Shape Operator A_{H} for Slant Submanifolds in Generalized Complex Space Forms

Adela Mihai*

Abstract

In this article, we establish an inequality between the sectional curvature function K and the shape operator A_{H} at the mean curvature vector for slant submanifolds in generalized complex space forms. Also a sharp relationship between the k-Ricci curvature and the shape operator A_{H} is proved.

Key Words: Shape operator, slant submanifolds, generalized complex space form, k-Ricci curvature.

1. Preliminaries

In the introduction of [2], B. Y. Chen recalls as one of the basic problems in submanifold theory:
"Find simple relationships between the main extrinsic invariants and the main intrinsic invariants of a submanifold".

In the above mentioned paper, B. Y. Chen establishes a relationship between sectional curvature function K and the shape operator A_{H} for submanifolds in real space forms.

Also, in [3], B. Y. Chen proves a sharp inequality between the k-Ricci curvature and the shape operator A_{H}.

[^0]In [6], we establish a relationship between the sectional curvature function K and the shape operator A_{H} and a sharp relationship between the k-Ricci curvature and the shape operator A_{H}, respectively, for slant submanifolds in complex space forms.

Let \widetilde{M} be an almost Hermitian manifold with almost complex structure J and Riemannian metric g. One denotes by $\widetilde{\nabla}$ the operator of covariant differentiation with respect to g in \widetilde{M}.

Definition. If the almost complex structure J satisfies

$$
\left(\widetilde{\nabla}_{X} J\right) Y+\left(\widetilde{\nabla}_{Y} J\right) X=0
$$

for any vector fields X and Y on \widetilde{M}, then the manifold \widetilde{M} is called a nearly-Kaehler manifold [5], [11].
Remark. The above condition is equivalent to

$$
\left(\widetilde{\nabla}_{X} J\right) X=0, \quad \forall X \in \Gamma T \widetilde{M}
$$

For an almost complex structure J on the manifold \widetilde{M}, the Nijenhuis tensor field is defined by

$$
N_{J}(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y]
$$

for any vector fields X, Y tangent to \widetilde{M}, where [,] is the Lie bracket.
A necessary and sufficient condition for a nearly-Kaehler manifold to be Kaehler is the vanishing of the Nijenhuis tensor N_{J}.

Any 4-dimensional nearly-Kaehler manifold is a Kaehler manifold.
Example. Let S^{6} be the 6-dimensional unit sphere defined as follows:
Let \mathbf{E}^{7} be the set of all purely imaginary Cayley numbers. Then \mathbf{E}^{7} is a 7-dimensional subspace of the Cayley algebra C.

Let $\left\{1, e_{0}, e_{1}, \ldots, e_{6}\right\}$ be a basis of the Cayley algebra, 1 being the unit element of C.
If $X=\sum_{i=0}^{6} x^{i} e_{i}$ and $Y=\sum_{i=0}^{6} y^{i} e_{i}$ are two elements of \mathbf{E}^{7}, one defines the scalar product in \mathbf{E}^{7} by

$$
<X, Y>=\sum_{i=0}^{6} x^{i} y^{i}
$$

and the vector product by

$$
X \times Y=\sum_{i \neq j} x^{i} y^{j} e_{i} * e_{j}
$$

* being the multiplication operation of C.

Consider the 6-dimensional unit sphere S^{6} in \mathbf{E}^{7} :

$$
S^{6}=\left\{X \in \mathbf{E}^{7} \mid<X, X>=1\right\} .
$$

The scalar product in \mathbf{E}^{7} induces the natural metric tensor field g on S^{6}.
The tangent space $T_{X} S^{6}$ at $X \in S^{6}$ can naturally be identified with the subspace of \mathbf{E}^{7} orthogonal to X.

Define the endomorphism J_{X} on $T_{X} S^{6}$ by

$$
J_{X} Y=X \times Y, \text { for } Y \in T_{X} S^{6}
$$

It is easy to see that

$$
g\left(J_{X} Y, J_{X} Z\right)=g(Y, Z), Y, Z \in T_{X} S^{6}
$$

The correspondence $X \mapsto J_{X}$ defines a tensor field J such that $J^{2}=-I$.
Consequently, S^{6} admits an almost Hermitian structure (J, g).
This structure is a non-Kaehlerian nearly-Kaehlerian structure (its Betti numbers of even order are 0).

We will consider a class of almost Hermitian manifolds, called RK-manifolds, which contains nearly-Kaehler manifolds.

Definition [10]. A $R K$-manifold (\widetilde{M}, J, g) is an almost Hermitian manifold for which the curvature tensor \widetilde{R} is invariant by J, i.e.

$$
\widetilde{R}(J X, J Y, J Z, J W)=\widetilde{R}(X, Y, Z, W)
$$

for any $X, Y, Z, W \in \Gamma T \widetilde{M}$.
An almost Hermitian manifold \widetilde{M} is of pointwise constant type if, for any $p \in \widetilde{M}$ and $X \in T_{p} \widetilde{M}$, we have

$$
\lambda(X, Y)=\lambda(X, Z)
$$

MIHAI

where

$$
\lambda(X, Y)=\widetilde{R}(X, Y, J X, J Y)-\widetilde{R}(X, Y, X, Y)
$$

and Y and Z are unit tangent vectors on \widetilde{M} at p, orthogonal to X and $J X$, i.e.

$$
\begin{aligned}
& g(Z, Z)=g(Y, Y)=1, \\
& g(X, Y)=g(J X, Y)=g(X, Z)=g(J X, Z)=0 .
\end{aligned}
$$

The manifold \widetilde{M} is said to be of constant type if for any unit $X, Y \in \Gamma T \widetilde{M}$ with $g(X, Y)=g(J X, Y)=0, \lambda(X, Y)$ is a constant function.

Recall the following result [10].
Theorem. Let \widetilde{M} be a RK-manifold. Then \widetilde{M} is of pointwise constant type if and only if there exists a function α on \widetilde{M} such that

$$
\lambda(X, Y)=\alpha\left[g(X, X) g(Y, Y)-(g(X, Y))^{2}-(g(X, J Y))^{2}\right]
$$

for any $X, Y \in \Gamma T \widetilde{M}$.
Moreover, \widetilde{M} is of constant type if and only if the above equality holds good for a constant α.

In this case, α is the constant type of \widetilde{M}.
Definition. A generalized complex space form is a $R K$-manifold of constant holomorphic sectional curvature and of constant type.

We will denote a generalized complex space form by $\widetilde{M}(c, \alpha)$, where c is the constant holomorphic sectional curvature and α the constant type, respectively.

Each complex space form is a generalized complex space form. The converse statement is not true. The sphere S^{6} endowed with the standard nearly-Kaehler structure is an example of generalized complex space form which is not a complex space form.

Let $\widetilde{M}(c, \alpha)$ be a generalized complex space form of constant holomorphic sectional curvature c and of constant type α. Then the curvature tensor \widetilde{R} of $\widetilde{M}(c, \alpha)$ has the following expression [10]:

$$
\begin{equation*}
\widetilde{R}(X, Y) Z=\frac{c+3 \alpha}{4}[g(Y, Z) X-g(X, Z) Y]+ \tag{1.1}
\end{equation*}
$$

MIHAI

$$
+\frac{c-\alpha}{4}[g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z] .
$$

Let M be an n-dimensional submanifold of an $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. We denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$. Let ∇ and h be the Levi-Civita connection of M and the second fundamental form, respectively.

Then the equation of Gauss is given by

$$
\begin{gather*}
\widetilde{R}(X, Y, Z, W)=R(X, Y, Z, W)+ \tag{1.2}\\
+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
\end{gather*}
$$

for any vectors X, Y, Z, W tangent to M, where R is the Riemann curvature tensor of M.
We denote by H the mean curvature vector at $p \in M$, i.e.

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) \tag{1.3}
\end{equation*}
$$

where $\left\{e_{1}, \ldots, e_{2 m}\right\}$ is an orthonormal basis of the tangent space $T_{p} \widetilde{M}(c, \alpha)$, such that $\left\{e_{1}, \ldots, e_{n}\right\}$ are tangent to M.

Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j=1, \ldots, n ; \quad r=n+1, \ldots, 2 m, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) . \tag{1.5}
\end{equation*}
$$

For any $p \in M$ and for any $X \in T_{p} M$, we put $J X=P X+F X$, where $P X \in$ $T_{p} M, F X \in T_{p}^{\perp} M$.

We put

$$
\begin{equation*}
\|P\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(P e_{i}, e_{j}\right) \tag{1.6}
\end{equation*}
$$

Suppose L is a k-plane section of $T_{p} M$ and X a unit vector in L. We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{k}\right\}$ of L such that $e_{1}=X$.

Define the Ricci curvature Ric_{L} of L at X by

$$
\begin{equation*}
\operatorname{Ric}_{L}(X)=K_{12}+K_{13}+\ldots+K_{1 k} \tag{1.7}
\end{equation*}
$$

MIHAI

where $K_{i j}$ denotes the sectional curvature of the 2-plane section spanned by e_{i}, e_{j}. We simply called such a curvature a k-Ricci curvature.

The scalar curvature τ of the k-plane section L is given by

$$
\begin{equation*}
\tau(L)=\sum_{1 \leq i<j \leq k} K_{i j} \tag{1.8}
\end{equation*}
$$

For each integer $k, 2 \leq k \leq n$, the Riemannian invariant Θ_{k} on an n-dimensional Riemannian manifold M is defined by

$$
\begin{equation*}
\Theta_{k}(p)=\frac{1}{k-1} \inf _{L, X} \operatorname{Ric}_{L}(X), \quad p \in M \tag{1.9}
\end{equation*}
$$

where L runs over all k-plane sections in $T_{p} M$ and X runs over all unit vectors in L.
Recall that for a submanifold M in a Riemannian manifold, the relative null space of M at a point $p \in M$ is defined by

$$
\begin{equation*}
N(p)=\left\{X \in T_{p} M \mid h(X, Y)=0, \forall Y \in T_{p} M\right\} \tag{1.10}
\end{equation*}
$$

2. Sectional curvature and shape operator

The notion of a slant submanifold of an almost Hermitian manifold was introduced by B. Y. Chen [1].

Definition. A submanifold M of an almost Hermitian manifold \widetilde{M} is said to be a slant submanifold if for any $p \in M$ and any nonzero vector $X \in T_{p} M$, the angle between $J X$ and the tangent space $T_{p} M$ is constant $(=\theta)$.

We prove an inequality for an n-dimensional slant submanifold M into a $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature c and of constant type α.

Theorem 2.1. Let $x: M \rightarrow \widetilde{M}(c, \alpha)$ be an isometric immersion of an n-dimensional θ-slant submanifold into a $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature $c>\alpha>0$. If there exists a point $p \in M$ and a number $b>\frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{2 n} \cos ^{2} \theta$ such that $K \geq b$ at p, then the shape operator at the
mean curvature vector satisfies

$$
\begin{equation*}
A_{H}>\frac{n-1}{n}\left[b-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right] I_{n}, \text { at } p \tag{2.1}
\end{equation*}
$$

where I_{n} is the identity map.

Proof. Let $p \in M$ and a number $b>\frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{2 u} \cos ^{2} \theta$ such that $K \geq b$ at p. We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m}\right\}$ at p such that e_{n+1} is parallel to the mean curvature vector H and e_{1}, \ldots, e_{n} diagonalize the shape operator A_{n+1}.

Then we have

$$
\begin{gather*}
A_{n+1}=\left(\begin{array}{cccc}
a_{1} & 0 & \ldots & 0 \\
0 & a_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n}
\end{array}\right), \tag{2.2}\\
A_{r}=\left(h_{i j}^{r}\right), i, j=1, \ldots, n, r=n+2, \ldots, 2 m, \operatorname{trace} A_{r}=\sum_{i=1}^{n} h_{i i}^{r}=0 \tag{2.3}
\end{gather*}
$$

For $i \neq j$, we denote by

$$
\begin{equation*}
u_{i j}=a_{i} a_{j} \tag{2.4}
\end{equation*}
$$

From Gauss equation for $X=Z=e_{i}, Y=W=e_{j}$, we get

$$
\begin{equation*}
u_{i j} \geq b-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4} g^{2}\left(e_{i}, J e_{j}\right)-\sum_{r=n+2}^{2 m}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] . \tag{2.5}
\end{equation*}
$$

We prove that $u_{i j}$ have the following properties:

1. For any fixed $i \in\{1, \ldots, n\}$, we have

$$
\sum_{i \neq j} u_{i j} \geq(n-1)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4} \cos ^{2} \theta>0
$$

2. $u_{i j} \neq 0$, for $i \neq j$.
3. For distinct $i, j, k \in\{1, \ldots, n\}, a_{i}^{2}=\frac{u_{i j} u_{i k}}{u_{j k}}$.
4. We denote by $S_{k}=\{B \subset\{1, \ldots, n\} ;|B|=k\}$ and for any $B \in S_{k}$ we denote by $\bar{B}=\{1, \ldots, n\} \backslash B$. Then, for a fixed $k, 1 \leq k \leq\left[\frac{n}{2}\right]$ and each $B \in S_{k}$, we have

$$
\sum_{j \in B} \sum_{t \in \bar{B}} u_{j t}>0
$$

5. For distinct $i, j \in\{1, \ldots, n\}, u_{i j}>0$.
6. From (2.3), (2.4) and (2.5), we have:

$$
\begin{gathered}
\sum_{j \neq i} u_{i j} \geq(n-1)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4}\left\|P e_{i}\right\|^{2}-\sum_{r=n+2}^{2 m}\left[h_{i i}^{r}\left(\sum_{j \neq i} h_{j j}^{r}\right)-\sum_{j \neq i}\left(h_{i j}^{r}\right)^{2}\right]= \\
=(n-1)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4} \cos ^{2} \theta-\sum_{r=n+2}^{2 m}\left[h_{i i}^{r}\left(-h_{i i}^{r}\right)-\sum_{j \neq i}\left(h_{i j}^{r}\right)^{2}\right]= \\
=(n-1)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4} \cos ^{2} \theta+\sum_{r=n+2}^{2 m} \sum_{j=1}^{n}\left(h_{i j}^{r}\right)^{2} \geq \\
\geq(n-1)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4} \cos ^{2} \theta>0
\end{gathered}
$$

2. If $u_{i j}=0$, for $i \neq j$, then $a_{i}=0$ or $a_{j}=0 . a_{i}=0$ implies that $u_{i t}=a_{i} a_{t}=0, \forall t \in$ $\{1, \ldots, n\}, t \neq i$.

It follows that

$$
\sum_{j \neq i} u_{i j}=0
$$

in contradiction with 1 .
3. $\frac{u_{i j} u_{i k}}{u_{j k}}=\frac{a_{i} a_{j} a_{i} a_{k}}{a_{j} a_{k}}=a_{i}^{2}$.
4. Since we can change the order of e_{1}, \ldots, e_{n}, we may assume $B=\{1, \ldots, k\}$ and $\bar{B}=\{k+1, \ldots, n\}$. Then

$$
\begin{aligned}
\sum_{j \in B} \sum_{t \in \bar{B}} u_{j t}= & k(n-k)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4} \sum_{j=1}^{k} \sum_{t=k+1}^{n} g^{2}\left(J e_{j}, e_{t}\right)- \\
& -\sum_{r=n+2}^{2 m}\left\{\sum_{j=1}^{k} \sum_{t=k+1}^{n}\left[h_{j j}^{r} h_{t t}^{r}-\left(h_{j t}^{r}\right)^{2}\right]\right\} \geq
\end{aligned}
$$

$$
\begin{aligned}
& \geq k(n-k)\left(b-\frac{c+3 \alpha}{4}\right)-3 k \frac{c-\alpha}{4} \cos ^{2} \theta+ \\
& \quad+\sum_{r=n+2}^{2 m}\left[\sum_{j=1}^{k} \sum_{t=k+1}^{n}\left(h_{j t}^{r}\right)^{2}+\sum_{j=1}^{k}\left(h_{j j}^{r}\right)^{2}\right] \geq \\
& \geq k(n-k)\left(b-\frac{c+3 \alpha}{4}\right)-3 k \frac{c-\alpha}{4} \cos ^{2} \theta>0
\end{aligned}
$$

5. Assume $u_{1 n}<0$. From 3, we get $u_{1 i} u_{i n}<0$, for $1<i<n$.

Without loss of generality, we may assume

$$
\left\{\begin{array}{l}
u_{12}, \ldots, u_{1 l}, u_{(l+1) n}, \ldots, u_{(n-1) n}>0 \tag{2.6}\\
u_{1(l+1)}, \ldots, u_{1 n}, u_{2 n}, \ldots, u_{\mathrm{ln}}<0
\end{array}\right.
$$

for some $\left[\frac{n+1}{2}\right] \leq l \leq n-1$.
If $l=n-1$, then $u_{1 n}+u_{2 n}+\ldots+u_{(n-1) n}<0$, which contradicts to 1 . Thus, $l<n-1$.
From 3, we get

$$
\begin{equation*}
a_{n}^{2}=\frac{u_{i n} u_{t n}}{u_{i t}}>0 \tag{2.7}
\end{equation*}
$$

where $2 \leq i \leq l, l+1 \leq t \leq n-1$. By (2.6) and (2.7), we obtain $u_{i t}<0$, which implies

$$
\sum_{i=1}^{l} \sum_{t=l+1}^{n} u_{i t}=\sum_{i=2}^{l} \sum_{t=l+1}^{n-1} u_{i t}+\sum_{i=1}^{l} u_{i n}+\sum_{t=l+1}^{n} u_{1 t}<0
$$

This contradicts to 4 .
Now, we return to the proof of Theorem 2.1.
From 5, it follows that a_{1}, \ldots, a_{n} have the same sign. Assume $a_{j}>0, \forall j \in\{1, \ldots, n\}$. Then

$$
\sum_{j \neq i} u_{i j}=a_{i}\left(a_{1}+\ldots+a_{n}\right)-a_{i}^{2} \geq(n-1)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4} \cos ^{2} \theta
$$

From the above relation and from (2.2), we have

$$
a_{i} n\|H\| \geq(n-1)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4} \cos ^{2} \theta+a_{i}^{2}>
$$

$$
>(n-1)\left(b-\frac{c+3 \alpha}{4}\right)-3 \frac{c-\alpha}{4} \cos ^{2} \theta
$$

This equation implies

$$
a_{i}\|H\|>\frac{n-1}{n}\left[b-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right]
$$

and consequently (2.1).

In particular, for $\alpha=0$, we refind Theorem 3.1 from [6].
For totally real submanifolds, we have the following
Corollary 2.2. Let $x: M \rightarrow \widetilde{M}(c, \alpha)$ be an isometric immersion of an n-dimensional totally real submanifold into an $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. If there exists a point $p \in M$ and a number $b>\frac{c+3 \alpha}{4}$ such that $K \geq b$ at p, then the shape operator at the mean curvature vector satisfies

$$
A_{H}>\frac{n-1}{n}\left(b-\frac{c+3 \alpha}{4}\right) I_{n}, \text { at } p
$$

where I_{n} is the identity map.

3. k-Ricci curvature and shape operator

We prove an inequality for a slant submanifold M of a $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature c and of constant type α.

Theorem 3.1. Let $x: M \rightarrow \widetilde{M}(c, \alpha)$ be an isometric immersion of an n-dimensional θ-slant submanifold M into a $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. Then, for any integer $k, 2 \leq k \leq n$, and any point $p \in M$, we have:
i) If $\Theta_{k}(p) \neq \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta$, then the shape operator at the mean curvature satisfies

$$
\begin{equation*}
A_{H}>\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right] I_{n}, \text { at } p \tag{3.1}
\end{equation*}
$$

where I_{n} denotes the identity map of $T_{p} M$.

MIHAI

ii) If $\Theta_{k}(p)=\frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta$, then $A_{H} \geq 0$ at p.
iii) A unit vector $X \in T_{p} M$ satisfies

$$
\begin{equation*}
A_{H} X=\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right] X \tag{3.2}
\end{equation*}
$$

if and only if $\Theta_{k}(p)=\frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta$ and $X \in N(p)$.
iv) $A_{H}=\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right] I_{n}$ at p if and only ifp is a totally geodesic point.

Proof. i) Let $\left\{e_{1}, \ldots e_{n}\right\}$ be an orthonormal basis of $T_{p} M$. Denote by $L_{i_{1} \ldots i_{k}}$ the k-plane section spanned by $e_{i_{1}}, \ldots, e_{i_{k}}$. It is easily seen by the definitions

$$
\begin{gather*}
\tau\left(L_{i_{1} \ldots i_{k}}\right)=\frac{1}{2} \sum_{i \in\left\{i_{1}, \ldots, i_{k}\right\}} \operatorname{Ric}_{L_{i_{1} \ldots i_{k}}}\left(e_{i}\right), \tag{3.3}\\
\tau(p)=\frac{1}{C_{n-2}^{k-2}} \sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \tau\left(L_{i_{1} \ldots i_{k}}\right) . \tag{3.4}
\end{gather*}
$$

Combining (3.3) and (3.4), we find

$$
\begin{equation*}
\tau(p) \geq \frac{n(n-1)}{2} \Theta_{k}(p) \tag{3.5}
\end{equation*}
$$

From the equation of Gauss for $X=Z=e_{i}, Y=W=e_{j}$, by summing, we obtain

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-\frac{c+3 \alpha}{4} n(n-1)-3 \frac{c-\alpha}{4}\|P\|^{2} \tag{3.6}
\end{equation*}
$$

We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m}\right\}$ at p such that e_{n+1} is parallel to the mean curvature vector $H(p)$ and e_{1}, \ldots, e_{n} diagonalize the shape operator A_{n+1}. Then we have the relations (2.2) and (2.3).

From (3.6), we get

$$
\begin{gather*}
n^{2}\|H\|^{2}=2 \tau+\sum_{i=1}^{n} a_{i}^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}- \tag{3.7}\\
-\frac{c+3 \alpha}{4} n(n-1)-3 \frac{c-\alpha}{4}\|P\|^{2}
\end{gather*}
$$

On the other hand, since

$$
0 \leq \sum_{i<j}\left(a_{i}-a_{j}\right)^{2}=(n-1) \sum_{i} a_{i}^{2}-2 \sum_{i<j} a_{i} a_{j}
$$

we obtain

$$
\begin{equation*}
n^{2}\|H\|^{2}=\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\sum_{i=1}^{n} a_{i}^{2}+2 \sum_{i<j} a_{i} a_{j} \leq n \sum_{i=1}^{n} a_{i}^{2} \tag{3.8}
\end{equation*}
$$

which implies

$$
\sum_{i=1}^{n} a_{i}^{2} \geq n\|H\|^{2}
$$

We have from (3.7)

$$
\begin{equation*}
n^{2}\|H\|^{2} \geq 2 \tau+n\|H\|^{2}-\frac{c+3 \alpha}{4} n(n-1)-3 \frac{c-\alpha}{4}\|P\|^{2} \tag{3.9}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\|H\|^{2} \geq \frac{2 \tau}{n(n-1)}-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4 n(n-1)}\|P\|^{2} \tag{3.10}
\end{equation*}
$$

Since M is a slant submanifold, from (3.5) and (3.10), we obtain

$$
\begin{gather*}
\|H\|^{2}(p) \geq \Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4 n(n-1)}\|P\|^{2}= \tag{3.11}\\
=\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta
\end{gather*}
$$

This shows that $H(p)=0$ may occurs only when $\Theta_{k}(p) \leq \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta$. Consequently, if $H(p)=0$, statements i) and ii) hold automatically. Therefore, without loss of generality, we may assume $H(p) \neq 0$.

From the equation of Gauss we get

$$
\begin{equation*}
a_{i} a_{j}=K_{i j}-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4} g^{2}\left(e_{i}, J e_{j}\right)-\sum_{r=n+2}^{2 m}\left[h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2}\right] . \tag{3.12}
\end{equation*}
$$

MIHAI

By (3.12), we obtain

$$
\begin{align*}
& a_{1}\left(a_{i_{2}}+\ldots+a_{i_{k}}\right)=\operatorname{Ric}_{L_{1 i_{2} \ldots i_{k}}}\left(e_{1}\right)-(k-1) \frac{c+3 \alpha}{4}- \tag{3.13}\\
& -3 \frac{c-\alpha}{4} \sum_{j=2}^{k} g^{2}\left(e_{1}, J e_{i_{j}}\right)-\sum_{r=n+2}^{2 m} \sum_{j=2}^{k}\left[h_{11}^{r} h_{i_{j} i_{j}}^{r}-\left(h_{1 i_{j}}^{r}\right)^{2}\right],
\end{align*}
$$

which yields

$$
\begin{gather*}
a_{1}\left(a_{2}+\ldots+a_{n}\right)=\frac{1}{C_{n-2}^{k-2}} \sum_{2 \leq i_{2}<\ldots<i_{k} \leq n} \operatorname{Ric}_{L_{1 i_{2} \ldots i_{k}}}\left(e_{1}\right)- \tag{3.14}\\
-(n-1) \frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4} \sum_{j=2}^{n} g^{2}\left(e_{1}, J e_{j}\right)+\sum_{r=n+2}^{2 m} \sum_{j=1}^{n}\left(h_{1 j}^{r}\right)^{2} .
\end{gather*}
$$

We find

$$
\begin{equation*}
a_{1}\left(a_{2}+\ldots+a_{n}\right) \geq(n-1)\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right] \tag{3.15}
\end{equation*}
$$

Then

$$
\begin{gather*}
a_{1}\left(a_{1}+a_{2}+\ldots+a_{n}\right)=a_{1}^{2}+a_{1}\left(a_{2}+\ldots+a_{n}\right) \geq \tag{3.16}\\
\geq a_{1}^{2}+(n-1)\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right] \geq \\
\geq(n-1)\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right]
\end{gather*}
$$

Since $n\|H\|=a_{1}+\ldots+a_{n}$, the above equation implies

$$
A_{H} \geq \frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta\right] I_{n}
$$

The equality does not hold, because in our case $H(p) \neq 0$.
The assertion ii) is obvious.
iii) Let $X \in T_{p} M$ a unit vector satisfying (3.2). By (3.16) and (3.14) one has $a_{1}=0$ and $h_{1 j}^{r}=0, \forall j \in\{1, \ldots, n\}, r \in\{n+2, \ldots, 2 m\}$, respectively. The above conditions imply $\Theta_{k}(p)=\frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4(n-1)} \cos ^{2} \theta$ and $X \in N(p)$.

The converse is clear.

MIHAI

iv) The equality (3.2) holds for any $X \in T_{p} M$ if and only if $N(p)=T_{p} M$, i.e. p is a totally geodesic point.

Remark. If we denote by λ_{i} the eigenvalues of A_{H}, i.e. $\lambda_{i}=a_{i}\|H\|, i \in\{1, \ldots, n\}$, we obtain the following inequality for arbitrary submanifolds of generalized complex space forms:

$$
\lambda_{i} \geq \frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}-3 \frac{c-\alpha}{4(n-1)}\left\|P e_{i}\right\|^{2}\right] .
$$

In particular, for $\alpha=0$, we obtain Theorem 4.1 from [6].

Corollary 3.2. Let $x: M \rightarrow \widetilde{M}(c, \alpha)$ be an isometric immersion of an n-dimensional totally real submanifold M into a generalized complex space form $\widetilde{M}(c, \alpha)$. Then, for any integer $k, 2 \leq k \leq n$, and any point $p \in M$, we have:
i) If $\Theta_{k}(p) \neq \frac{c+3 \alpha}{4}$, then the shape operator at the mean curvature vector satisfies

$$
A_{H}>\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}\right] I_{n}, \text { at } p
$$

where I_{n} denotes the identity map of $T_{p} M$.
ii) If $\Theta_{k}(p)=\frac{c+3 \alpha}{4}$, then $A_{H} \geq 0$ at p.
iii) A unit vector $X \in T_{p} M$ satisfies

$$
A_{H} X=\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}\right] X
$$

if and only if $\Theta_{k}(p)=\frac{c+3 \alpha}{4}$ and $X \in N(p)$.
iv) $A_{H}=\frac{n-1}{n}\left[\Theta_{k}(p)-\frac{c+3 \alpha}{4}\right] I_{n}$ at p if and only if p is a totally geodesic point.

References

[1] B.Y. Chen, Geometry of Slant Submanifolds, K.U. Leuven, 1990.
[2] B.Y. Chen, Mean curvature and shape operator of isometric immersions in real space forms, Glasgow Math. J. 38 (1996), 87-97.
[3] B.Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.
[4] B.Y. Chen, Riemannian Submanifolds. Handbook of Differential Geometry, NorthHolland, Amsterdam, 2000
[5] A. Gray, Nearly Kaehler manifolds, J. Diff. Geometry 4 (1970), 283-309.
[6] K. Matsumoto, I. Mihai and A. Oiagă, Shape operator A_{H} for slant submanifolds in complex space forms. Bull. Yamagata Univ. 14 (2000), 169-177.
[7] A. Mihai, Geometry of Submanifolds in Complex Manifolds, Doctoral Thesis, Univ. "Al. I. Cuza" Iaşi, 2001.
[8] I. Mihai, R. Rosca and L. Verstraelen, Some Aspects of the Differential Geometry of Vector Fields, PADGE 2, K.U. Leuven, K.U. Brussel, 1996.
[9] A. Oiagă, Inequalities for certain submanifolds in complex space forms, Proc. 10-th Int. Symposium Classical Analysis, 49-61, Kazimierz Dolny (Poland) (1999).
[10] F. Urbano, CR-Submanifolds of Nearly-Kaehler Manifolds, Doctoral Thesis, Granada, 1980.
[11] K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore, 1984.

Adela MIHAI
Received 26.08.2002
Faculty of Mathematics
University of Bucharest
Str. Academiei 14
70109 Bucharest-ROMANIA
e-mail: adela@geometry.math.unibuc.ro

[^0]: Mathematics Subject Classification 2000 53C40, 53C15.
 *Supported by a JSPS postdoctoral fellowship.

