Rough Singular Integrals Along Submanifolds of Finite Type on Product Domains

Hussain Al-Qassem

Abstract

We establish the L^{p} boundedness of singular integrals on product domains with rough kernels in $L(\log L)^{2}$ and are supported by subvarieties.

Key words and phrases: Singular integrals, product domains, rough kernels, Block spaces.

1. Introduction and Results

Suppose that $\mathbf{S}^{d-1}(d=n$ or $m)$ is the unit sphere of $\mathbf{R}^{d}(d \geq 2)$ equipped with the normalized Lebesgue measure $d \sigma=d \sigma\left(x^{\prime}\right)$ which is normalized so that $\sigma\left(\mathbf{S}^{d-1}\right)=1$. For a nonzero point $x \in \mathbf{R}^{d}$, we denote $x^{\prime}=x /|x|$. Let $K(\cdot, \cdot)$ be the singular kernel on $\mathbf{R}^{n} \times \mathbf{R}^{m}$ given by

$$
\begin{equation*}
K(u, v)=\Omega\left(u^{\prime}, v^{\prime}\right)|u|^{-n}|v|^{-m}, \tag{1.1}
\end{equation*}
$$

where $\Omega \in L^{1}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ and satisfies

$$
\begin{equation*}
\int_{\mathbf{S}^{n-1}} \Omega(u, \cdot) d \sigma(u)=0 \text { and } \int_{\mathbf{S}^{m-1}} \Omega(\cdot, v) d \sigma(v)=0 . \tag{1.2}
\end{equation*}
$$

[^0]
AL-QASSEM

Define the singular integral operator T_{c} and the corresponding maximal truncated singular integral operator T_{c}^{*} by

$$
\begin{equation*}
\left(T_{c} f\right)(x, y)=\text { p.v. } \int_{\mathbf{R}^{n} \times \mathbf{R}^{m}} f(x-u, y-v) K(u, v) d u d v \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(T_{c}^{*} f\right)(x, y)=\sup _{\varepsilon_{1}, \varepsilon_{2}>0}\left|\int_{S\left(\varepsilon_{1}, \varepsilon_{2}\right)} f(x-u, y-v) K(u, v) d u d v\right| \tag{1.4}
\end{equation*}
$$

where $S\left(\varepsilon_{1}, \varepsilon_{2}\right)=\left\{(u, v) \in \mathbf{R}^{n} \times \mathbf{R}^{m}:(|u|,|v|) \in\left[\varepsilon_{1}, 1\right) \times\left[\varepsilon_{2}, 1\right)\right\}$.
The L^{p} boundedness of the operators T_{c} and T_{c}^{*}, under various conditions on Ω, has been investigated by many authors ([1], [4], [6]-[9]). For example, R. Fefferman and E. Stein proved in [8] that T_{c} and T_{c}^{*} are bounded on $L^{p}\left(\mathbf{R}^{n+m}\right)$ for $1<p<\infty$ if Ω satisfies certain Lipschitz conditions. Subsequently in [4], Duoandikoetxea established the $L^{p}(1<p<\infty)$ boundedness of T_{c} under the weaker condition $\Omega \in L^{q}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ (with $q>1$), and then in Fan-Guo-Pan [6] for the case when Ω belongs to certain block spaces which contains $L^{q}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ as a proper subspace (for $p=2$, it was proved by Jiang and Lu in [9]). Recently, Al-Qassem and Pan [1] established the $L^{p}(1<p<\infty)$ boundedness of a more general class of operators than T_{c} and T_{c}^{*} and for when Ω belongs to certain block spaces.

Very recently, Al-Salman, Al-Qassem and Pan [2] were able to show that the L^{p} $(1<p<\infty)$ boundedness of T_{c} and T_{c}^{*} if $\Omega \in L\left(\log ^{+} L\right)^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$. Furthermore, the condition that $\Omega \in L\left(\log ^{+} L\right)^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ turns out to be the most desirable size condition for the L^{p} boundedness of T_{c}. This was made clear by the authors of [2], where it was shown that T_{c} may fail to be bounded on L^{p} for any p if the condition is replaced by the condition $\Omega \in L\left(\log ^{+} L\right)^{2-\varepsilon}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$ for any $\varepsilon>0$.

Let $\mathbf{B}_{d}(0,1)(d=n$ or $m)$ denotes the unit ball centered at the origin in \mathbf{R}^{d}. For $N, M \in \mathbf{N}$, let $\Phi: \mathbf{B}_{n}(0,1) \rightarrow \mathbf{R}^{N}$ and $\Psi: \mathbf{B}_{m}(0,1) \rightarrow \mathbf{R}^{M}$ be sufficiently smooth mappings. Define the singular integral operator $T_{\Phi, \Psi}$ and its corresponding maximal truncated singular integral operator $T_{\Phi, \Psi}^{*}$ by

$$
\begin{equation*}
\left(T_{\Phi, \Psi} f\right)(x, y)=\text { p.v. } \int_{\mathbf{B}_{n}(0,1) \times \mathbf{B}_{m}(0,1)} f(x-\Phi(u), y-\Psi(v)) K(u, v) d u d v \tag{1.5}
\end{equation*}
$$

AL-QASSEM

and

$$
\begin{equation*}
\left(T_{\Phi, \Psi}^{*} f\right)(x, y)=\sup _{\varepsilon_{1}, \varepsilon_{2}>0}\left|\int_{S\left(\varepsilon_{1}, \varepsilon_{2}\right)} f(x-\Phi(u), y-\Psi(v)) K(u, v) d u d v\right| \tag{1.6}
\end{equation*}
$$

for $x \in \mathbf{R}^{N}$ and $y \in \mathbf{R}^{M}$.
For $\Phi(u) \equiv u$ and $\Psi(v) \equiv v$, one obtains essentially the singular integral operator T_{c} and its corresponding maximal operator T_{c}^{*} described in (1.3)-(1.4).

Our main result in this paper is the following:
Theorem 1.1. Let $T_{\Phi, \Psi}$, and $T_{\Phi, \Psi}^{*}$ be given by (1.1)-(1.2) and (1.5)-(1.6). Suppose that $\Omega \in L\left(\log ^{+} L\right)^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$. If Φ and Ψ are of finite type at 0 , then for $1<p<\infty$ there exists a constant $C_{p}>0$ such that

$$
\begin{align*}
\left\|T_{\Phi, \Psi}(f)\right\|_{L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)} & \leq C_{p}\|f\|_{L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)} \tag{1.7}\\
\left\|T_{\Phi, \Psi}^{*}(f)\right\|_{L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)} & \leq C_{p}\|f\|_{L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)} \tag{1.8}
\end{align*}
$$

for any $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$.
We point out that the one parameter case of Theorem 1.1 was studied by many authors (see for example [11], [5], [3]).

As in the one-parameter setting, we can show that the L^{p} boundedness of the operators $T_{\Phi, \Psi}$ and $T_{\Phi, \Psi}^{*}$ may fail for any p if either one of the mappings Φ and Ψ is not of finite of type at 0 .

The author would like to thank the referee for some helpful comments.

2. Preliminaries

Definition 2.1. Let U be an open set in \mathbf{R}^{n}, and let $\Psi: U \rightarrow \mathbf{R}^{l}$ be a smooth mapping. For $x_{0} \in U$, we say that Ψ is of finite type at x_{0} if, for each unit vector η in \mathbf{R}^{l}, there is a nonzero multi-index α such that

$$
D^{\alpha}[\Psi \cdot \eta]\left(x_{0}\right) \neq 0
$$

Definition 2.2. For $\mu \in \mathbf{N} \cup\{0\}$, let $a_{\mu}=2^{(\mu+1)}$ and for $k, j \in \mathbf{Z}_{-}$, let $I_{k, j, \mu}=$ $\left\{(u, v) \in \mathbf{R}^{n} \times \mathbf{R}^{m}:(|u|,|v|) \in\left[a_{\mu}^{k-1}, a_{\mu}^{k}\right) \times\left[a_{\mu}^{j-1}, a_{\mu}^{j}\right)\right\}$. For suitable mappings $\Theta:$

AL-QASSEM

$\mathbf{R}^{n} \rightarrow \mathbf{R}^{N}, \Upsilon: \mathbf{R}^{m} \rightarrow \mathbf{R}^{M}$, and $\Omega_{\mu}: \mathbf{S}^{n-1} \times \mathbf{S}^{m-1} \rightarrow \mathbf{R}$, we define the measures $\left\{\lambda_{\Omega_{\mu}, \Theta, \Upsilon, k, j}: k, j \in \mathbf{Z}_{-}\right\}$on $\mathbf{R}^{N} \times \mathbf{R}^{M}$ by

$$
\begin{equation*}
\int_{\mathbf{R}^{N} \times \mathbf{R}^{M}} f d \lambda_{\Omega_{\mu}, \Theta, \Upsilon, k, j}=\int_{I_{k, j, \mu}} f(\Theta(x), \Upsilon(y)) \Omega_{\mu}\left(x^{\prime}, y^{\prime}\right)|x|^{-n}|y|^{-m} d x d y \tag{2.1}
\end{equation*}
$$

We shall need the following result from [4]:
Lemma 2.3. Let $\left\{\nu_{k, j}: k, j \in \mathbf{Z}\right\}$ be a sequence of Borel measures in $\mathbf{R}^{n} \times \mathbf{R}^{m}$ and let $\nu^{*}(f)=\sup _{k, j \in \mathbf{Z}}| | \nu_{k, j}|* f|$. Suppose that for some $q>1$ and $B>0$, we have

$$
\begin{equation*}
\left\|\nu^{*}(f)\right\|_{q} \leq B\|f\|_{q} \tag{2.2}
\end{equation*}
$$

for every f in $L^{q}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$. Then the vector-valued inequality

$$
\begin{equation*}
\left\|\left(\sum_{k, j \in \mathbf{Z}}\left|\nu_{k, j} * g_{k, j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p_{0}} \leq\left(B \sup _{k, j \in \mathbf{Z}}\left\|\nu_{k, j}\right\|\right)^{\frac{1}{2}}\left\|\left(\sum_{k, j \in \mathbf{Z}}\left|g_{k, j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p_{0}} \tag{2.3}
\end{equation*}
$$

holds for $\left|1 / p_{0}-1 / 2\right|=1 /(2 q)$ and for arbitrary functions $\left\{g_{k, j}\right\}$ on $\mathbf{R}^{n} \times \mathbf{R}^{m}$.
The following lemma can be found in [1], which is an extension of a result due to Duoandikoetxea in [4].

Lemma 2.4. Let $M, N \in \mathbf{N}$ and $\left\{\sigma_{k, j}^{(l, s)}: k, j \in \mathbf{Z}, 0 \leq l \leq N, 0 \leq s \leq M\right\}$ be a family of Borel measures on $\mathbf{R}^{n} \times \mathbf{R}^{m}$ with $\sigma_{k, j}^{(l, 0)}=0$ and $\sigma_{k, j}^{(0, s)}=0$ for every $k, j \in \mathbf{Z}$. Let $\left\{a_{l}, b_{s}: 1 \leq l \leq N, 1 \leq s \leq M\right\} \subseteq \mathbf{R}^{+} \backslash(0,2),\{B(l), D(s): 1 \leq l \leq N, 1 \leq s \leq M\} \subseteq \mathbf{N}$, $\left\{\alpha_{l}, \beta_{s}: 1 \leq l \leq N, 1 \leq s \leq M\right\} \subseteq \mathbf{R}^{+}$, and let $L_{l}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{B(l)}$ and $Q_{s}: \mathbf{R}^{m} \rightarrow \mathbf{R}^{D(s)}$ be linear transformations for $1 \leq l \leq N, 1 \leq s \leq M$. Suppose that for some $B>1$ and $p_{0} \in(2, \infty)$ the following hold for $k, j \in \mathbf{Z}, 1 \leq l \leq N, 1 \leq s \leq M$, and $(\xi, \eta) \in \mathbf{R}^{n} \times \mathbf{R}^{m}$:
(i) $\left\|\sigma_{k, j}^{(l, s)}\right\| \leq B^{2} ;$
(ii) $\left|\hat{\sigma}_{k, j}^{(l, s)}(\xi, \eta)\right| \leq B^{2}\left|a_{l}^{k B} L_{l}(\xi)\right|^{-\frac{\alpha_{l}}{B}}\left|b_{s}^{j B} Q_{s}(\eta)\right|^{-\frac{\beta_{s}}{B}}$;
(iii) $\left|\hat{\sigma}_{k, j}^{(l, s)}(\xi, \eta)-\hat{\sigma}_{k, j}^{(l-1, s)}(\xi, \eta)\right| \leq B^{2}\left|a_{l}^{k B} L_{l}(\xi)\right|^{\frac{\alpha_{l}}{B}}\left|b_{s}^{j B} Q_{s}(\eta)\right|^{-\frac{\beta_{s}}{B}} ;$

AL-QASSEM

$$
\begin{aligned}
&(i v)\left|\hat{\sigma}_{k, j}^{(l, s)}(\xi, \eta)-\hat{\sigma}_{k, j}^{(l, s-1)}(\xi, \eta)\right| \leq B^{2}\left|a_{l}^{k B} L_{l}(\xi)\right|^{-\frac{\alpha_{l}}{B}}\left|b_{s}^{j B} Q_{s}(\eta)\right|^{\frac{\beta_{s}}{B}} \\
&(v)\left|\hat{\sigma}_{k, j}^{(l, s)}(\xi, \eta)-\hat{\sigma}_{k, j}^{(l-1, s)}(\xi, \eta)-\hat{\sigma}_{k, j}^{(l, s-1)}(\xi, \eta)+\hat{\sigma}_{k, j}^{(l-1, s-1)}(\xi, \eta)\right| \\
& \leq B^{2}\left|a_{l}^{k B} L_{l}(\xi)\right|^{\frac{\alpha_{l}}{B}}\left|b_{s}^{j B} Q_{s}(\eta)\right|^{\frac{\beta_{s}}{B}}
\end{aligned}
$$

$\left.{ }^{(v i}\right)\left|\hat{\sigma}_{k, j}^{(l, s-1)}(\xi, \eta)-\hat{\sigma}_{k, j}^{(l-1, s-1)}(\xi, \eta)\right| \leq B^{2}\left|a_{l}^{k B} L_{l}(\xi)\right|^{\frac{\alpha_{l}}{B}} ;$
${ }^{(v i i)}\left|\hat{\sigma}_{k, j}^{(l-1, s)}(\xi, \eta)-\hat{\sigma}_{k, j}^{(l-1, s-1)}(\xi, \eta)\right| \leq B^{2}\left|b_{s}^{j B} Q_{s}(\eta)\right|^{\frac{\beta_{s}}{B}} ;$
(viii) For arbitrary function $g_{k, j}$ on $\mathbf{R}^{n} \times \mathbf{R}^{m}$,

$$
\begin{equation*}
\left\|\left(\sum_{k, j \in \mathbf{Z}}\left|\sigma_{k, j}^{(l, s)} * g_{k, j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p_{0}} \leq B^{2}\left\|\left(\sum_{k, j \in \mathbf{Z}}\left|g_{k, j}\right|^{2}\right)^{\frac{1}{2}}\right\|_{p_{0}} \tag{2.4}
\end{equation*}
$$

Then for $p_{0}^{\prime}<p<p_{0}$, there exists a positive constant C_{p} such that

$$
\begin{align*}
\left\|\sum_{k, j \in \mathbf{Z}} \sigma_{k, j}^{(N, M)} * f\right\|_{L^{p}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)} & \leq C_{p} B^{2}\|f\|_{L^{p}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)} \tag{2.5}\\
\left\|\left(\sum_{k, j \in \mathbf{Z}}\left|\sigma_{k, j}^{(N, M)} * f\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)} & \leq C_{p} B^{2}\|f\|_{L^{p}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)} \tag{2.6}
\end{align*}
$$

hold for all f in $L^{p}\left(\mathbf{R}^{n} \times \mathbf{R}^{m}\right)$. The constant C_{p} is independent of the linear transformations $\left\{L_{l}\right\}_{l=1}^{N}$ and $\left\{Q_{s}\right\}_{s=1}^{M}$.

We shall need the following oscillatory estimates from [5].

Lemma 2.5. Let $\Phi: \mathbf{B}_{n}(0,1) \rightarrow \mathbf{R}^{d}$ be a smooth mapping and Ω be a homogeneous function on \mathbf{R}^{n} of degree 0 . Suppose that Φ is of finite type at 0 and $\Omega \in L^{2}\left(\mathbf{S}^{n-1}\right)$. Then there are $N_{0} \in \mathbf{N}, \delta \in(0,1], C>0$ and $j_{0} \in \mathbf{Z}_{-}$such that

$$
\left|\int_{2^{j-1} \leq|y|<2^{j}} e^{-i \xi \cdot \Phi(y)} \frac{\Omega(y)}{|y|^{n}} d y\right| \leq C\|\Omega\|_{L^{2}\left(\mathbf{S}^{n-1}\right)}\left(2^{j N_{0}}|\xi|\right)^{-\delta}
$$

for all $j \leq j_{0}$ and $\xi \in \mathbf{R}^{d}$.

AL-QASSEM

Lemma 2.6. Let $l \in \mathbf{N}$ and $R(\cdot)$ be a real-valued polynomial on \mathbf{R}^{n} with $\operatorname{deg}(R) \leq l-1$. Suppose that $P(y)=\sum_{|\alpha|=l} c_{\alpha} y^{\alpha}+R(y), \Omega$ is a homogeneous function of degree zero, and $\Omega \in L^{2}\left(\mathbf{S}^{n-1}\right)$. Then there exists a constant $C>0$ such that

$$
\left|\int_{2^{j-1} \leq|y|<2^{j}} e^{-i P(y)} \frac{\Omega(y)}{|y|^{n}} d y\right| \leq C\|\Omega\|_{L^{2}\left(\mathbf{S}^{n-1}\right)}\left(2^{j l} \sum_{|\alpha|=l}\left|c_{\alpha}\right|\right)^{-\frac{1}{4 l}}
$$

holds for all $j \in \mathbf{Z}$ and $\left\{c_{\alpha}\right\} \subset \mathbf{R}$.

Lemma 2.7. Let $\Phi: \mathbf{B}_{n}(0,1) \rightarrow \mathbf{R}^{N}$ and $\Psi: \mathbf{B}_{m}(0,1) \rightarrow \mathbf{R}^{M}$ be C^{∞} mappings. Let $\mu \in \mathbf{N} \cup\{0\}$ and $\Omega_{\mu}(\cdot, \cdot)$ be a function on $\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}$ satisfying the conditions: (i) $\left\|\Omega_{\mu}\right\|_{L^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)} \leq\left(a_{\mu}\right)^{2}$ and (ii) $\left\|\Omega_{\mu}\right\|_{L^{1}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)} \leq 1$. Suppose that Φ and Ψ are of finite type at 0 . Then there are $N_{0}, M_{0} \in \mathbf{N}, \delta \in(0,1], C>0$ and $k_{0}, j_{0} \in \mathbf{Z}_{-}$such
that

$$
\begin{equation*}
\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)\right| \leq C(\mu+1)^{2}\left(a_{\mu}^{N_{0} k}|\xi|\right)^{-\frac{\delta}{\mu+1}}\left(a_{\mu}^{M_{0} j}|\eta|\right)^{-\frac{\delta}{\mu+1}} \tag{2.7}
\end{equation*}
$$

for all $k \leq k_{0}, j \leq j_{0}$, and $(\xi, \eta) \in \mathbf{R}^{N} \times \mathbf{R}^{M}$.
Proof. By the definition of $\lambda_{\Omega_{\mu}, \Phi, \Psi, k, j}$, we get

$$
\begin{equation*}
\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)\right| \leq C(\mu+1) \int_{\mathbf{S}^{m-1}} S_{k}(y, \xi) d \sigma(y) \tag{2.8}
\end{equation*}
$$

where

$$
S_{k}(y, \xi)=\left|\int_{a_{\mu}^{k-1} \leq|x|<a_{\mu}^{k}} e^{-i \xi \cdot \Phi(x)} \frac{\Omega_{\mu}(x, y)}{|x|^{n}} d x\right|
$$

Now, by Lemma 2.5 we have

$$
\begin{aligned}
\left|S_{k}(y, \xi)\right| & \leq \sum_{s=1}^{\mu+1}\left|\int_{a_{\mu}^{(k-1)} 2^{s-1} \leq|x|<a_{\mu}^{(k-1)} 2^{s}} e^{-i \xi \cdot \Phi(x)} \frac{\Omega_{\mu}(x, y)}{|x|^{n}} d x\right| \\
& \leq C \sum_{s=1}^{\mu+1}\left\|\Omega_{\mu}(\cdot, y)\right\|_{L^{2}\left(\mathbf{S}^{n-1}\right)}\left(a_{\mu}^{N_{0}(k-1)} 2^{N_{0} s}|\xi|\right)^{-\delta}
\end{aligned}
$$

AL-QASSEM

Therefore, by (i), (2.8) and Hölder's inequality we have

$$
\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)\right| \leq C(\mu+1)^{2} a_{\mu}^{\left(\delta N_{0}+2\right)}\left(a_{\mu}^{N_{0} k}|\xi|\right)^{-\delta}
$$

which when combined with the trivial bound $\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)\right| \leq C(\mu+1)^{2}$ implies

$$
\begin{equation*}
\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)\right| \leq C(\mu+1)^{2}\left(a_{\mu}^{N_{0} k}|\xi|\right)^{-\frac{\delta}{\mu+1}} \tag{2.9}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)\right| \leq C(\mu+1)^{2}\left(a_{\mu}^{M_{0} j}|\eta|\right)^{-\frac{\delta}{\mu+1}} \tag{2.10}
\end{equation*}
$$

Hence. by (2.9), (2.10) we obtain (2.7) to complete the proof.
By Lemma 2.6 and the same argument as in the proof of Lemma 2.7 we get the following:
lemma 2.8. Let $N_{0}, M_{0} \in \mathbf{N}$, and $\Omega_{\mu}(\cdot, \cdot)$ be as in Lemma 2.7. Let $R_{1}(\cdot)$ and $R_{2}(\cdot)$ be real-valued polynomials on \mathbf{R}^{n} and \mathbf{R}^{m}, respectively with $\operatorname{deg}\left(R_{1}\right) \leqslant N_{0}-1$ and $\operatorname{deg}\left(R_{2}\right) \leqslant M_{0}-1$. Let $P(x)=\sum_{|\alpha|=N_{0}} c_{\alpha} x^{\alpha}+R_{1}(x)$, and $Q(y)=\sum_{|\beta|=M_{0}} d_{\beta} y^{\beta}+R_{2}(y)$. Then there exists a constant $C>0$ such that for all $k, j \in \mathbf{Z}$ and $c_{\alpha}, d_{\beta} \in \mathbf{R}$,

$$
\begin{aligned}
& \left|\int_{I_{k, j, \mu}} e^{-i(P(x)+Q(y))} \frac{\Omega_{\mu}(x, y)}{|x|^{n}|y|^{m}} d x d y\right| \\
\leq & C(\mu+1)^{2}\left(a_{\mu}^{N_{0} k} \sum_{|\alpha|=N_{0}}\left|c_{\alpha}\right|\right)^{-\frac{1}{4 N_{0}(\mu+1)}}\left(a_{\mu}^{M_{0} j} \sum_{|\beta|=M_{0}}\left|d_{\beta}\right|\right)^{-\frac{1}{4 M_{0}(\mu+1)}} .
\end{aligned}
$$

3. Certain maximal functions

Definition 3.1. For suitable mappings $\Theta: \mathbf{R}^{n} \rightarrow \mathbf{R}^{N}, \Upsilon: \mathbf{R}^{m} \rightarrow \mathbf{R}^{M}$, and Ω_{μ} : $\mathbf{S}^{n-1} \times \mathbf{S}^{m-1} \rightarrow \mathbf{R}$, we define the maximal function $\lambda_{\Omega_{\mu}, \Theta, \Upsilon}^{*}$ on $\mathbf{R}^{N} \times \mathbf{R}^{M}$ by

$$
\begin{equation*}
\lambda_{\Omega_{\mu}, \Theta, \Upsilon}^{*} f(x, y)=\sup _{k \leq k_{0}, j \leq j_{0}}| | \lambda_{\Omega, \Theta, \Upsilon, k, j}|* f(x, y)| \tag{3.1}
\end{equation*}
$$

AL-QASSEM

where k_{0} and j_{0} are given as in Lemma 2.7.
For $l \in \mathbf{N}$, let \mathcal{A}_{l} denote the class of polynomials of l variables with real coefficients. For $d \in \mathbf{N}$ and $\mathcal{R}=\left(\mathcal{R}_{1}, \ldots, \mathcal{R}_{d}\right) \in\left(\mathcal{A}_{1}\right)^{d}$ define the maximal function $\mathcal{M}_{\mathcal{R}} f$ on \mathbf{R}^{d} by

$$
\mathcal{M}_{\mathcal{R}} f(x)=\sup _{r>0} \frac{1}{r} \int_{-r}^{r}|f(x-\mathcal{R}(t))| d t .
$$

The following result can be found in [11], pp. 476-478.
Lemma 3.2. For $1<p \leq \infty$ there exists a positive constant C_{p} such that

$$
\left\|\mathcal{M}_{\mathcal{R}} f\right\|_{p} \leq C_{p}\|f\|_{p}
$$

for $f \in L^{p}\left(\mathbf{R}^{d}\right)$. The constant C_{p} may depend on the degrees of the polynomials $\mathcal{R}_{1}, \ldots, \mathcal{R}_{d}$, but it is independent of their coefficients.

By Lemma 3.2 we get immediately the following theorem.
Lemma 3.3. Let $\mathcal{P}=\left(P_{1}, \ldots, P_{N}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{N}$ and $\mathcal{Q}=\left(Q_{1}, \ldots, Q_{M}\right): \mathbf{R}^{m} \rightarrow \mathbf{R}^{M}$ be polynomial mappings. Let $\Omega_{\mu}(\cdot, \cdot)$ be as in Lemma 2.7. Then for $1<p \leq \infty$ there exists a constant C_{p} such that

$$
\begin{equation*}
\left\|\lambda_{\Omega_{\mu}, \mathcal{P}, \mathcal{Q}}^{*}(f)\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.2}
\end{equation*}
$$

for $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$.
Lemma 3.4. Let $\Phi: \mathbf{B}_{n}(0,1) \rightarrow \mathbf{R}^{N}$ and $\Psi: \mathbf{B}_{m}(0,1) \rightarrow \mathbf{R}^{M}$ be C^{∞} mappings and $\mathcal{P}=\left(P_{1}, \ldots, P_{N}\right): \mathbf{R}^{n} \rightarrow \mathbf{R}^{N}$ and $\mathcal{Q}=\left(Q_{1}, \ldots, Q_{M}\right): \mathbf{R}^{m} \rightarrow \mathbf{R}^{M}$ be polynomial mappings. Let $\Omega_{\mu}(\cdot, \cdot)$ be as in Lemma 2.7. Suppose that Φ and Ψ are of finite type at 0 . Then for $1<p \leq \infty$ and $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$ there exists a positive constant C_{p} which is independent of μ such that

$$
\begin{equation*}
\left\|\lambda_{\Omega_{\mu}, \mathcal{P}, \Psi}^{*}(f)\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\lambda_{\Omega_{\mu}, \Phi, \mathcal{Q}}^{*}(f)\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.4}
\end{equation*}
$$

for $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$.

AL-QASSEM

Proof. We shall only present the proof of (3.3). The proof of (3.4) will be similar. It is easy to see that $\lambda_{\Omega_{\mu}, \mathcal{P}, \Psi}^{*} f(x, y)$ is dominated by

$$
\sup _{j \leq j_{0}} \int_{a_{\mu}^{j-1} \leq|v|<a_{\mu}^{j}} \frac{1}{|v|^{m}} \int_{\mathbf{S}^{n-1}}\left|\Omega_{\mu}(u, v)\right|\left|\left(\mathcal{M}_{\mathcal{P}, \mu, u} f(\cdot, y-\Psi(v))\right)(x)\right| d \sigma(u) d v
$$

where $\mathcal{M}_{\mathcal{P}, \mu, u} h(x)=\sup _{k \leq k_{0}} \int_{a_{\mu}^{k-1}}^{a_{\mu}^{k}}|h(x-\mathcal{P}(t u))| \frac{d t}{t}$. By Lemma 3.2 we immediately get

$$
\begin{equation*}
\left\|\lambda_{\Omega_{\mu}, \mathcal{P}, \Psi}^{*}(f)\right\|_{L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)} \leq C_{p}(\mu+1)\left(\int_{\mathbf{R}^{M}}\left\|\mathcal{H}_{\Psi, \Omega_{\mu}^{0}} f(\cdot, y)\right\|_{L^{p}\left(\mathbf{R}^{N}\right)}^{p} d y\right)^{\frac{1}{p}} \tag{3.5}
\end{equation*}
$$

where $\mathcal{H}_{\Psi, \Omega_{\mu}^{0}} g(y)=\sup _{j \leq j_{0}} \int_{a_{\mu}^{j-1} \leq|v|<a_{\mu}^{j}}|g(y-\Psi(v))| \frac{\Omega_{\mu}^{0}(v)}{|v|^{m}} d v$ and Ω_{μ}^{0} is a function on \mathbf{S}^{m-1} defined by $\Omega_{\mu}^{0}(v)=\int_{\mathbf{S}^{n-1}}\left|\Omega_{\mu}(u, v)\right| d \sigma(u)$. It is easy to verify that Ω_{μ}^{0} satisfies (i) $\left\|\Omega_{\mu}^{0}\right\|_{L^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)} \leq\left(a_{\mu}\right)^{2}$ and (ii) $\left\|\Omega_{\mu}^{0}\right\|_{L^{1}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)} \leq 1$. By the arguments in the proof of the L^{p} boundedness of the corresponding maximal function in the one-parameter setting in ([3], Lemma 3.6) we obtain

$$
\begin{equation*}
\left\|\mathcal{H}_{\Psi, \Omega_{\mu}^{0}} f(\cdot, y)\right\|_{L^{p}\left(\mathbf{R}^{N}\right)} \leq C_{p}(\mu+1)\|f(\cdot, y)\|_{L^{p}\left(\mathbf{R}^{N}\right)} \tag{3.6}
\end{equation*}
$$

for every $f \in L^{p}\left(\mathbf{R}^{N}\right)$. By (3.5) and (3.6) we get (3.3). This finishes the proof of our lemma.

Lemma 3.5. Let $\Phi: \mathbf{B}_{n}(0,1) \rightarrow \mathbf{R}^{N}$ and $\Psi: \mathbf{B}_{m}(0,1) \rightarrow \mathbf{R}^{M}$ be C^{∞} mappings and let $\Omega_{\mu}(\cdot, \cdot)$ be as in Lemma 2.7. Suppose that Φ and Ψ are of finite type at 0 . Then for $1<p \leq \infty$ and $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$ there exists a positive constant C_{p} which is independent of μ such that

$$
\begin{equation*}
\left\|\lambda_{\Omega_{\mu}, \Phi, \Psi}^{*}(f)\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.7}
\end{equation*}
$$

Proof. Without loss of generality, we may assume that $\Omega_{\mu} \geq 0$. Let $N_{0}, M_{0} \in \mathbf{N}$, $\delta \in(0,1], C>0$ and $k_{0}, j_{0} \in \mathbf{Z}_{-}$be as in Lemma 2.7. For $\Phi=\left(\Phi_{1}, \ldots, \Phi_{N}\right)$ and $\Psi=\left(\Psi_{1}, \ldots, \Psi_{M}\right)$ we let $\mathcal{P}=\left(P_{1}, \ldots, P_{N}\right)$ and $\mathcal{Q}=\left(Q_{1}, \ldots, Q_{M}\right)$ be defined by

$$
P_{l}(x)=\sum_{|\alpha| \leq N_{0}-1} \frac{1}{\alpha!} \frac{\partial^{\alpha} \Phi_{l}}{\partial x^{\alpha}}(0) x^{\alpha} \text { and } Q_{s}(y)=\sum_{|\beta| \leqslant M_{0}-1} \frac{1}{\beta!} \frac{\partial^{\beta} \Psi_{s}}{\partial y^{\beta}}(0) y^{\beta}
$$

AL-QASSEM

for $1 \leqslant s \leqslant M$ and $1 \leqslant l \leqslant N$. Then, for $k \leq k_{0}$ and $j \leq j_{0}$ we have

$$
\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, \mathcal{P}, \Psi, k, j}(\xi, \eta)\right| \leq C(\mu+1)\left(a_{\mu}^{N_{0} k}|\xi|\right) \int_{\mathbf{S}^{n-1}} H_{j}(x, \eta) d \sigma(x)
$$

where

$$
H_{j, \mu}(x, \eta)=\left|\int_{a_{\mu}^{j-1} \leq|y|<a_{\mu}^{j}} e^{-i \eta \cdot \Psi(y)} \frac{\Omega_{\mu}(x, y)}{|y|^{m}} d y\right| .
$$

Thus by Lemma 2.5 and the argument in the proof of (2.8) we get

$$
\begin{align*}
& \left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, \mathcal{P}, \Psi, k, j}(\xi, \eta)\right| \\
\leq & C(\mu+1)^{2}\left(a_{\mu}^{N_{0} k}|\xi|\right)^{\frac{\delta}{\mu+1}}\left(a_{\mu}^{M_{0} j}|\eta|\right)^{-\frac{\delta}{\mu+1}} \text { for } k \leq k_{0} \text { and } j \leq j_{0} . \tag{3.8}
\end{align*}
$$

Similarly, it is easy to verify that, for $k \leq k_{0}$ and $j \leq j_{0}$, the following estimates hold:

$$
\left.\begin{array}{l}
\quad\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, \Phi, \mathcal{Q}, k, j}(\xi, \eta)\right| \\
\leq C(\mu+1)^{2}\left(a_{\mu}^{N_{0} k}|\xi|\right)^{-\frac{\delta}{\mu+1}}\left(a_{\mu}^{M_{0} j}|\eta|\right)^{\frac{\delta}{\mu+1}} ; \\
\\
\leq C\left(\hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, \mathcal{P}, \Psi, k, j}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, \Phi, \mathcal{Q}, k, j}(\xi, \eta)+\hat{\lambda}_{\Omega_{\mu}, \mathcal{P}, \mathcal{Q}, k, j}(\xi, \eta) \mid\right. \\
\leq C(\mu+1)^{2}\left(a_{\mu}^{N_{0} k}|\xi|\right)^{\frac{\delta}{\mu+1}}\left(a_{\mu}^{M_{0} j}|\eta|\right)^{\frac{\delta}{\mu+1}} ; \\
\left|\hat{\lambda}_{\Omega_{\mu}, \Phi, \mathcal{Q}, k, j, \rho}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, \mathcal{P}, \mathcal{Q}, k, j}(\xi, \eta)\right| \leq C(\mu+1)^{2}\left(a_{\mu}^{N_{0} k}|\xi|\right)^{\frac{\delta}{\mu+1}} ; \tag{3.12}\\
\mid
\end{array}\right)
$$

Let $\Lambda^{1} \in \mathcal{S}\left(\mathbf{R}^{N}\right)$, and $\Lambda^{2} \in \mathcal{S}\left(\mathbf{R}^{M}\right)$ be two Schwartz functions such that $\left(\Lambda^{i}\right)\left(\zeta_{i}\right)=1$ for $\left|\zeta_{i}\right| \leq \frac{1}{2}$ and $\left(\Lambda^{i}\right)\left(\zeta_{i}\right)=0$ for $\left|\zeta_{i}\right| \geq 1, i=1,2$ and define

$$
\left(\Lambda_{k}^{1} \hat{)}(x)=\left(\Lambda ^ { 1 } \hat {) } (a _ { \mu } ^ { N _ { 0 } k } x) \text { and } \left(\Lambda_{j}^{2} \hat{)}(y)=\left(\Lambda^{2} \hat{)}\left(a_{\mu}^{M_{0} j} y\right)\right.\right.\right.\right.
$$

Define the sequence of measures $\left\{\nu_{k, j, \mu}\right\}$ by

$$
\begin{align*}
\nu_{k, j, \mu}(\xi, \eta)= & \hat{\lambda}_{\Omega_{\mu}, \Phi, \Psi, k, j}(\xi, \eta)-\left(\Lambda_{k}^{1} \hat{)}(\xi) \hat{\lambda}_{\Omega_{\mu}, \mathcal{P}, \Psi, k, j}(\xi, \eta)-\left(\Lambda_{j}^{2}\right)(\eta) \times\right. \\
& \hat{\lambda}_{\Omega_{\mu}, \Phi, \mathcal{Q}, k, j}(\xi, \eta)+\left(\Lambda _ { k } ^ { 1 } \hat {) } (\xi) \left(\Lambda_{j}^{2} \hat{)}(\eta) \hat{\lambda}_{\Omega_{\mu}, \mathcal{P}, \mathcal{Q}, k, j}(\xi, \eta)\right.\right. \tag{3.13}
\end{align*}
$$

AL-QASSEM

Then by (2.7), (3.8)-(3.12), (3.13) we have

$$
\begin{equation*}
\left|\hat{\nu}_{k, j, \mu}(\xi, \eta)\right| \leq C(\mu+1)^{2} ; \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\hat{\nu}_{k, j, \mu}(\xi, \eta)\right| \leq C(\mu+1)^{2}\left(a_{\mu}^{N_{0} k}|\xi|\right)^{ \pm \frac{\delta}{(\mu+1)}}\left(a_{\mu}^{M_{0} j}|\eta|\right)^{ \pm \frac{\delta}{2(\mu+1)}} \tag{3.15}
\end{equation*}
$$

Now let

$$
\begin{equation*}
\mathbf{g}_{\mu} f(x, y)=\left(\sum_{k \leq k_{0}, j \leq j_{0}}\left|\nu_{k, j, \mu} * f(x, y)\right|^{2}\right)^{\frac{1}{2}} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{\mu}^{*}(f)(x, y)=\sup _{k \leq k_{0}, j \leq j_{0}} \| \nu_{k, j, \mu}|* f(x, y)| \tag{3.17}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\lambda_{\Omega_{\mu}, \Phi, \Psi}^{*} f(x, y) \leq & \mathbf{g}_{\mu} f(x, y)+C\left(\mathcal{M}_{\mathbf{R}^{N}} \otimes i d_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \mathcal{P}, \Psi}^{*} f(x, y)\right)+ \\
& \left.2 C\left(i d_{\mathbf{R}^{N}} \otimes \mathcal{M}_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \Phi, \mathcal{Q}}^{*}\right) f(x, y)\right)+2 C\left(\mathcal{M}_{\mathbf{R}^{N}} \otimes i d_{\mathbf{R}^{M}}\right) \\
& \circ\left(i d_{\mathbf{R}^{N}} \otimes \mathcal{M}_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \mathcal{P}, \mathcal{Q}}^{*} f(x, y)\right) \tag{3.18}
\end{align*}
$$

and

$$
\begin{align*}
\nu_{\mu}^{*} f(x, y) \leq & \mathbf{g}_{\mu} f(x, y)+2 C\left(\mathcal{M}_{\mathbf{R}^{N}} \otimes i d_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \mathcal{P}, \Psi}^{*} f(x, y)\right)+ \\
& \left.2 C\left(i d_{\mathbf{R}^{N}} \otimes \mathcal{M}_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \Phi, \mathcal{Q}}^{*}\right) f(x, y)\right)+2 C\left(\mathcal{M}_{\mathbf{R}^{N}} \otimes i d_{\mathbf{R}^{M}}\right) \\
& \circ\left(i d_{\mathbf{R}^{N}} \otimes \mathcal{M}_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \mathcal{P}, \mathcal{Q}}^{*} f(x, y)\right), \tag{3.19}
\end{align*}
$$

where $\mathcal{M}_{\mathbf{R}^{d}}$ denotes the classical Hardy-Littlewood maximal function on \mathbf{R}^{d}.
Now by Lemmas 3.3, 3.4 and the boundedness of $\mathcal{M}_{\mathbf{R}^{d}}$ on L^{p} spaces, for $1<p<\infty$ there exists a positive constant C_{p} independent of μ such that

$$
\begin{align*}
& \left\|\left(\mathcal{M}_{\mathbf{R}^{N}} \otimes i d_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \mathcal{P}, \Psi}^{*} f\right)\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.20}\\
& \left\|\left(i d_{\mathbf{R}^{N}} \otimes \mathcal{M}_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \Phi, \mathcal{Q}}^{*} f\right)\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.21}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\left(\mathcal{M}_{\mathbf{R}^{N}} \otimes i d_{\mathbf{R}^{M}}\right) \circ\left(i d_{\mathbf{R}^{N}} \otimes \mathcal{M}_{\mathbf{R}^{M}}\right) \circ\left(\lambda_{\Omega_{\mu}, \mathcal{P}, \mathcal{Q}}^{*} f\right)\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.22}
\end{equation*}
$$

AL-QASSEM

for every $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$.
By (3.14), (3.15) and Plancherel's theorem, there exists a positive constant $C>0$ independent of μ such that

$$
\begin{equation*}
\left\|\mathbf{g}_{\mu} f\right\|_{2} \leq C(\mu+1)^{2}\|f\|_{2} \tag{3.23}
\end{equation*}
$$

Therefore, by (3.19)-(3.22), we get

$$
\begin{equation*}
\left\|\nu_{\mu}^{*}(f)\right\|_{2} \leq C(\mu+1)^{2}\|f\|_{2} \tag{3.24}
\end{equation*}
$$

Thus, by (3.14), (3.24) and using Lemma 2.3 with $p_{0}=4$ and $q=2$, we get

$$
\begin{equation*}
\left\|\left(\sum_{k \leq k_{0}, j \leq j_{0}}\left|\nu_{k, j, \mu} * g_{k, j}\right|^{2}\right)^{1 / 2}\right\|_{4} \leq C(\mu+1)^{2}\left\|\left(\sum_{k \leq k_{0}, j \leq j_{0}}\left|g_{k, j}\right|^{2}\right)^{1 / 2}\right\|_{4} \tag{3.25}
\end{equation*}
$$

for arbitrary functions $\left\{g_{k, j}\right\}_{k, j \in \mathbf{Z}}$ on $\mathbf{R}^{N} \times \mathbf{R}^{M}$.
By (3.15), (3.25) and invoking Lemma 2.4, we obtain that

$$
\begin{equation*}
\left\|\mathbf{g}_{\mu} f\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.26}
\end{equation*}
$$

holds for $4 / 3<p<4$ and $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$ with a positive constant C_{p} independent of μ.

By replacing $p=2$ with $p=(4 / 3)+\varepsilon(\varepsilon>0)$ in (3.23) and repeating the preceding arguments we get

$$
\begin{equation*}
\left\|\mathbf{g}_{\mu} f\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.27}
\end{equation*}
$$

for $8 / 7<p<8$ and $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$. By continuing this process, we get

$$
\begin{equation*}
\left\|\mathbf{g}_{\mu} f\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{3.28}
\end{equation*}
$$

for $1<p<\infty$ and $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right)$, where C_{p} is a constant independent of μ. Hence by (3.18), (3.20)-(3.22) and (3.27) we obtain (3.7) to complete the proof.

4. Proof of the main theorem

Assume that $\Omega \in L\left(\log ^{+} L\right)^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)$. As in [2] we decompose Ω as follows: For $\mu \in \mathbf{N}$ let $E_{\mu}=\left\{(x, y) \in \mathbf{S}^{n-1} \times \mathbf{S}^{m-1}: 2^{\mu-1} \leq|\Omega(x, y)|<2^{\mu}\right\}, b_{\mu}=\Omega \chi_{\mathbf{E}_{\mu}}$ and 560

AL-QASSEM

$C_{\mu}=\left\|b_{\mu}\right\|_{1}$. Let $\mathbf{D}=\left\{\mu \in \mathbf{N}: C_{\mu} \geq 2^{-4 \mu}\right\}$,

$$
\begin{aligned}
\Omega_{\mu}(x, y)= & \left(C_{\mu}\right)^{-1}\left(b_{\mu}(x, y)-\int_{\mathbf{S}^{n-1}} b_{\mu}(u, y) d \sigma(u)-\int_{\mathbf{S}^{m-1}} b_{\mu}(x, v) d \sigma(v)\right. \\
& \left.+\int_{\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}} b_{\mu}(u, v) d \sigma(u) d \sigma(v)\right)
\end{aligned}
$$

for $\mu \in \mathbf{D}$ and

$$
\Omega_{0}=\Omega-\sum_{\mu \in \mathbf{D}} \Omega_{\mu} .
$$

Then it is easy to verify that

$$
\begin{align*}
\int_{\mathbf{S}^{n-1}} \Omega_{\mu}(u, \cdot) d \sigma(u) & =\int_{\mathbf{S}^{m-1}} \Omega_{\mu}(\cdot, v) d \sigma(v)=0 \tag{4.1}\\
\left\|\Omega_{\mu}\right\|_{1} & \leq 4,\left\|\Omega_{\mu}\right\|_{2} \leq 4\left(a_{\mu}\right)^{2}, \tag{4.2}\\
\Omega(x, y) & =\sum_{\mu \in \mathbf{D} \cup\{0\}} C_{\mu} \Omega_{\mu}(x, y), \tag{4.3}\\
\sum_{\mu \in \mathbf{D} \cup\{0\}}(\mu+1)^{2} C_{\mu} & \leq C\|\Omega\|_{L(\log L)^{2}\left(\mathbf{S}^{n-1} \times \mathbf{S}^{m-1}\right)}, \tag{4.4}
\end{align*}
$$

for $\mu \in \mathbf{D} \cup\{0\}$ where we used $C_{0}=1$.
By (4.4)

$$
\begin{equation*}
\left\|T_{\Phi, \Psi} f\right\|_{p} \leqslant \sum_{\mu \in \mathbf{D} \cup\{0\}}\left|C_{\mu}\right|\left\|T_{\Omega_{\mu}} f\right\|_{p} \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\Omega_{\mu}} f(x, y)=\text { p.v. } \int_{\mathbf{B}_{n}(0,1) \times \mathbf{B}_{m}(0,1)} f(x-\Phi(u), y-\Psi(v)) \frac{\Omega_{\mu}(u, v)}{|u|^{n}|v|^{m}} d u d v \tag{4.6}
\end{equation*}
$$

Let $N_{0}, M_{0}, \mathcal{P}$ and \mathcal{Q} be given as in the proof of Lemma 3.5. For $1 \leqslant l \leqslant N$, $1 \leqslant s \leqslant M$ let $c_{l, \alpha}=\frac{1}{\alpha!} \frac{\partial^{\alpha} \Phi_{l}}{\partial x^{\alpha}}(0)$ and $d_{s, \beta}=\frac{1}{\beta!} \frac{\partial^{\beta} \Psi_{s}}{\partial y^{\beta}}(0)$. For $0 \leqslant \tau \leqslant N_{0}, 0 \leqslant \kappa \leqslant M_{0}$ we

AL-QASSEM

define $P_{\tau}=\left(P_{l, \tau}, \ldots, P_{N, \tau}\right)$ and $Q_{\kappa}=\left(Q_{1, \kappa}, \ldots, Q_{M, \kappa}\right)$ by

$$
\begin{array}{ll}
P_{l, \tau}(x)=\sum_{|\alpha| \leqslant \tau} c_{l, \alpha} x^{\alpha}, & \text { for } l=1, \ldots, N, 0 \leqslant \tau \leqslant N_{0}-1 \\
Q_{s, \kappa}(y)=\sum_{|\beta| \leqslant \kappa} d_{s, \beta} y^{\beta}, & \text { for } s=1, \ldots, M, 0 \leqslant \kappa \leqslant M_{0}-1 ; \tag{4.8}
\end{array}
$$

$P_{N_{0}}=\Phi$ and $Q_{M_{0}}=\Psi$. For each $0 \leqslant \tau \leqslant N_{0} ; 0 \leqslant \kappa \leqslant M_{0}$, let $\lambda_{\Omega_{\mu}, k, j}^{(\tau, \kappa)}=\lambda_{\Omega_{\mu}, P_{\tau}, Q_{\kappa}, k, j}$. Let $\omega(\tau)$ and $\gamma(\kappa)$ denote the number of multi-indices $\alpha \in(\mathbf{N} \cup\{0\})^{n}$ and $\beta \in(\mathbf{N} \cup\{0\})^{m}$ satisfying $|\alpha|=\tau$ and $|\beta|=\kappa$, respectively. Label the coordinates of $\mathbf{R}^{\omega(\tau)}$ and $\mathbf{R}^{\gamma(\kappa)}$ by the of multi-indices α and β with $|\alpha|=\tau$ and $|\beta|=\kappa$, respectively. That is, $\mathbf{R}^{\omega(\tau)}=\left\{\left(x_{\alpha}\right)\right\}_{|\alpha|=\tau}$ and $\mathbf{R}^{\gamma(\kappa)}=\left\{\left(y_{\beta}\right)\right\}_{|\beta|=\kappa}$. For $0 \leqslant \tau \leqslant N_{0}$ and $0 \leqslant \kappa \leqslant M_{0}$, we define the linear transformations $L_{\tau}: \mathbf{R}^{N} \rightarrow \mathbf{R}^{\omega(\tau)}$ and $Q_{\kappa}: \mathbf{R}^{M} \rightarrow \mathbf{R}^{\gamma(\kappa)}$ by

$$
\left(L_{\tau}(\xi)\right)_{\alpha}=\sum_{l=1}^{\tau} c_{l, \alpha} \xi_{l} \text { and }\left(Q_{\kappa}(\eta)\right)_{\beta}=\sum_{s=1}^{\kappa} d_{s, \beta} \eta_{s}
$$

for $|\alpha|=\tau,|\beta|=\kappa, 0 \leqslant \tau \leqslant N_{0}-1$ and $0 \leqslant \kappa \leqslant M_{0}-1$, where $\omega\left(N_{0}\right)=N_{0}$ and $\gamma\left(M_{0}\right)=M_{0}$. Then by Lemmas 2.7, 2.8, (2.7), (3.8)-(3.12) and the same argument as in proofs of (2.7), we get

$$
\begin{gather*}
\left\|\lambda_{\Omega_{\mu}, k, j}^{(\tau, \kappa)}\right\| \leqslant C(\mu+1)^{2} ; \tag{4.9}\\
\left|\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau, \kappa)}(\xi, \eta)\right| \leqslant C(\mu+1)^{2}\left|a_{\mu}^{\tau k} L_{\tau}(\xi)\right|^{-\frac{\alpha_{\tau}}{\mu}}\left|a_{\mu}^{\kappa j} Q_{\kappa}(\eta)\right|^{-\frac{\alpha_{\kappa}}{\mu+1}} ; \tag{4.10}\\
\left|\hat{\lambda}_{\hat{b}_{\mu}, k, j, \rho_{\mu}}^{(\tau, \kappa)}(\xi, \eta)-\hat{\lambda}_{\hat{b}_{\mu}, k, j, \rho_{\mu}}^{(\tau-1, \kappa)}(\xi, \eta)\right| \leqslant C(\mu+1)^{2}\left|a_{\mu}^{\tau k} L_{\tau}(\xi)\right|^{\frac{\alpha_{\tau}}{\mu+1}}\left|a_{\mu}^{\kappa j} Q_{\kappa}(\eta)\right|^{-\frac{\alpha_{\kappa}}{\mu+1}} ; \tag{4.11}\\
\left|\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau, \kappa)}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau, \kappa-1)}(\xi, \eta)\right| \leqslant C(\mu+1)^{2}\left|a_{\mu}^{\tau k} L_{\tau}(\xi)\right|^{-\frac{\alpha_{\tau}}{\mu+1}}\left|a_{\mu}^{\kappa j} Q_{\kappa}(\eta)\right|^{\frac{\alpha_{\kappa}}{\mu+1}} ; \tag{4.12}\\
\left|\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau, \kappa)}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau-1, \kappa)}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau, \kappa-1)}(\xi, \eta)+\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau-1, \kappa-1)}(\xi, \eta)\right| \\
\leqslant C(\mu+1)^{2}\left|a_{\mu}^{\tau k} L_{\tau}(\xi)\right|^{\frac{\alpha_{\tau}}{\mu+1}}\left|a_{\mu}^{\kappa j} Q_{\kappa}(\eta)\right|^{\frac{\alpha_{\kappa}}{\mu+1}} ; \tag{4.13}
\end{gather*}
$$

AL-QASSEM

$$
\begin{align*}
& \left|\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau, \kappa-1)}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau-1, \kappa-1)}(\xi, \eta)\right| \leqslant C(\mu+1)^{2}\left|a_{\mu}^{\tau k} L_{\tau}(\xi)\right|^{\frac{\alpha_{\tau}}{\mu+1}} \tag{4.14}\\
& \left|\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau-1, \kappa)}(\xi, \eta)-\hat{\lambda}_{\Omega_{\mu}, k, j}^{(\tau-1, \kappa-1)}(\xi, \eta)\right| \leq C(\mu+1)^{2}\left|a_{\mu}^{\kappa j} Q_{\kappa}(\eta)\right|^{\frac{\alpha_{\kappa}}{\mu+1}} \tag{4.15}
\end{align*}
$$

for $\mu \in \mathbf{D} \cup\{0\}, 1 \leqslant \tau \leqslant N_{0}$ and $1 \leqslant \kappa \leqslant M_{0}$.
By invoking Lemmas 3.3-3.5, (4.9)-(4.15), and Lemmas 2.3, 2.4 we get

$$
\begin{equation*}
\left\|T_{\Omega_{\mu}} f\right\|_{p}=\left\|\sum_{k \leq k_{0}, j \leq j_{0}} \lambda_{\Omega_{\mu}, k, j}^{\left(N_{0}, M_{0}\right)} * f\right\|_{p} \leq C_{p}(\mu+1)^{2}\|f\|_{p} \tag{4.16}
\end{equation*}
$$

for every $f \in L^{p}\left(\mathbf{R}^{N} \times \mathbf{R}^{M}\right), \mu \in \mathbf{D} \cup\{0\}$, and for all $p, 1<p<\infty$. Hence, (1.7) follows by (4.4), (4.5) and (4.16).

One may construct a proof for (1.8) by using the above estimates and employing the techniques in [1]. We omit the details.

References

[1] Al-Qassem, H., Pan,Y.: L^{p} boundedness for singular integrals with rough kernels on product domains, Hokkaido Mathematical Journal, 31 (2002), 555-613.
[2] Al-Salman, A., Al-Qassem, H., Pan,Y.: Singular Integrals on Product Domains, Preprint.
[3] Al-Salman, A., Pan,Y.: Singular integrals with rough kernels in $\operatorname{Llog}^{+} L\left(\mathbf{S}^{n-1}\right)$, J. London Math. Soc. (2) 66 (2002) 153-174.
[4] Duoandikoetxea, J.: Multiple singular integrals and maximal functions along hypersurfaces, Ann. Ins. Fourier (Grenoble) 36 (1986) 18 5-206.
[5] Fan, D., Guo, K., Pan, Y.: Singular integrals along submanifolds of finite type, Mich. Math. J. 45 (1998), 135-142.
[6] Fan, D., Guo, K., Pan,Y.: Singular integrals with rough kernels on product spaces, Hokkaido Mathematical Journal, Vol. 28 (1999), 435-460.
[7] Fefferman, R.: Singular integrals on product domains, Bull. Amer. Math. Soc. 4 (1981), 195-201.
[8] Fefferman, R., Stein, E. M.: Singular integrals on product spaces, Adv. in Math., 45 (1982), 117-143.
[9] Jiang, Y., Lu, S.: A class of singular integral operators with rough kernels on product domains. Hokkaido Mathematical Journal, Vol. 24 (1995), 1-7.
[10] Stein, E. M.: Problems in harmonic analysis related to curvature and oscillatory integrals, Proc. Int l. Cong. Math. (1986), 196-221.
[11] Stein, E. M.: Harmonic analysis real-variable methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton, NJ, 1993.

Hussain AL-QASSEM
Received 28.11.2002
Department of Math.
Yarmouk University,
e-mail: husseink@yu.edu.jo
Irbid-Jordan

[^0]: 2000 Mathematics Subject Classification: Primary 42B20; Secondary 42B15, 42B25.

