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Rough Singular Integrals Along Submanifolds of

Finite Type on Product Domains
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Abstract

We establish the Lp boundedness of singular integrals on product domains with

rough kernels in L(logL)2 and are supported by subvarieties.
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1. Introduction and Results

Suppose that Sd−1 (d = n or m) is the unit sphere of Rd (d ≥ 2) equipped with the
normalized Lebesgue measure dσ = dσ (x′) which is normalized so that σ(Sd−1) = 1. For
a nonzero point x ∈ Rd, we denote x′ = x/ |x| . Let K (·, ·) be the singular kernel on
Rn ×Rm given by

K (u, v) = Ω (u′, v′) |u|−n |v|−m , (1.1)

where Ω ∈ L1(Sn−1 × Sm−1) and satisfies

∫
Sn−1

Ω (u, ·)dσ (u) = 0 and
∫

Sm−1
Ω (·, v) dσ (v) = 0. (1.2)
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Define the singular integral operator Tc and the corresponding maximal truncated singular
integral operator T ∗c by

(Tcf)(x, y) = p.v.
∫

Rn×Rm

f (x− u, y − v)K (u, v)dudv (1.3)

and

(T ∗c f)(x, y) = sup
ε1,ε2>0

∣∣∣∣∣
∫
S(ε1,ε2)

f (x− u, y − v)K (u, v) dudv

∣∣∣∣∣ (1.4)

where S(ε1, ε2) = {(u, v) ∈ Rn ×Rm : (|u| , |v|) ∈ [ε1, 1)× [ε2, 1)} .
The Lp boundedness of the operators Tc and T ∗c , under various conditions on Ω, has

been investigated by many authors ([1], [4], [6]–[9]). For example, R. Fefferman and
E. Stein proved in [8] that Tc and T ∗c are bounded on Lp(Rn+m) for 1 < p < ∞ if Ω
satisfies certain Lipschitz conditions. Subsequently in [4], Duoandikoetxea established
the Lp (1 < p <∞) boundedness of Tc under the weaker condition Ω ∈ Lq(Sn−1×Sm−1)

(with q > 1), and then in Fan-Guo-Pan [6] for the case when Ω belongs to certain block
spaces which contains Lq(Sn−1×Sm−1) as a proper subspace (for p = 2, it was proved by

Jiang and Lu in [9]). Recently, Al-Qassem and Pan [1] established the Lp (1 < p < ∞)
boundedness of a more general class of operators than Tc and T ∗c and for when Ω belongs
to certain block spaces.

Very recently, Al-Salman, Al-Qassem and Pan [2] were able to show that the Lp

(1 < p < ∞) boundedness of Tc and T ∗c if Ω ∈ L(log+ L)2(Sn−1 × Sm−1). Furthermore,
the condition that Ω ∈ L(log+ L)2(Sn−1×Sm−1) turns out to be the most desirable size
condition for the Lp boundedness of Tc. This was made clear by the authors of [2], where
it was shown that Tc may fail to be bounded on Lp for any p if the condition is replaced
by the condition Ω ∈ L(log+ L)2−ε(Sn−1 × Sm−1) for any ε > 0.

Let Bd(0, 1) (d = n or m) denotes the unit ball centered at the origin in Rd. For
N,M ∈ N, let Φ : Bn(0, 1) → RN and Ψ : Bm(0, 1) → RM be sufficiently smooth
mappings. Define the singular integral operator TΦ,Ψ and its corresponding maximal
truncated singular integral operator T ∗Φ,Ψ by

(TΦ,Ψf)(x, y) = p.v.
∫

Bn(0,1)×Bm(0,1)

f (x− Φ(u), y −Ψ(v))K (u, v) dudv (1.5)
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and

(T ∗Φ,Ψf)(x, y) = sup
ε1,ε2>0

∣∣∣∣∣
∫
S(ε1,ε2)

f (x−Φ(u), y −Ψ(v))K (u, v) dudv

∣∣∣∣∣ , (1.6)

for x ∈ RN and y ∈ RM .

For Φ(u) ≡ u and Ψ(v) ≡ v, one obtains essentially the singular integral operator Tc
and its corresponding maximal operator T ∗c described in (1.3)–(1.4).

Our main result in this paper is the following:

Theorem 1.1. Let TΦ,Ψ, and T ∗Φ,Ψ be given by (1.1)–(1.2) and (1.5)–(1.6). Suppose that

Ω ∈ L(log+ L)2(Sn−1 × Sm−1) . If Φ and Ψ are of finite type at 0, then for 1 < p <∞
there exists a constant Cp > 0 such that

‖TΦ,Ψ (f)‖Lp(RN×RM ) ≤ Cp ‖f‖Lp(RN×RM ); (1.7)∥∥T ∗Φ,Ψ (f)
∥∥
Lp(RN×RM )

≤ Cp ‖f‖Lp(RN×RM ) (1.8)

for any f ∈ Lp(RN ×RM ).

We point out that the one parameter case of Theorem 1.1 was studied by many authors
(see for example [11], [5], [3]).

As in the one-parameter setting, we can show that the Lp boundedness of the operators
TΦ,Ψ and T ∗Φ,Ψ may fail for any p if either one of the mappings Φ and Ψ is not of finite
of type at 0.

The author would like to thank the referee for some helpful comments.

2. Preliminaries

Definition 2.1. Let U be an open set in Rn, and let Ψ : U → Rl be a smooth mapping.
For x0 ∈ U, we say that Ψ is of finite type at x0 if, for each unit vector η in Rl, there is
a nonzero multi-index α such that

D
α

[Ψ · η](x0) 6= 0.

Definition 2.2. For µ ∈ N ∪ {0}, let aµ = 2(µ+1) and for k, j ∈ Z−, let Ik,j,µ =

{(u, v) ∈ Rn × Rm : (|u| , |v|) ∈ [ak−1
µ , akµ) × [ aj−1

µ , ajµ)}. For suitable mappings Θ :
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Rn → RN , Υ : Rm → RM , and Ωµ : Sn−1 × Sm−1 → R, we define the measures

{λΩµ,Θ,Υ,k,j : k, j ∈ Z−} on RN ×RM by

∫
RN×RM

fdλΩµ,Θ,Υ,k,j =
∫
Ik,j,µ

f (Θ(x),Υ(y)) Ωµ (x′, y′) |x|−n |y|−m dxdy. (2.1)

We shall need the following result from [4]:

Lemma 2.3. Let {νk,j : k, j ∈ Z} be a sequence of Borel measures in Rn× Rm and let
ν∗ (f) = sup

k,j∈Z
||νk,j| ∗ f | . Suppose that for some q > 1 and B > 0, we have

‖ν∗ (f)‖q ≤ B ‖f‖q (2.2)

for every f in Lq(Rn ×Rm). Then the vector-valued inequality∥∥∥∥∥∥(
∑
k,j∈Z

|νk,j ∗ gk,j|2)
1
2

∥∥∥∥∥∥
p0

≤ (B sup
k,j∈Z

‖νk,j‖)
1
2

∥∥∥∥∥∥(
∑
k,j∈Z

|gk,j|2)
1
2

∥∥∥∥∥∥
p0

(2.3)

holds for |1/p0 − 1/2| = 1/(2q) and for arbitrary functions {gk,j} on Rn× Rm.

The following lemma can be found in [1], which is an extension of a result due to
Duoandikoetxea in [4].

Lemma 2.4. Let M,N ∈ N and
{
σ

(l,s)
k,j : k, j ∈ Z, 0 ≤l ≤ N, 0 ≤ s ≤M

}
be a family

of Borel measures on Rn ×Rm with σ
(l,0)
k,j = 0 and σ

(0,s)
k,j = 0 for every k, j ∈ Z. Let

{al, bs : 1 ≤ l ≤ N, 1 ≤ s ≤M} ⊆ R+\(0, 2), {B(l), D(s) : 1 ≤ l ≤ N, 1 ≤ s ≤M} ⊆ N,

{αl, βs : 1 ≤ l ≤ N, 1 ≤ s ≤M} ⊆ R+, and let Ll : Rn → RB(l) and Qs : Rm → RD(s)

be linear transformations for 1 ≤ l ≤ N, 1 ≤ s ≤ M. Suppose that for some B > 1 and
p0 ∈ (2,∞) the following hold for k, j ∈ Z, 1 ≤ l ≤ N, 1 ≤ s ≤M , and (ξ, η) ∈ Rn×Rm:

(i)
∥∥∥σ(l,s)

k,j

∥∥∥≤ B2;

(ii)
∣∣∣σ̂(l,s)
k,j (ξ, η)

∣∣∣≤ B2
∣∣akBl Ll(ξ)

∣∣−αlB ∣∣bjBs Qs(η)
∣∣−βsB ;

(iii)
∣∣∣σ̂(l,s)
k,j (ξ, η)− σ̂(l−1,s)

k,j (ξ, η)
∣∣∣≤ B2

∣∣akBl Ll(ξ)
∣∣αlB ∣∣bjBs Qs(η)

∣∣− βsB ;
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(iv)
∣∣∣σ̂(l,s)
k,j (ξ, η)− σ̂(l,s−1)

k,j (ξ, η)
∣∣∣≤ B2

∣∣akBl Ll(ξ)
∣∣−αlB ∣∣bjBs Qs(η)

∣∣ βsB ;

(v)
∣∣∣σ̂(l,s)
k,j (ξ, η)− σ̂(l−1,s)

k,j (ξ, η) − σ̂(l,s−1)
k,j (ξ, η) + σ̂

(l−1,s−1)
k,j (ξ, η)

∣∣∣
≤ B2

∣∣akBl Ll (ξ)
∣∣αlB ∣∣bjBs Qs (η)

∣∣ βsB ;

(vi)
∣∣∣σ̂(l,s−1)
k,j (ξ, η)− σ̂(l−1,s−1)

k,j (ξ, η)
∣∣∣≤ B2

∣∣akBl Ll (ξ)
∣∣αlB ;

(vii)
∣∣∣σ̂(l−1,s)
k,j (ξ, η)− σ̂(l−1,s−1)

k,j (ξ, η)
∣∣∣≤ B2

∣∣bjBs Qs (η)
∣∣ βsB ;

(viii) For arbitrary function gk,j on Rn ×Rm,∥∥∥∥∥∥(
∑
k,j∈Z

∣∣∣σ(l,s)
k,j ∗ gk,j

∣∣∣2)
1
2

∥∥∥∥∥∥
p0

≤ B2

∥∥∥∥∥∥(
∑
k,j∈Z

|gk,j|2)
1
2

∥∥∥∥∥∥
p0

. (2.4)

Then for p′0 < p < p0, there exists a positive constant Cp such that∥∥∥∥∥∥
∑
k,j∈Z

σ
(N,M)
k,j ∗ f

∥∥∥∥∥∥
Lp(Rn×Rm)

≤ CpB
2 ‖f‖Lp(Rn×Rm) (2.5)

∥∥∥∥∥∥(
∑
k,j∈Z

∣∣∣σ(N,M)
k,j ∗ f

∣∣∣2)
1
2

∥∥∥∥∥∥
Lp(Rn×Rm)

≤ CpB
2 ‖f‖Lp(Rn×Rm) (2.6)

hold for all f in Lp(Rn ×Rm). The constant Cp is independent of the linear transfor-

mations {Ll}Nl=1 and {Qs}Ms=1 .

We shall need the following oscillatory estimates from [5].

Lemma 2.5. Let Φ : Bn(0, 1) → Rd be a smooth mapping and Ω be a homogeneous

function on Rn of degree 0. Suppose that Φ is of finite type at 0 and Ω ∈ L2(Sn−1).
Then there are N0 ∈ N, δ ∈ (0, 1], C > 0 and j0 ∈ Z− such that

∣∣∣∣∣
∫

2j−1≤|y|<2j
e−iξ·Φ(y) Ω(y)

|y|n dy
∣∣∣∣∣ ≤ C ‖Ω‖L2(Sn−1) (2jN0 |ξ|)−δ

for all j ≤ j0 and ξ ∈ Rd.
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Lemma 2.6. Let l ∈ N and R(·) be a real-valued polynomial on Rn with deg(R) ≤ l−1.
Suppose that P (y) =

∑
|α|=l

c
α
y
α

+ R(y), Ω is a homogeneous function of degree zero, and

Ω ∈ L2(Sn−1). Then there exists a constant C > 0 such that

∣∣∣∣∣
∫

2j−1≤|y|<2j
e−iP(y) Ω(y)

|y|n dy
∣∣∣∣∣ ≤ C ‖Ω‖L2(Sn−1) (2jl

∑
|α|=l

|c
α
|)− 1

4l

holds for all j ∈ Z and {c
α
} ⊂ R.

Lemma 2.7. Let Φ : Bn(0, 1) → RN and Ψ : Bm(0, 1) → RM be C∞ mappings. Let
µ ∈ N ∪ {0} and Ωµ(·, ·) be a function on Sn−1 × Sm−1 satisfying the conditions: (i)

‖Ωµ‖L2(Sn−1×Sm−1) ≤ (aµ)2 and (ii) ‖Ωµ‖L1(Sn−1×Sm−1) ≤ 1. Suppose that Φ and Ψ are

of finite type at 0. Then there are N0,M0 ∈ N, δ ∈ (0, 1], C > 0 and k0, j0 ∈ Z− such

that ∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η)
∣∣∣ ≤ C (µ+ 1)2 (aN0k

µ |ξ|)−
δ

µ+1 (aM0j
µ |η|)−

δ
µ+1 (2.7)

for all k ≤ k0, j ≤ j0, and (ξ, η) ∈ RN ×RM .

Proof. By the definition of λΩµ,Φ,Ψ,k,j, we get∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η)
∣∣∣ ≤ C (µ+ 1)

∫
Sm−1

Sk (y, ξ) dσ (y) (2.8)

where

Sk (y, ξ) =

∣∣∣∣∣
∫
ak−1
µ ≤|x|<akµ

e−iξ·Φ(x) Ωµ (x, y)
|x|n dx

∣∣∣∣∣ .
Now, by Lemma 2.5 we have

|Sk (y, ξ)| ≤
µ+1∑
s=1

∣∣∣∣∣
∫
a

(k−1)
µ 2s−1≤|x|<a(k−1)

µ 2s
e−iξ·Φ(x) Ωµ(x, y)

|x|n dx

∣∣∣∣∣
≤ C

µ+1∑
s=1

‖Ωµ(·, y)‖L2(Sn−1) (aN0(k−1)
µ 2N0s |ξ|)−δ.
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Therefore, by (i), (2.8) and Hölder’s inequality we have∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η)
∣∣∣ ≤ C (µ + 1)2

a(δN0+2)
µ (aN0k

µ |ξ|)−δ

which when combined with the trivial bound
∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η)

∣∣∣ ≤ C (µ+ 1)2 implies

∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η)
∣∣∣ ≤ C (µ+ 1)2 (aN0k

µ |ξ|)−
δ
µ+1 . (2.9)

Similarly, we have ∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η)
∣∣∣ ≤ C (µ + 1)2 (aM0j

µ |η|)−
δ
µ+1 . (2.10)

Hence. by (2.9), (2.10) we obtain (2.7) to complete the proof. 2

By Lemma 2.6 and the same argument as in the proof of Lemma 2.7 we get the
following:
lemma 2.8. Let N0,M0 ∈ N, and Ωµ(·, ·) be as in Lemma 2.7. Let R1(·) and R2(·)

be real-valued polynomials on Rn and Rm, respectively with deg(R1) 6 N0 − 1 and

deg(R2) 6M0−1. Let P (x) =
∑
|α|=N0

cαx
α

+R1(x), and Q(y) =
∑
|β|=M0

dβy
β

+R2(y).

Then there exists a constant C > 0 such that for all k, j ∈ Z and cα , dβ ∈ R,

∣∣∣∣∣
∫
Ik,j,µ

e−i(P(x)+Q(y)) Ωµ(x, y)
|x|n |y|m dxdy

∣∣∣∣∣
≤ C (µ + 1)2 (aN0k

µ

∑
|α|=N0

|cα |)
− 1

4N0(µ+1) (aM0j
µ

∑
|β|=M0

∣∣d
β

∣∣)− 1
4M0(µ+1) .

3. Certain maximal functions

Definition 3.1. For suitable mappings Θ : Rn → RN , Υ : Rm → RM , and Ωµ :
Sn−1 × Sm−1 → R, we define the maximal function λ∗Ωµ,Θ,Υ on RN ×RM by

λ∗Ωµ,Θ,Υf(x, y) = sup
k≤k0,j≤j0

||λΩ,Θ,Υ,k,j| ∗ f(x, y)| , (3.1)
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where k0 and j0 are given as in Lemma 2.7.
For l ∈ N, let Al denote the class of polynomials of l variables with real coefficients.

For d ∈ N and R = (R1, ...,Rd) ∈ (A1)d define the maximal functionMRf on Rd by

MRf (x) = sup
r>0

1
r

∫ r

−r
|f (x−R (t))| dt.

The following result can be found in [11], pp. 476–478.

Lemma 3.2. For 1 < p ≤ ∞ there exists a positive constant Cp such that

‖MRf‖p ≤ Cp ‖f‖p

for f ∈ Lp
(
Rd
)
. The constant Cp may depend on the degrees of the polynomials

R1, ...,Rd, but it is independent of their coefficients.

By Lemma 3.2 we get immediately the following theorem.

Lemma 3.3. Let P = (P1, . . . , PN) : Rn → RN and Q = (Q1, . . . , QM) : Rm → RM

be polynomial mappings. Let Ωµ(·, ·) be as in Lemma 2.7. Then for 1 < p ≤ ∞ there
exists a constant Cp such that∥∥∥λ∗Ωµ,P,Q (f)

∥∥∥
p
≤ Cp(µ + 1)2 ‖f‖p (3.2)

for f ∈ Lp(RN ×RM ).

Lemma 3.4. Let Φ : Bn(0, 1) → RN and Ψ : Bm(0, 1) → RM be C∞ mappings and
P = (P1, . . . , PN) : Rn → RN and Q = (Q1, . . . , QM) : Rm → RM be polynomial
mappings. Let Ωµ(·, ·) be as in Lemma 2.7. Suppose that Φ and Ψ are of finite type at 0.
Then for 1 < p ≤ ∞ and f ∈ Lp

(
RN ×RM

)
there exists a positive constant Cp which

is independent of µ such that∥∥∥λ∗Ωµ,P,Ψ(f)
∥∥∥
p
≤ Cp(µ+ 1)2 ‖f‖p (3.3)

and ∥∥∥λ∗Ωµ,Φ,Q(f)
∥∥∥
p
≤ Cp(µ+ 1)2 ‖f‖p (3.4)

for f ∈ Lp(RN ×RM ).
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Proof. We shall only present the proof of (3.3). The proof of (3.4) will be similar. It
is easy to see that λ∗Ωµ,P,Ψf(x, y) is dominated by

sup
j≤j0

∫
aj−1
µ ≤|v|<ajµ

1
|v|m

∫
Sn−1

|Ωµ (u, v)| |(MP,µ,uf (·, y−Ψ(v))) (x)|dσ(u)dv

where MP,µ,uh(x) = sup
k≤k0

∫ akµ
ak−1
µ
|h (x− P(tu))| dt

t
. By Lemma 3.2 we immediately get

∥∥∥λ∗Ωµ,P,Ψ(f)
∥∥∥
Lp(RN×RM )

≤ Cp(µ + 1)(
∫

RM

∥∥∥HΨ,Ω0
µ
f(·, y)

∥∥∥p
Lp(RN )

dy)
1
p , (3.5)

where HΨ,Ω0
µ
g(y) = sup

j≤j0

∫
aj−1
µ ≤|v|<ajµ |g (y − Ψ(v))| Ω0

µ(v)

|v|m dv and Ω0
µ is a function on Sm−1

defined by Ω0
µ (v) =

∫
Sn−1 |Ωµ (u, v)|dσ (u) . It is easy to verify that Ω0

µ satisfies (i)∥∥Ω0
µ

∥∥
L2(Sn−1×Sm−1)

≤ (aµ)2 and (ii)
∥∥Ω0

µ

∥∥
L1(Sn−1×Sm−1)

≤ 1. By the arguments in the

proof of the Lp boundedness of the corresponding maximal function in the one-parameter
setting in ([3], Lemma 3.6) we obtain∥∥∥HΨ,Ω0

µ
f(·, y)

∥∥∥
Lp(RN )

≤ Cp(µ+ 1) ‖f(·, y)‖Lp(RN ) (3.6)

for every f ∈ Lp(RN ). By (3.5) and (3.6) we get (3.3). This finishes the proof of our

lemma. 2

Lemma 3.5. Let Φ : Bn(0, 1) → RN and Ψ : Bm(0, 1) → RM be C∞ mappings and
let Ωµ(·, ·) be as in Lemma 2.7. Suppose that Φ and Ψ are of finite type at 0. Then
for 1 < p ≤ ∞ and f ∈ Lp

(
RN ×RM

)
there exists a positive constant Cp which is

independent of µ such that∥∥∥λ∗Ωµ,Φ,Ψ (f)
∥∥∥
p
≤ Cp(µ+ 1)2 ‖f‖p . (3.7)

Proof. Without loss of generality, we may assume that Ωµ ≥ 0. Let N0,M0 ∈ N,

δ ∈ (0, 1], C > 0 and k0, j0 ∈ Z− be as in Lemma 2.7. For Φ = (Φ1, . . . ,ΦN) and

Ψ = (Ψ1, . . . ,ΨM) we let P = (P1, . . . , PN) and Q = (Q1, . . . , QM) be defined by

Pl(x) =
∑

|α|≤N0−1

1
α!
∂
α

Φl
∂xα

(0)x
α

and Qs(y) =
∑

|β|6M0−1

1
β!
∂
β

Ψs

∂yβ
(0)y

β

,
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for 1 6 s 6M and 1 6 l 6 N. Then, for k ≤ k0 and j ≤ j0 we have∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η)− λ̂Ωµ,P,Ψ,k,j(ξ, η)
∣∣∣ ≤ C(µ+ 1)

(
aN0k
µ |ξ|

) ∫
Sn−1

Hj (x, η) dσ (x) ,

where

Hj,µ (x, η) =

∣∣∣∣∣
∫
aj−1
µ ≤|y|<ajµ

e−iη·Ψ(y) Ωµ (x, y)
|y|m dy

∣∣∣∣∣ .
Thus by Lemma 2.5 and the argument in the proof of (2.8) we get∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η) − λ̂Ωµ,P,Ψ,k,j(ξ, η)

∣∣∣
≤ C (µ + 1)2 (aN0k

µ |ξ|) δ
µ+1 (aM0j

µ |η|)− δ
µ+1 for k ≤ k0 and j ≤ j0. (3.8)

Similarly, it is easy to verify that, for k ≤ k0 and j ≤ j0, the following estimates hold:∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η) − λ̂Ωµ,Φ,Q,k,j(ξ, η)
∣∣∣

≤ C(µ+ 1)2(aN0k
µ |ξ|)−

δ
µ+1 (aM0j

µ |η|)
δ
µ+1 ; (3.9)

∣∣∣λ̂Ωµ,Φ,Ψ,k,j(ξ, η) − λ̂Ωµ,P,Ψ,k,j(ξ, η) − λ̂Ωµ,Φ,Q,k,j(ξ, η) + λ̂Ωµ,P,Q,k,j(ξ, η)
∣∣∣

≤ C(µ+ 1)2(aN0k
µ |ξ|) δ

µ+1 (aM0j
µ |η|) δ

µ+1 ; (3.10)

∣∣∣λ̂Ωµ,Φ,Q,k,j,ρ(ξ, η)− λ̂Ωµ,P,Q,k,j(ξ, η)
∣∣∣ ≤ C(µ+ 1)2(aN0k

µ |ξ|)
δ

µ+1 ; (3.11)∣∣∣λ̂Ωµ,P,Ψ,k,j(ξ, η)− λ̂Ωµ,P,Q,k,j(ξ, η)
∣∣∣ ≤ C(µ+ 1)2(aM0j

µ |η|)
δ
µ+1 . (3.12)

Let Λ1 ∈ S
(
RN

)
, and Λ2 ∈ S

(
RM

)
be two Schwartz functions such that (Λi)̂(ζi) = 1

for |ζi| ≤ 1
2 and (Λi)̂(ζi) = 0 for |ζi| ≥ 1, i = 1, 2 and define

(Λ1
k)̂(x) = (Λ1 )̂

(
aN0k
µ x

)
and (Λ2

j )̂(y) = (Λ2 )̂
(
aM0j
µ y

)
.

Define the sequence of measures {νk,j,µ} by

νk,j,µ(ξ, η) = λ̂Ωµ,Φ,Ψ,k,j(ξ, η)− (Λ1
k)̂ (ξ) λ̂Ωµ,P,Ψ,k,j(ξ, η)− (Λ2

j )̂ (η) ×

λ̂Ωµ,Φ,Q,k,j(ξ, η) + (Λ1
k )̂(ξ)(Λ2

j )̂(η)λ̂Ωµ,P,Q,k,j(ξ, η). (3.13)
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Then by (2.7), (3.8)–(3.12), (3.13) we have

|ν̂k,j,µ(ξ, η)| ≤ C(µ+ 1)2; (3.14)

and

|ν̂k,j,µ(ξ, η)| ≤ C(µ+ 1)2(aN0k
µ |ξ|)±

δ
(µ+1) (aM0j

µ |η|)±
δ

2(µ+1) . (3.15)

Now let

gµf(x, y) =
( ∑
k≤k0,j≤j0

|νk,j,µ ∗ f(x, y)|2
) 1

2

(3.16)

and

ν∗µ(f)(x, y) = sup
k≤k0,j≤j0

||νk,j,µ| ∗ f(x, y)| . (3.17)

Thus,

λ∗Ωµ,Φ,Ψf(x, y) ≤ gµf(x, y) +C(MRN ⊗ idRM ) ◦ (λ∗Ωµ,P,Ψf(x, y)) +

2C(idRN ⊗MRM ) ◦ (λ∗Ωµ,Φ,Q)f(x, y)) + 2C(MRN ⊗ idRM )

◦(idRN ⊗MRM ) ◦ (λ∗Ωµ,P,Qf(x, y)) (3.18)

and

ν∗µf(x, y) ≤ gµf(x, y) + 2C(MRN ⊗ idRM ) ◦ (λ∗Ωµ,P,Ψf(x, y)) +

2C(idRN ⊗MRM ) ◦ (λ∗Ωµ,Φ,Q)f(x, y)) + 2C(MRN ⊗ idRM )

◦(idRN ⊗MRM ) ◦ (λ∗Ωµ,P,Qf(x, y)), (3.19)

where MRd denotes the classical Hardy-Littlewood maximal function on Rd.

Now by Lemmas 3.3, 3.4 and the boundedness of MRd on Lp spaces, for 1 < p <∞
there exists a positive constant Cp independent of µ such that∥∥∥(MRN ⊗ idRM ) ◦ (λ∗Ωµ,P,Ψf)

∥∥∥
p
≤ Cp(µ + 1)2 ‖f‖p , (3.20)∥∥∥(idRN ⊗MRM ) ◦ (λ∗Ωµ,Φ,Qf)

∥∥∥
p
≤ Cp(µ + 1)2 ‖f‖p , (3.21)

and ∥∥∥(MRN ⊗ idRM ) ◦ (idRN ⊗MRM ) ◦ (λ∗Ωµ,P,Qf)
∥∥∥
p
≤ Cp(µ + 1)2 ‖f‖p (3.22)
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for every f ∈ Lp
(
RN ×RM

)
.

By (3.14), (3.15) and Plancherel’s theorem, there exists a positive constant C > 0
independent of µ such that

‖gµf‖2 ≤ C(µ+ 1)2 ‖f‖2 . (3.23)

Therefore, by (3.19)–(3.22), we get∥∥ν∗µ(f)
∥∥

2
≤ C(µ+ 1)2 ‖f‖2 . (3.24)

Thus, by (3.14), (3.24) and using Lemma 2.3 with p0 = 4 and q = 2, we get∥∥∥∥∥∥
( ∑
k≤k0,j≤j0

|νk,j,µ ∗ gk,j|2
)1/2

∥∥∥∥∥∥
4

≤ C(µ+ 1)2

∥∥∥∥∥∥
( ∑
k≤k0,j≤j0

|gk,j|2
)1/2

∥∥∥∥∥∥
4

(3.25)

for arbitrary functions {gk,j}k,j∈Z on RN ×RM .

By (3.15), (3.25) and invoking Lemma 2.4, we obtain that

‖gµf‖p ≤ Cp(µ + 1)2 ‖f‖p (3.26)

holds for 4/3 < p < 4 and f ∈ Lp(RN ×RM ) with a positive constant Cp independent
of µ.

By replacing p = 2 with p = (4/3) + ε (ε > 0) in (3.23) and repeating the preceding
arguments we get

‖gµf‖p ≤ Cp(µ + 1)2 ‖f‖p (3.27)

for 8/7 < p < 8 and f ∈ Lp(RN ×RM ). By continuing this process, we get

‖gµf‖p ≤ Cp(µ + 1)2 ‖f‖p (3.28)

for 1 < p < ∞ and f ∈ Lp(RN ×RM), where Cp is a constant independent of µ. Hence
by (3.18), (3.20)–(3.22) and (3.27) we obtain (3.7) to complete the proof.

4. Proof of the main theorem

Assume that Ω ∈ L(log+ L)2(Sn−1 × Sm−1). As in [2] we decompose Ω as follows:
For µ ∈ N let Eµ = {(x, y) ∈ Sn−1 × Sm−1: 2µ−1 ≤ |Ω (x, y)| < 2µ}, bµ = ΩχEµ

and
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Cµ = ‖bµ‖1. Let D =
{
µ ∈ N : Cµ ≥ 2−4µ

}
,

Ωµ(x, y) = (Cµ)−1

(
bµ(x, y) −

∫
Sn−1

bµ(u, y)dσ(u) −
∫

Sm−1
bµ(x, v)dσ(v)

+
∫

Sn−1×Sm−1
bµ(u, v)dσ(u)dσ(v)

)

for µ ∈ D and

Ω0 = Ω −
∑
µ∈D

Ωµ.

Then it is easy to verify that

∫
Sn−1

Ωµ (u, ·)dσ (u) =
∫

Sm−1
Ωµ (·, v)dσ (v) = 0, (4.1)

‖Ωµ‖1 ≤ 4,
∥∥Ω

µ

∥∥
2
≤ 4(a

µ
)2, (4.2)

Ω(x, y) =
∑

µ∈D∪{0}
CµΩµ(x, y), (4.3)

∑
µ∈D∪{0}

(µ+ 1)2Cµ ≤ C ‖Ω‖L(logL)2(Sn−1×Sm−1) , (4.4)

for µ ∈ D ∪ {0} where we used C0 = 1.

By (4.4)

‖TΦ,Ψf‖p 6
∑

µ∈D∪{0}

∣∣C
µ

∣∣ ∥∥TΩµf
∥∥
p

(4.5)

where

TΩµf(x, y) = p.v.
∫

Bn(0,1)×Bm(0,1)

f (x−Φ(u), y −Ψ(v))
Ωµ (u, v)
|u|n |v|m dudv. (4.6)

Let N0,M0, P and Q be given as in the proof of Lemma 3.5. For 1 6 l 6 N,

1 6 s 6 M let cl,α = 1
α!
∂
α

Φl
∂xα

(0) and ds,β = 1
β!
∂
β

Ψs
∂yβ

(0). For 0 6 τ 6 N0, 0 6 κ 6 M0 we
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define Pτ = (Pl,τ , . . . , PN,τ) and Qκ = (Q1,κ, . . . , QM,κ) by

Pl,τ (x) =
∑
|α|6τ

cl,α x
α

, for l = 1, . . . , N, 0 6 τ 6 N0 − 1; (4.7)

Qs,κ(y) =
∑
|β|6κ

ds,β y
β

, for s = 1, . . . ,M, 0 6 κ 6M0 − 1; (4.8)

PN0 = Φ andQM0 = Ψ. For each 0 6 τ 6 N0; 0 6 κ 6M0, let λ(τ,κ)
Ωµ,k,j

= λΩµ,Pτ ,Qκ,k,j. Let

ω(τ ) and γ(κ) denote the number of multi-indices α ∈ (N ∪ {0})n and β ∈ (N ∪ {0})m

satisfying |α| = τ and |β| = κ, respectively. Label the coordinates of Rω(τ) and Rγ(κ)

by the of multi-indices α and β with |α| = τ and |β| = κ, respectively. That is,
Rω(τ) = {(xα)}|α|=τ and Rγ(κ) = {(yβ)}|β|=κ. For 0 6 τ 6 N0 and 0 6 κ 6 M0,

we define the linear transformations Lτ : RN → Rω(τ) and Qκ : RM → Rγ(κ) by

(Lτ (ξ))α =
τ∑
l=1

cl,α ξl and (Qκ(η))β =
κ∑
s=1

ds,β ηs

for |α| = τ, |β| = κ, 0 6 τ 6 N0 − 1 and 0 6 κ 6 M0 − 1, where ω(N0) = N0 and
γ(M0) = M0. Then by Lemmas 2.7, 2.8, (2.7), (3.8)–(3.12) and the same argument as in
proofs of (2.7), we get

∥∥∥λ(τ,κ)
Ωµ,k,j

∥∥∥ 6 C(µ+ 1)2; (4.9)∣∣∣λ̂(τ,κ)
Ωµ,k,j

(ξ, η)
∣∣∣ 6 C(µ+ 1)2

∣∣∣aτk
µ
Lτ (ξ)

∣∣∣−ατµ ∣∣∣aκj
µ
Qκ(η)

∣∣∣− ακ
µ+1

; (4.10)

∣∣∣∣λ̂(τ,κ)

b̃µ,k,j,ρµ
(ξ, η)− λ̂(τ−1,κ)

b̃µ,k,j,ρµ
(ξ, η)

∣∣∣∣ 6 C(µ+ 1)2
∣∣∣aτk
µ
Lτ (ξ)

∣∣∣ ατµ+1
∣∣∣aκj
µ
Qκ(η)

∣∣∣− ακ
µ+1

; (4.11)

∣∣∣λ̂(τ,κ)
Ωµ,k,j

(ξ, η) − λ̂(τ,κ−1)
Ωµ,k,j

(ξ, η)
∣∣∣ 6 C(µ+ 1)2

∣∣∣aτk
µ
Lτ (ξ)

∣∣∣− ατ
µ+1

∣∣∣aκj
µ
Qκ(η)

∣∣∣ ακµ+1
; (4.12)

∣∣∣λ̂(τ,κ)
Ωµ,k,j

(ξ, η)− λ̂(τ−1,κ)
Ωµ,k,j

(ξ, η)− λ̂(τ,κ−1)
Ωµ,k,j

(ξ, η) + λ̂
(τ−1,κ−1)
Ωµ,k,j

(ξ, η)
∣∣∣

6 C(µ+ 1)2
∣∣∣aτk
µ
Lτ (ξ)

∣∣∣ ατµ+1
∣∣∣aκj
µ
Qκ(η)

∣∣∣ ακµ+1
; (4.13)
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∣∣∣λ̂(τ,κ−1)
Ωµ,k,j

(ξ, η)− λ̂(τ−1,κ−1)
Ωµ,k,j

(ξ, η)
∣∣∣ 6 C(µ+ 1)2

∣∣∣aτk
µ
Lτ(ξ)

∣∣∣ ατµ+1
; (4.14)∣∣∣λ̂(τ−1,κ)

Ωµ,k,j
(ξ, η)− λ̂(τ−1,κ−1)

Ωµ,k,j
(ξ, η)

∣∣∣ ≤ C(µ+ 1)2
∣∣∣aκj
µ
Qκ(η)

∣∣∣ ακµ+1
(4.15)

for µ ∈ D ∪ {0}, 1 6 τ 6 N0 and 1 6 κ 6M0.

By invoking Lemmas 3.3–3.5, (4.9)–(4.15), and Lemmas 2.3, 2.4 we get

∥∥TΩµf
∥∥
p

=

∥∥∥∥∥∥
∑

k≤k0,j≤j0

λ
(N0,M0)
Ωµ,k,j

∗ f

∥∥∥∥∥∥
p

≤ Cp (µ + 1)2 ‖f‖p , (4.16)

for every f ∈ Lp(RN ×RM ), µ ∈ D ∪ {0}, and for all p, 1 < p <∞. Hence, (1.7) follows
by (4.4), (4.5) and (4.16).

One may construct a proof for (1.8) by using the above estimates and employing the
techniques in [1]. We omit the details.
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