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Rough Singular Integrals Along Submanifolds of

Finite Type on Product Domains

Hussain Al-Qassem

Abstract

We establish the L? boundedness of singular integrals on product domains with

rough kernels in L(log L)? and are supported by subvarieties.

Key words and phrases: Singular integrals, product domains, rough kernels,

Block spaces.
1. Introduction and Results

Suppose that S9=! (d = n or m) is the unit sphere of R? (d > 2) equipped with the
normalized Lebesgue measure do = do (z) which is normalized so that ¢(S%~!) = 1. For
a nonzero point z € R? we denote 2’ = z/|z|. Let K (-,-) be the singular kernel on
R"™ x R™ given by

K (u,v) = Q0 Ju| " o] 7™, (1.1)
where Q € L1(S"! x S™~1) and satisfies

/ Q(u,-)do (u) =0 and / Q(-,v)do (v) =0. (1.2)
Sn—l

Sm—1
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Define the singular integral operator T, and the corresponding maximal truncated singular

integral operator T by

(Tef)(z,y) = P-V-/Rn . flx—u, y—v) K (u,v)dudv (1.3)

and

(Tff)(x,y) = Sup

£1,62>0

/ fx—u, y—v) K (u,v) dudv (1.4)
S(e1,e2)

where S(e1,e2) = {(u,v) € R* x R™ : (|u],|v]) € [e1,1) X [e2,1)}.

The LP boundedness of the operators T and T, under various conditions on €2, has
been investigated by many authors ([1], [4], [6]-]9]). For example, R. Fefferman and
E. Stein proved in [8] that T, and T are bounded on LP(R"™™) for 1 < p < oo if
satisfies certain Lipschitz conditions. Subsequently in [4], Duoandikoetxea established
the LP (1 < p < o0) boundedness of T, under the weaker condition € L4(S"~1 x Sm~1)

(with ¢ > 1), and then in Fan-Guo-Pan [6] for the case when € belongs to certain block

spaces which contains LI(S"~1 x S™~1) as a proper subspace (for p = 2, it was proved by

Jiang and Lu in [9]). Recently, Al-Qassem and Pan [1] established the L? (1 < p < o0)
boundedness of a more general class of operators than T;. and T} and for when 2 belongs
to certain block spaces.

Very recently, Al-Salman, Al-Qassem and Pan [2] were able to show that the L?
(1 < p < 00) boundedness of T. and T* if Q € L(log™ L)?(S"~* x S™~1). Furthermore,
the condition that Q € L(log™ L)?(S™~! x S™~!) turns out to be the most desirable size
condition for the LP boundedness of T,. This was made clear by the authors of [2], where
it was shown that T, may fail to be bounded on L? for any p if the condition is replaced
by the condition Q € L(log™ L)?~¢(S"~! x S™~1) for any € > 0.

Let B4(0,1) (d = n or m) denotes the unit ball centered at the origin in R%. For
N,M € N, let & : B,(0,1) — RN and ¥ : B,,(0,1) — RM be sufficiently smooth
mappings. Define the singular integral operator Te v and its corresponding maximal

truncated singular integral operator Ty y, by

(To,wf)(z,y) =p.v. / flx—2u), y—¥w)) K (u,v)dudv (1.5)

B, (0,1)xB,,(0,1)
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and

(T, f)(@,y) = sup

€1,e2>0

/ flx =), y—9()) K (u,v) dudv|, (1.6)
S(e1,e2)

for z € RY and y € RM.
For ®(u) = u and ¥(v) = v, one obtains essentially the singular integral operator T
and its corresponding maximal operator T, described in (1.3)—(1.4).

Our main result in this paper is the following:

Theorem 1.1. Let Ty w, and Ty y be given by (1.1)-(1.2) and (1.5)~(1.6). Suppose that
Q€ Log™ L)2(S" 1 x 8™ 1) . If ® and ¥ are of finite type at 0, then for 1 < p < oo

there exists a constant Cp > 0 such that

IN

HT‘I’,‘I’ (f)HLp(RNxRM) C;DHfHLP(RNxRM); (1-7)

A

||T£,\Il (f)”Lp(RNXR]\/I) = CPHfHLP(RNxRM) (18)

for any f € LP(RN x RM).

We point out that the one parameter case of Theorem 1.1 was studied by many authors
(see for example [11], [5], [3]).

As in the one-parameter setting, we can show that the LP boundedness of the operators
Tp,w and Tg y may fail for any p if either one of the mappings ® and ¥ is not of finite
of type at 0.

The author would like to thank the referee for some helpful comments.

2. Preliminaries

Definition 2.1. Let U be an open set in R™, and let U : U — R be a smooth mapping.
For xq € U, we say that W is of finite type at xo if, for each unit vector n in R!, there is

a nonzero multi-indexr o such that
D" [¥ - n](x0) # 0.
Definition 2.2. For u € NU{0}, let a, = 2"V and for k,j € Z_, let Iy, =

{(u,v) € R* x R™ : (|u,|v]) € [ak~", af) x [ @l al)}. For suitable mappings © :
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R* - RN, T:R"™ - RM, and Q- Sl x §m~1 — R, we define the measures

{)\Q‘“@7T7k7]‘ : k’,j S Z_} on RN X RM by

/ fdAe, .01k, = / fF(O@), Y(y) Qu (=", y) ||~ " [yl ™" dady.  (2.1)
RN xRM I

k,j,p

We shall need the following result from [4]:

Lemma 2.3. Let {vy ;: k,j € Z} be a sequence of Borel measures in R"x R™ and let

v*(f) = sup ||vg | * f|. Suppose that for some ¢ > 1 and B > 0, we have
VIS

= (Dl < Bl (2.2)

for every f in LI(R™ x R™). Then the vector-valued inequality

2 1 1 2\ L1
(> Irg*ges)F|| < (B sup flv.;)? (> lgngl)? (2.3)
k

k,jEZ € icZ
JE Po € Po

holds for |1/po — 1/2| = 1/(2q) and for arbitrary functions {gi ;} on R"x R™.

The following lemma can be found in [1], which is an extension of a result due to
Duoandikoetxea in [4].
Lemma 2.4. Let M,N € N and {a,(fj) tk,jeZ,0<I<N,0<s< M} be a family
of Borel measures on R™ x R™ with 0'](;771»0) =

{ai,bs : 1<I< N, 1<s<M}C R"\(0,2),{B(l), D(s) : 1<I<N,1<s<M}CN,

0 and 0’12038) =0 for every k, j € Z. Let

{a;, Bs : 1 <1< N,1<s<M}CRT, and let L; : R* - RBW and Q, : R™ — RP®)
be linear transformations for 1 <1 < N, 1 < s < M. Suppose that for some B > 1 and
Po € (2,00) the following hold fork, j € Z,1 <I < N,1 < s < M, and ({,n) € R"xR™:

. l,s
(i) o1l

.o | a(ls 2L . _Bs
(i0) |6 (€| < B2 [af P L) |22 Qu(m)|

< B?

oo | A(ls ~(I—1,s ol . _Bs
(iid) [ (€ m) — 111 (6w | < B2[alPLi©)] ™ [P Qu(m)] ™7 ;
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(1 Ss
() |61 (€ m = 615V e m| < B2 afP L) BPQum)] 7
~(1-1, «(lys—1 A (l=1,5—1
W) |o (€ — 6l E ) — el E ) + ol )(5,77)‘
, Bs
< B |af "L (©)| 7 [bPQu ()] 7
. A(1-1,5—1 4
(i) o170 (&m) = 61517V (6m)| < B [af L]
, Al 1,51 ; Bs
(vii) o1 (€m) = 577V (6w < B2 (22 Qq ()| 7
viit) For arbitrary function gx ; on R™ x R™,
J
3 ok eanaDY| =82S o™} 2:4)
Jez k,jEZ
Po Po

Then for py < p < po, there exists a positive constant C,, such that

N,M
Z /(CJ ) * f S Cp32 HfHLp(Ranm) (25)
k,j€Z Lo (RnxR™)
N,M 201
> oyt e s < CoB Il g emn 26)
k,j€Z LP(RW'me)

hold for all f in LP(R™ x R™). The constant C, is independent of the linear transfor-
mations {Ll}fil and {Qs}iw:r

We shall need the following oscillatory estimates from [5].

Lemma 2.5. Let ¢ : B,(0,1) — R? be a smooth mapping and 2 be a homogeneous

function on R™ of degree 0. Suppose that ® is of finite type at 0 and Q € L?*(S"~1).
Then there are Ng € N, 6 € (0,1], C > 0 and jo € Z_ such that

Q
/ et € )d <C HQHL2 sn-1) (QJNO )
20 -1<|y| <27 |y|

for all j < jo and &€ € R%.
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Lemma 2.6. Let I € N and R(-) be a real-valued polynomial on R™ with deg(R) <1—1.
Suppose that P(y) = > c.y" + R(y), Q is a homogeneous function of degree zero, and

|| =l

Q € L3(S"™1). Then there exists a constant C > 0 such that

( ) y 1
e_zP(y)g d < |2 ne1 Jl c )_41
/2j1§|y|<27 " [ HL2(S ) Z lc. |

o=t

holds for all j € Z and {c_} C R.

Lemma 2.7. Let ® : B,(0,1) — RY and ¥ : B,,(0,1) — R™ be C> mappings. Let
p € NU{0} and Q,(-,-) be a function on S"~! x S™~1 satisfying the conditions: (i)

[0l p2(gn-1xgm-1) < (an)? and (ii) €20l 1 (gn-1xgm-1) < 1. Suppose that ® and ¥ are
of finite type at 0. Then there are Ny, My € N, 6 € (0,1], C > 0 and ko, jo € Z_ such

that
Aoy w6 m)| < C (1t 1) (aoF |€]) =7 (allod ) =75 (2.7)
for all k < ko, j < jo, and (£,1) € RN x RM.

Proof. By the definition of A, & vk, j, We get

Iz

A 6)] < C 1)/5  Sk(y,€)do(y) (2.8)
where
Q
Sk (y,€) = / et @(a)de
ap ' <|z|<ak |lz|™

Now, by Lemma 2.5 we have

—'Lf P(z) Qlt(x y)d
Q=1

)23*1§|x|<aﬂv71)29 |$|

p+1

s=1

u

p+1
C D 90l gy (g * 2% jg]) =0

IN
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Therefore, by (i), (2.8) and Hoélder’s inequality we have

, ,j(é,n)‘ < O (p+ 1) alPNot2) (glNok [¢]) =0

28]

which when combined with the trivial bound ‘S\Q‘L,&b,\ll,k,j (& n)| < C(u+1)? implies

sk (6| £ C (u+ 1) @k jg)) 77, (2.9)
Similarly, we have

stk (Em)| < C -+ 1)7 (@ )7 (2.10)
Hence. by (2.9), (2.10) we obtain (2.7) to complete the proof. O

By Lemma 2.6 and the same argument as in the proof of Lemma 2.7 we get the
following;:
lemma 2.8. Let No, My € N, and Q,(-,-) be as in Lemma 2.7. Let Ryi(-) and R(-)

be real-valued polynomials on R™ and R™, respectively with deg(R1) < Ny — 1 and
deg(R2) < Mo—1. Let P(z) =37, _n, c,x" +Ry(x), and Q(y) = > 181=Mo dﬁyﬁ +Ro(y).

Then there exists a constant C > 0 such that for all k, j € Z and c,,d, € R,

/ e—iP@+Qu) @ v)
Ik]u | | | |

< Clu+ )P (@t 3 e, ) ™0 (@l Y |d, )Tt
|a|=No |Bl=Mo

= dxdy

3. Certain maximal functions

Definition 3.1. For suitable mappings © : R* — RN, T : R™ — RM and Q-

S"~1 x Sm~1 — R, we define the mazimal function Ab,.0,1 On RY x RM by

Aopoxf@y) = suwp | Aeerk;l*fl@y)l, (3.1)
k<ko,j<jo
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where ko and jo are given as in Lemma 2.7.
For | € N, let A; denote the class of polynomials of [ variables with real coefficients.
Ford e N and R = (Rq,..., Ra) € (.Al)d define the maximal function Mz f on R? by

MRf(x):supl/r |f (x — R (1)) dt.

r>0 T —r

The following result can be found in [11], pp. 476-478.
Lemma 3.2. For 1 < p < oo there exists a positive constant C,, such that
Mz fll, < Cpllfll,
for f € LP (Rd). The constant C), may depend on the degrees of the polynomials
Ri, ..., Rq, but it is independent of their coefficients.

By Lemma 3.2 we get immediately the following theorem.

Lemma 3.3. Let P = (Py,...,Py): R* — RY and Q = (Q1,...,Qun) : R™ — RM
be polynomial mappings. Let Q,(-,-) be as in Lemma 2.7. Then for 1 < p < oo there

exists a constant C) such that

Nopo (N < Col+1 111, (3.2)

for f € LP(RN x RM).

Lemma 3.4. Let ® : B,(0,1) — RY and ¥ : B,,(0,1) — R™ be C*> mappings and
P=(P,...,Py) : R" = RY and Q = (Q1,...,Qn) : R™ — RM be polynomial
mappings. Let Q,(-,-) be as in Lemma 2.7. Suppose that ® and V are of finite type at 0.
Then for 1 <p < oo and f e LP (RN X RM) there exists a positive constant C), which
is independent of w such that

Mo,pa (]| < Colnt 12111, (3.3)

and

Mool < Colut 1211, (3.4)
for f € LP(RN x RM).
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Proof. We shall only present the proof of (3.3). The proof of (3.4) will be similar. It
is easy to see that )\6W7,7‘1,f(x, y) is dominated by

sp [ o T L 190 0 (M f (= 90) (@) o)

i<jo vl

k
where Mp ,, ,h(x) = sup f:,c‘il |h (x — P(tu))] %. By Lemma 3.2 we immediately get
k<ko = m

<C 1
LP(RN xRM) — bt )(/RM
o

— ) 0 ; : ~1
where Hy o g(y) = JS;IJI?) ol <ol <al, lg (y — ¥(v))] by dv and () is a function on 8™

p

D=

X, 20| dy)7 . (35)

H\I/,ng('ay)‘

LP(RN)

defined by QF (v) = [gu-1 [Qu (u,v)|do (u). Tt is easy to verify that Q) satisfies (i)

||Q (a,)? and (ii) HQ/Ot”Ll(SW*lem*l) < 1. By the arguments in the

0
N||L2(Sn—1 xS§m—1) S
proof of the LP boundedness of the corresponding maximal function in the one-parameter

setting in ([3], Lemma 3.6) we obtain

HH\I/,ng('ay)‘

Lo(RN) < Cplp+ D IfC 0 oma) (3.6)

for every f € LP(RY). By (3.5) and (3.6) we get (3.3). This finishes the proof of our
lemma. O
Lemma 3.5. Let ® : B,(0,1) — RY and ¥ : B,,(0,1) — R™ be C*> mappings and
let Q,(-,-) be as in Lemma 2.7. Suppose that ® and V are of finite type at 0. Then

for 1 <p < ooand f e LP (RN X RM) there exists a positive constant C, which is
independent of p such that

a0 0] <Colut 02151, (3.7)

Proof.  Without loss of generality, we may assume that €}, > 0. Let Ny, My € N,
d € (0,1], C > 0 and ko,jo € Z_ be as in Lemma 2.7. For ® = (®,...,Py) and

U= (Uy,...,Uy) welet P=(P1,...,Py)and Q= (Q1,...,Qn) be defined by

19°v,

10°% 1
B oy’

Pi(x) = Z Q!W(O)xa and Qs(y) = Z

la|<No—1 |BI<Mo—1

)y
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for 1 <s< M and1<1<N. Then, for k < ky and j < jy we have

S\QM,@,\II,k’j(g, 77) - S‘Q;L,'P,‘I’,k,j(ga 77)‘ < C(M + 1 NOk |§| / H $ 77) dO’( ) )

where

Hj7lt (x7 77) =

/ —'m U(y) Qlt ($ y) dy
ol <lyl<al, lyl™

Thus by Lemma 2.5 and the argument in the proof of (2.8) we get

kg(§m) — S\Q,L,P,\If,k,j(&??)‘

o Es

< C(u+1)* (aloR |€)) 7T (o [y]) =7 for k < ko and j < jo. (3.8)

Similarly, it is easy to verify that, for & < kg and j < jg, the following estimates hold:

kg(§m) — S\Q,L,‘b,g,k,j(&??)‘

o Es

< Clp+ 1) (alok ()77 (a7 )T (3.9)

ki Em) = A pwk (€)= Aap.e,0k,(60) + Aa, .0k (En)

o Es

< Clu+1)*(alok |e)) 7 (aMod )y 7 (3.10)

Jeogp(€5M) _S\Q,“P,Q,k,j(gan)‘ < Cu+1)%(a)* |€)) ) (3.11)

o Es

= (3.12)

k.5 (€571) _S\Q,“’/’,Q,k,j(gan)‘ < C(p+1)%(ald |n))

ol

Let A' € S (RY), and A% € S (RM) be two Schwartz functions such that (A (G) =1

for |¢;| < 3 and (A’S(Q) =0 for |(;| > 1,i=1,2 and define

(A)(@) = (A) (ap°*z) and (AF)(y) = (A%) (a)y) .

Define the sequence of measures {vy ; .} by

k(&) = Aa,ewm,(E0) — (AL () A, pwm (1) — (A2) (1) x

A, ,0.0,5(E1) + (AL AD) (1) Aa, 2,0k, (E 1) (3.13)
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Then by (2.7), (3.8)—(3.12), (3.13) we have

Dk, g0 (€ m)] < Clu+ 1) (3.14)
and
D1, < O+ 1) (@hF |€)) FTHD (o7 Jy]) =707 (3.15)
Now let
g f(,y) = ( S g f ) ) 2 (3.16)
k<ko,j<jo
and
v(f)(z,y) = S vk jul * f(z,9)] (3.17)
Thus,
Ao ouf(@y) < guf(zy) + C(Mpy ®idra) o (A, pof(@,y) +
2C(idry @ Mga) 0 (A, 0,0)f(2,9)) + 2C(Mp~ @ idgrm)
o(idry ® Mga) o (Ao, p.of(@,y)) (3.18)
and

vif(zy) < guf(z,y) +20(Mgpy @idga) o (A, puf(z,y) +
QC(idRN ® Mgwm)o (A6‘L7®7Q)f(x, y)) + QC(MRN ® idgm)
O(idRN ® MRM) © ()‘FZ‘L,P,Qf(xa y))a (319)
where Mga denotes the classical Hardy-Littlewood maximal function on R%.

Now by Lemmas 3.3, 3.4 and the boundedness of Mg« on LP spaces, for 1 < p < oo

there exists a positive constant C', independent of i such that

|Mrs @ idsr) o Oy, pu D) < Coln+ 1 111, (3.20)

|tidrs @ Mase) o O, 000)| < ol 11, (3.21)
and

|(Max @ idran) o (idry © Mas) o O, pof)| < Cplut 1IN, (3:22)
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for every f € LP (RN X RM) .
By (3.14), (3.15) and Plancherel’s theorem, there exists a positive constant C' > 0
independent of x4 such that

lguflly < Clu+1)2 £l - (3.23)
Therefore, by (3.19)—(3.22), we get
[, < Clut+ 12N (3.24)

Thus, by (3.14), (3.24) and using Lemma 2.3 with pg = 4 and ¢ = 2, we get

1/2 1/2
2 2
( > kg gnl > <C(u+1)° ( > okl > (3.25)
k<ko,j<jo 4 k<ko,j<jo 4
for arbitrary functions {gk,;}; ez on RN x RM.
By (3.15), (3.25) and invoking Lemma 2.4, we obtain that
g fll, < Colu+ 1)1, (3.26)

holds for 4/3 < p < 4 and f € LP(RYN x RM) with a positive constant C}, independent
of u.
By replacing p = 2 with p = (4/3) + & (¢ > 0) in (3.23) and repeating the preceding

arguments we get
g fll, < Colu+ 1) I, (3.27)
for 8/7 < p<8and f € LP(RY x RM). By continuing this process, we get

lgp 1, < Cole+ D11, (3.28)

for 1 < p < ooand f € LP(RY x RM), where C) is a constant independent of n. Hence
by (3.18), (3.20)—(3.22) and (3.27) we obtain (3.7) to complete the proof.

4. Proof of the main theorem

Assume that Q € L(logh L)?(S™~! x 8™~ 1). As in [2] we decompose Q as follows:
For p € N let E, = {(z,y) € S*~! x S~ 1: 2071 < |Q (z,y)| < 2"}, b, = Qxg, and

560



AL-QASSEM
Cu=|bull,- Let D={peN:C, =274},
Qo) = (€07 (e = [ ntwio) = [ b e0da)

4 /S o bue U)da(u)dU(U)>

for p € D and

QO:Q—ZQM.

pneD
Then it is easy to verify that
[ outude) = [ .o -0 (4.1)
S”nyfl Smfl
||QMH1 < 5 = 4(“,)2; (4.2)
Q(Jc,y) = Z CMQM x y (43)
neDU{0}
Z (M + 1)20u < C HQHL(logLP(S”*lxSmfl) ? (4'4)

pneDU{0}

for 4 € DU {0} where we used Cp = 1.

By (4.4)
Towfl, < > [C.|ITa.f], (4.5)
neDU{0}
where
_ N N Q (u,v)
Ta, f(z,y) = p.v. [ @ —@(u),y — () —7—m dudv. (4.6)
B.,,(0,1)xBn(0,1) Jul™ o™

Let Ny, My, P and Q be given as in the proof of Lemma 3.5. For 1 < [ < N,

e%

1<5<Mletcl7a=$%()anddég—ﬁiaayﬁ (0). For 0 < 7 < No,0 < k < My we
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define P = (P7y...,Pny) and Qx = (Q1 ks - - -, Qi) by

P (z) = Z Cla z, forl=1,...,N, 0<7< Ny —1; (4.7)
o<

Qskly) = Z ds g yﬁ, fors=1,..., M, 0<rx < My—1; (4.8)
[Bl<K

Py, =®and Qp, = V. Foreach 0 <7 < Np; 0 <k < M, let )\g‘:"gj = )\Q‘“pﬁkaJ. Let

w(7) and (k) denote the number of multi-indices o € (N U {0})" and 3 € (NU {0})"
satisfying |a| = 7 and |3] = &, respectively. Label the coordinates of R“(") and RY(*®)
by the of multi-indices o and S with || = 7 and |8| = &k, respectively. That is,
R = {(2a)}aj=r and RY"™ = {(yg)}gj=x- For 0 < 7 < Ny and 0 < £ < My,
we define the linear transformations L, : RY — R*(") and Q, : RM — R by

(L choz & and Qn g—zd,ﬁns

for o) = 7,18l = kK, 0 < 7 < Ng—1and 0 < k < My — 1, where w(Ny) = Ny and
v(Mp) = My. Then by Lemmas 2.7, 2.8, (2.7), (3.8)—(3.12) and the same argument as in
proofs of (2.7), we get

‘ )‘g;flz,jH < Clu+1)% (4.9)
A 5| ok T —
RIS 77)‘ < Clu+1)°|a” LT(§)‘ ar Qﬂ(n)‘ , (4.10)
(7' K) (7- 1,k) o| 1k ,%TT K ‘—‘%ff .
Ak ,,N(é A 7]“(5 n)‘ Cp+1)*|aT L. (§) a7 Qy(n) . (4.11)
SEEm = AT En| < Clur 12 e @] T |aum|[TT s @a2)
T,K T— 1 N T, rc 1 T7—1,k—1
( M7)7J(§ 77) ( Qu.k,j )(é- 77) ( Qu,k,j )(é- 77) ( ;ka )(é-’ 77)‘
< C(M + 1)2 a;kLT(g) " aszn(n) " ; (413)
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e%

J(T,k—1 J(7—1,k—1 T AT
‘)‘élu,k,j)(gan)_)‘élmkd )(é,n)‘ < Clu+1)7?al" L (9" ; (4.14)
J(t—1,k J(t—1,k—1 ki TafT
G Em = ATV < a1 |a Qe (4.15)
for e DU{0},1<7< Npand 1 <k < M.
By invoking Lemmas 3.3-3.5, (4.9)—(4.15), and Lemmas 2.3, 2.4 we get
No,M 2
1o fll, = | >0 G 1| < Colut DI, (416)

k<ko,j<jo p

for every f € LP(RYN x RM™), p € DU {0}, and for all p, 1 < p < oco. Hence, (1.7) follows
by (4.4), (4.5) and (4.16).
One may construct a proof for (1.8) by using the above estimates and employing the

techniques in [1]. We omit the details.
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