slant submanifold, from (3.5) and (3.10), we obtain

$$\|H\|^{2}(p) \ge \Theta_{k}(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4n(n-1)}\|P\|^{2} =$$
(3.11)

$$=\Theta_k(p)-\frac{c+3\alpha}{4}-3\frac{c-\alpha}{4(n-1)}\cos^2\theta.$$

This shows that H(p) = 0 may occurs only when $\Theta_k(p) \leq \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{4(n-1)}\cos^2\theta$. Consequently, if H(p) = 0, statements i) and ii) hold automatically. Therefore, without loss of generality, we may assume $H(p) \neq 0$.

From the equation of Gauss we get

$$a_i a_j = K_{ij} - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4}g^2(e_i, Je_j) - \sum_{r=n+2}^{2m} [h_{ii}^r h_{jj}^r - (h_{ij}^r)^2].$$
 (3.12)

By (3.12), we obtain

$$a_1(a_{i_2} + \dots + a_{i_k}) = Ric_{L_{1i_2\dots i_k}}(e_1) - (k-1)\frac{c+3\alpha}{4} -$$
(3.13)

$$-3\frac{c-\alpha}{4}\sum_{j=2}^{k}g^{2}(e_{1}, Je_{i_{j}}) - \sum_{r=n+2}^{2m}\sum_{j=2}^{k}[h_{11}^{r}h_{i_{j}i_{j}}^{r} - (h_{1i_{j}}^{r})^{2}],$$

which yields

$$a_1(a_2 + \dots + a_n) = \frac{1}{C_{n-2}^{k-2}} \sum_{2 \le i_2 < \dots < i_k \le n} Ric_{L_{1i_2\dots i_k}}(e_1) -$$
(3.14)

$$-(n-1)\frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4}\sum_{j=2}^{n}g^{2}(e_{1}, Je_{j}) + \sum_{r=n+2}^{2m}\sum_{j=1}^{n}(h_{1j}^{r})^{2}$$

We find

$$a_1(a_2 + \dots + a_n) \ge (n-1)[\Theta_k(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)}\cos^2\theta].$$
 (3.15)

Then

$$a_{1}(a_{1} + a_{2} + \dots + a_{n}) = a_{1}^{2} + a_{1}(a_{2} + \dots + a_{n}) \geq$$

$$\geq a_{1}^{2} + (n-1)[\Theta_{k}(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)}\cos^{2}\theta] \geq$$

$$\geq (n-1)[\Theta_{k}(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)}\cos^{2}\theta].$$
(3.16)

Since $n ||H|| = a_1 + ... + a_n$, the above equation implies

$$A_H \ge \frac{n-1}{n} [\Theta_k(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)}\cos^2\theta]I_n.$$

The equality does not hold, because in our case $H(p) \neq 0$. The assertion ii) is obvious.

iii) Let $X \in T_pM$ a unit vector satisfying (3.2). By (3.16) and (3.14) one has $a_1 = 0$ and $h_{1j}^r = 0, \forall j \in \{1, ..., n\}, r \in \{n + 2, ..., 2m\}$, respectively. The above conditions imply $\Theta_k(p) = \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{4(n-1)}\cos^2\theta$ and $X \in N(p)$.

The converse is clear.

iv) The equality (3.2) holds for any $X \in T_p M$ if and only if $N(p) = T_p M$, i.e. p is a totally geodesic point.

Remark. If we denote by λ_i the eigenvalues of A_H , i.e. $\lambda_i = a_i ||H||$, $i \in \{1, ..., n\}$, we obtain the following inequality for arbitrary submanifolds of generalized complex space forms:

$$\lambda_i \ge \frac{n-1}{n} [\Theta_k(p) - \frac{c+3\alpha}{4} - 3\frac{c-\alpha}{4(n-1)} \|Pe_i\|^2].$$

In particular, for $\alpha = 0$, we obtain Theorem 4.1 from [6].

Corollary 3.2. Let $x : M \to \widetilde{M}(c, \alpha)$ be an isometric immersion of an n-dimensional totally real submanifold M into a generalized complex space form $\widetilde{M}(c, \alpha)$. Then, for any integer $k, 2 \le k \le n$, and any point $p \in M$, we have:

i) If $\Theta_k(p) \neq \frac{c+3\alpha}{4}$, then the shape operator at the mean curvature vector satisfies

$$A_H > \frac{n-1}{n} [\Theta_k(p) - \frac{c+3\alpha}{4}] I_n, \ at \ p,$$

where I_n denotes the identity map of T_pM .

ii) If $\Theta_k(p) = \frac{c+3\alpha}{4}$, then $A_H \ge 0$ at p. iii) A unit vector $X \in T_pM$ satisfies

$$A_H X = \frac{n-1}{n} [\Theta_k(p) - \frac{c+3\alpha}{4}] X$$

if and only if $\Theta_k(p) = \frac{c+3\alpha}{4}$ and $X \in N(p)$.

iv) $A_H = \frac{n-1}{n} [\Theta_k(p) - \frac{c+3\alpha}{4}] I_n$ at p if and only if p is a totally geodesic point.

References

- [1] B.Y. Chen, Geometry of Slant Submanifolds, K.U. Leuven, 1990.
- [2] B.Y. Chen, Mean curvature and shape operator of isometric immersions in real space forms, Glasgow Math. J. 38 (1996), 87-97.
- B.Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.

- [4] B.Y. Chen, Riemannian Submanifolds. Handbook of Differential Geometry, North-Holland, Amsterdam, 2000.
- [5] A. Gray, Nearly Kaehler manifolds, J. Diff. Geometry 4 (1970), 283-309.
- [6] K. Matsumoto, I. Mihai and A. Oiagă, Shape operator A_H for slant submanifolds in complex space forms. Bull. Yamagata Univ. 14 (2000), 169-177.
- [7] A. Mihai, Geometry of Submanifolds in Complex Manifolds, Doctoral Thesis, Univ. "Al. I. Cuza" Iaşi, 2001.
- [8] I. Mihai, R. Rosca and L. Verstraelen, Some Aspects of the Differential Geometry of Vector Fields, PADGE 2, K.U. Leuven, K.U. Brussel, 1996.
- [9] A. Oiagă, Inequalities for certain submanifolds in complex space forms, Proc. 10-th Int. Symposium Classical Analysis, 49-61, Kazimierz Dolny (Poland) (1999).
- [10] F. Urbano, CR-Submanifolds of Nearly-Kaehler Manifolds, Doctoral Thesis, Granada, 1980.
- [11] K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore, 1984.

Adela MIHAI Faculty of Mathematics University of Bucharest Str. Academiei 14 70109 Bucharest-ROMANIA e-mail: adela@geometry.math.unibuc.ro Received 26.08.2002