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Abstract

In this paper, we study certain classes of oscillatory singular integral operators

with kernels in L logL(Sn−1) which is known to be the most desirable size condition

for the Lp boundedness to hold. We prove that such operators are bounded on

Lp. Our results extend and improve previously known results. Variations of our

approach in this paper can be applied to handle more general oscillatory singular

integral operators. This concludes by indicating a variety of results that can be

obtained.
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Hardy Littlewood maximal function.

1. Introduction and Statement of Results

Let n ≥ 2 and Sn−1 be the unit sphere in Rn equipped with the normalized Lebesgue
measure dσ. Let N0 denote the set of all nonnegative integers. Suppose that Ω ∈
L1
(
Sn−1

)
is a homogeneous function of degree zero on Rn that satisfies∫

Sn−1
Ω(x) dσ(x) = 0. (1.1)

For a real valued polynomial mapping P on Rn ×Rn, consider the oscillatory singular
integral operator

TP,Ωf(x) = p.v.
∫

Rn

eiP(x,y) |x− y|−n Ω(x− y)f(y)dy. (1.2)
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When P = 0, TP,Ω is the classical Calderón-Zygmund singular integral operator which
is known to be bounded on Lp for all 1 < p <∞, provided that Ω is in the Hardy space
H1(Sn−1). When TP,Ω is of convolution type, i.e., P(x, y) = P (x − y) for some real
valued polynomial mapping P on Rn, the Lp boundedness properties of TP,Ω are well
understood (for more information, see [1], [6], [10]). In [9], Ricci-Stein proved that TP,Ω
is bounded on Lp for all 1 < p < ∞, provided that Ω is in C1(Sn−1). Later, Lu-Zhang
[8] showed that the Lp boundedness of TP,Ω still holds if the condition Ω ∈ C1(Sn−1)
is replaced by the weaker condition Ω ∈ Lq(Sn−1) for some q > 1. Subsequently, the
condition Ω ∈ Lq(Sn−1) for some q > 1 was very much relaxed by Jiang and Lu in
([7]). In fact, they proved that TP,Ω is bounded on Lp, 1 < p < ∞ provided that
Ω ∈ L logL(Sn−1), where L logL(Sn−1) is the space of all L1

(
Sn−1

)
functions Ω that

satisfies ∫
Sn−1

∣∣∣Ω(y
′
)
∣∣∣ log+(

∣∣∣Ω(y
′
)
∣∣∣)dσ(y

′
) <∞.

It is worth pointing out that L logL(Sn−1) properly contains the space Lq(Sn−1) (for any
q > 1). Moreover, it is known that the condition Ω ∈ L logL(Sn−1) is the most desirable
size condition for the Lp boundedness of T0,Ω to hold ([4]). In fact, Calderón-Zygmund
([4]) showed that the Lp boundedness of T0,Ω for any 1 < p <∞ may fail if the condition
Ω ∈ L logL(Sn−1) is replaced by Ω ∈ L(logL)1−ε(Sn−1) for some ε > 0.

In this paper, we study a more general class of oscillatory singular integral operators.
More specifically, we investigate the Lp boundedness of the class of operators TΦ,Ω for
phase functions Φ of the form

Φ(x, y) =
∑l

j=0
Pj (x)φj(y − x),

where, φj : Rn → R is a homogenous function which is real analytic on Sn−1 and Pj is
a real valued polynomial on Rn. It is clear that the class of such functions Φ contains
properly the class of all real valued polynomial mappings P on Rn ×Rn investigated by
Jiang and Lu ([7]). This naturaly leads to the following question:

Question. Suppose that Ω is a homogeneous function of degree zero on Rn that satisfies
(1.1) and that Ω ∈ L logL(Sn−1). Is the corresponding operator TΦ,Ω bounded on
Lp (Rn) for some 1 < p <∞?
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In this paper, we shall answer this question in the affirmative under some certain
conditions. In fact, we shall present a systematic approach for dealing with oscillatory
singular integral operators when their kernels Ω belong to L logL(Sn−1). The key idea
of our approach is determining the dependence of the Lp estimates of the operators
under consideration on the size of Ω. In order to apply this idea, we pave the way by a
sequence of lemmas in Section 2. It is worth pointing out that, a great deal more can
be obtained by applying variations of this approach to more general oscillatory singular
integral operators.

Our main results in this paper are the following:

Theorem 1.1. Suppose that Ω is a homogeneous function of degree zero on Rn that
satisfies (1.1), and Ω ∈ L∞(Sn−1) with ‖Ω‖L1 ≤ 1 and ‖Ω‖L∞ ≤ 2A for some A > 1.

Suppose also that {dj, mj : 0 ≤ j ≤ l} ⊂ N0 and that Φ(x, y) =
∑l

j=0 Pj (x)φj(y − x),
where φj : Rn → R is a homogenous function of degree mj which is real analytic on
Sn−1, and Pj(x) is a real valued polynomial on Rn with degree dj. If φj is a constant
function whenever mj = 0, then

‖TΦ,Ω(f)‖p ≤ CpA ‖f‖p (1.3)

for all 1 < p < ∞ with constant Cp independent of A and the coefficients of the
polynomials {Pj : 0 ≤ j ≤ l}.

As a consequence of Theorem 1.1 and certain decomposition of the function Ω, we
obtain the following result:

Theorem 1.2. Suppose that Ω ∈ L logL(Sn−1) is a homogeneous function of degree
zero on Rnthat satisfies (1.1). Suppose also that {dj, mj : 0 ≤ j ≤ l} ⊂ N0 and that

Φ(x, y) =
∑l

j=0 Pj (x)φj(y − x), where , φj : Rn → R is a homogenous function of

degree mj which is real analytic on Sn−1, and Pj(x) is a real valued polynomial on Rn

with degree dj. If φj is a constant function whenever mj = 0, then

‖TΦ,Ω(f)‖p ≤ Cp ‖f‖p (1.4)

for all 1 < p < ∞ with constant Cp independent of the coefficients of the polynomials
{Pj : 0 ≤ j ≤ l}.

Clearly, Theorem 1.2 is a proper extension of the result in ([7]).
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Throughout this paper the letter C will denote a constant that may vary at each
occurrence, but it is independent of the essential variables.

Finally, the authors would like to thank the refree for his/her valuable remarks.

2. Some Lemmas

Lemma 2.1 ([5]). For j ∈ {1, 2} let Uj be a domain in Rnj and Kj a compact subset of
Uj . Let h(·, ·) be real analytic function on U1×U2 such that h(·, z) is a nonzero function
for every z ∈ U2. Then there exists a positive constant δ = δ(h,K1, K2) such that

sup
z∈K2

∫
K1

|h(w, z|−δ dw <∞.

Lemma 2.2 (van der Corput [12]). Suppose φ and ψ are real-valued and smooth in (a,
b), and that

∣∣φ(k)(t)
∣∣ ≥ 1 for all t ∈ (a, b). Then the inequality∣∣∣∣∣
∫ b

a

e−iλφ(t)ψ(t)dt

∣∣∣∣∣ ≤ Ck |λ|− 1
k [|ψ(b)|+

∫ b

a

∣∣∣ψ′ (t)∣∣∣ dt],
holds when:

(i) k ≥ 2, or
(ii) k = 1 and φ

′
is monotonic.

The bound Ck is independent of a, b, φ, and λ.

For a real valued function Φ on Rn ×Rn and a homogeneous function Ω of degree
zero on Rn, define the operator

T0
Φ,Ωf(x) =

∫
|x−y|<1

eiΦ(x,y) |x− y|−n Ω(x− y)f(y)dy. (2.1)

Then we have the following result:

Lemma 2.3. Suppose that Ω is a homogeneous function of degree zero on Rn and
Ω ∈ L1(Sn−1). Suppose also that Φ and φ are real valued functions on Rn×Rn with the
following properties:
(i) For h ∈ Rn there exists a real valued function Ψh on Rn ×Rn such
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that Φ(x, y) = φ(x− h, y − h) + Ψh(x, y);
(ii) There exist α ≥ 0 and β > 0 such that for all z, x, y ∈ Rn, we have

|φ(x− z, y− z)| ≤ B |x− z|
α

|x− y|
β

;

where B is a constant independent of z, x, and y.

(iii)
∥∥T0

Ψh,Ω
f
∥∥
p
≤ CpA ‖f‖p with constants Cp and A independent of h.

Then ∥∥T0
Φ,Ωf

∥∥
p
≤ (B ‖Ω‖L1 +A)Cp ‖f‖p , (2.2)

where Cp is independent of A and Ω.

Proof. Given h ∈ Rn. Then

T0
Φ,Ω = T0

Ψh,Ω
+ (T0

Φ,Ω −T0
Ψh,Ω

). (2.3)

Now, by conditions (i) and (ii), whenever |x− h| < 1
4 , we have∣∣T0

Φ,Ωf(x) −T0
Ψh,Ω

f(x)
∣∣

≤
∫
|x−y|<1

∣∣∣ei(φ(x−h,y−h)+Ψh(x,y)) − eiΨh(x,y)
∣∣∣ |x− y|−n |Ω(x− y)| |f(y)| dy

≤
∫
|x−y|<1

|φ(x− h, y − h)| |x− y|−n |Ω(x− y)| |f(y)| dy

≤ B

∫
|x−y|<1

|x− h|
α

|x− y|−n+β |Ω(x− y)| |f(y)| dy

≤ B

∫
|x−y|<1

|x− y|−n+β |Ω(x− y)| |f(y)| dy.

Therefore, by Minkowski’s inequality, we obtain∫
|x−h|<1

4

∣∣T0
Φ,Ωf(x) −T0

Ψh,Ωf(x)
∣∣p dx

≤ B(
∫
|z|<1

|z|−n+β |Ω(z)|dz)p
∫
|y−h|< 5

4

|f(y)|p dy

≤ B

β
‖Ω‖pL1

∫
|y−h|<5

4

|f(y)|p dy. (2.4)
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Thus, by (2.3), (2.4), and condition (iii), we have∫
|x−h|< 1

4

∣∣T0
Φ,Ωf(x)

∣∣p dx ≤ CppAp ‖f‖pp +
B

β
‖Ω‖pL1

∫
|y−h|< 5

4

|f(y)|p dy. (2.5)

Hence, since h ∈ Rn is arbitrary, (2.5) implies (2.2). This completes the proof. 2

Lemma 2.4. Suppose that Ω is a homogeneous function of degree zero on Rnthat satisfies
(1.1). Suppose also that Ω ∈ L1(Sn−1)∩L∞(Sn−1) with ‖Ω‖L1 ≤ 1 and ‖Ω‖L∞ ≤ 2A for
some A > 1. Then the singular integral operator

TI,Ωf(x) = p.v.
∫

Rn

|x− y|−n Ω(x− y)f(y)dy (2.6)

satisfies

‖TI,Ωf‖p ≤ CpA ‖f‖p (2.7)

for all 1 < p <∞. The constant Cp is independent of A.

Proof. The proof of this lemma is based on an argument developed in ([1]). Let
{σj:j ∈ Z} be a sequence of measures defined in the Fourier transform side by

σ̂j(ξ) =
∫

2j≤|y|<2j+1
e−iξ·y |y|−n Ω(y)dy, j ∈ Z.

Then

TI,Ωf(x) =
∑
j∈Z

σj ∗ f(x). (2.8)

Now, by a standard argument (see [1]), we can show that

|σ̂j(ξ)| ≤ Cmax{
∣∣2jξ∣∣ , 2A ∣∣2jξ∣∣−ε} (2.9)

for some ε > 0 with constant C independent of A, j and ξ. Therefore, by (2.9) and the
trivial bound |σ̂j(ξ)| ≤ 1, we get

|σ̂j(ξ)| ≤ C
∣∣2jξ∣∣± ε

A . (2.10)

Let M be the maximal function

Mf(x) = sup
j∈Z

∫
2j≤|y|<2j+1

|y|−n|Ω(y)‖f(x − y)|dy.
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Then by a theorem on page 477 in ([12]) and the assumption that ‖Ω‖L1 ≤ 1, we have

‖Mf‖p ≤ C ‖f‖p (2.11)

for all 1 < p ≤∞ with constant C independent of A. Hence (2.7) follows by (2.8), (2.10),
(2.11), and Theorem 2.1 in ([1]). This completes the proof.

By a careful inspection of the proof of Lemma 1 in ([8]), we have the following version
of Lemma 1 in ([8]):

Lemma 2.5. Suppose that Ω is a homogeneous function of degree zero on Rn and
Ω ∈ L1(Sn−1). If

Tf(x) = p.v.
∫

Rn

K(x, y)f(y)dy (2.12)

is a (Lp, Lp) type operator with 1 < p <∞, and K(x, y) satisfies

|K(x, y)| ≤ |Ω[(x− y)′]|
|x− y|n , (2.13)

then the operators

Tεf(x) =
∫
|x−y|<ε

K(x, y)f(y)dy

are (Lp, Lp) type operators, and ‖Tε‖ ≤ C(‖T‖+ ‖Ω‖L1), where C is independent of T
and ε.

It should be pointed out that Lemma 2.5 was proved in ([8], Lemma 1) under the
assumption that Ω ∈ Lq(Sn−1) for some 1 < q ≤ ∞. Moreover, the dependence of ‖T

ε
‖

on the function Ω was not explicitly stated, partly because such information was not
needed for the treatment used there. It is worth noticing that all hypotheses imposed
in Lemma 2.5 above can be satisfied under the condition Ω ∈ L1(Sn−1). This can be
easily seen by taking Ω ∈ L1(Sn−1) to be an odd homogeneous function of degree zero
on Rn(see [4]).

Finally, we end this section by recalling the following lemma in ([2]) which will be a
key step in proving Theorem 1.3.

571



AL-SALMAN, AL-JARRAH

Lemma 2.6 ([2]). Suppose that Ω ∈ L(log+ L)(Sn−1) that satisfies (1.1). Then there
exist a subset D of N, a sequence {λm : m ∈ N} of non negative real numbers, and a
sequence of functions {Ωm : m ∈ D∪ {0}} in L1(Sn−1) such that

(i)
∫

Sn−1

Ωmdσ = 0, for m ∈ D∪{0} ;

(ii) ‖Ωm‖∞ ≤ 24(m+2), and ‖Ωm‖L1(Sn−1) ≤ 2, for m ∈ D∪{0} ;

(iii)
∑
m∈D

(m+ 2)λm <∞;

(iv) Ω =
∑

m∈D∪{0}
λmΩm.

3. Proofs of Main Results

We start this section by presenting a proof of Theorem 1.1.

Proof(of Theorem 1.1). We shall use induction on

d(Φ) = inf max
0≤j≤m

{dj + mj},

where the infimum is taken over all representations of Φ of the form Φ(x, y) =
∑m

j=0 Pj

(x)φj(y − x) with dj is the degree of Pj and mj is the degree of homogeneity of φj.

It is clear that if d(Φ) = 0, then |TΦ,Ω(f)(x)| = |TI,Ωf(x)|, where TI,Ω is the operator
in (2.6). Therefore, (1.3) holds by Lemma 2.4 and Lemma 2.5.

Now assume that (1.3) holds for all Φ with d(Φ) ≤ d and given Φ(x, y) =
∑l

j=0 Pj

(x)φj(y − x) with d(Φ) = d+ 1. Let j1, j2, . . . , jk be all 0 ≤ j ≤ l with dj + mj = d+ 1.

For 1 ≤ s ≤ k, let hs(x) =
∑
|αjs |=djs

a
αjs
xαjs and H(x, y) =

∑k
s=1 hs(x)φjs(y − x). It

is straightforward to see that H can be written as

H(x, y) =
M∑
m=1

λmφm(x, y), (3.1)

for some integer M > 0, constants {λm : 1 ≤ m ≤M} with

∑M

m=1
|λm| =

k∑
s=1

∑
|αjs |=djs

∣∣∣aαjs ∣∣∣ , (3.2)
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and functions φm, 1 ≤ m ≤ M of the form x
α

θ(y − x) for some multi-index α and a
homogenous function θ of degree d+ 1− |α| which is real analytic on Sn−1. Then

Φ(x, y) =
M∑
m=1

λmφm(x, y) +
∑

0≤j≤l,dj+mj≤d
Pj (x)φj(y − x). (3.3)

Now set

δ = (
∑M

m=1
|λm|)

1
d+1 ;

Φδ (x, y) =
∑M

m=1
λmδ

−(d+1)φm(x, y) +
∑

0≤j≤l,dj+mj≤d
Pj (δ−1x)φj(δ−1(y − x));

and

fδ (x) = f(δ−1x).

Thus, it is easy to see that the following hold:

Φ(x, y) = Φ
δ
(δx, δy), (3.4)∑M

m=1

∣∣∣λmδ−(d+1)
∣∣∣ = 1 (3.5)

‖TΦ,Ωf‖p = δ−
n
p

∥∥∥TΦ
δ
,Ωfδ

∥∥∥
p

. (3.6)

Therefore, by (3.6) and the fact that δ−
n
p ‖fδ‖p = ‖f‖p, it suffices to show that∥∥∥TΦ

δ
,Ωf
∥∥∥
p
≤ CA ‖f‖p (3.7)

for all 1 < p < ∞, where C is a constant independent of δ and the coefficients of the
polynomials Pj. To this end, by writing TΦ

δ
,Ω as

TΦ
δ
,Ωf(x) = T0

Φ
δ
,Ωf(x) + T∞Φ

δ
,Ωf(x), (3.8)

where

T∞Φ
δ
,Ωf(x) =

∫
|x−y|≥1

eiΦδ (x,y) |x− y|−n Ω(x− y)f(y)dy,

573



AL-SALMAN, AL-JARRAH

it suffices to show that ∥∥∥T0
Φ
δ
,Ωf
∥∥∥
p
≤ ACp ‖f‖p (3.9)

and ∥∥∥T∞Φ
δ
,Ωf
∥∥∥
p
≤ ACp ‖f‖p (3.10)

for all 1 < p < ∞, where C is a constant independent of δ and the coefficients of the
polynomials Pj.

We start by proving (3.9). For h ∈ Rn, let

Ψh,δ(x, y) =
∑M

m=1
λmδ

−(d+1){φm(x, y) − φm(x − h, y − h)}

+
∑

0≤j≤l,dj+mj≤d
Pj (δ−1x)φj(δ−1(y − x)). (3.11)

Since Ψh satisfies the induction assumption, Lemma 2.5 and the fact that ‖Ω‖L1 ≤ 1
imply that ∥∥∥T0

Ψh,δ,Ωf
∥∥∥
p
≤ ACp ‖f‖p (3.12)

for all 1 < p < ∞, where C is a constant independent of δ and the coefficients of the
polynomials Pj and hence of h. Moreover, by the choice of φm and (3.11), straightforward
calculations imply that Ψh,δ satisfies the assumptions (i)-(ii) of Lemma 2.3 with Φ

replaced by Φ
δ

and φ(x, y) =
∑M

m=1 λmδ
−(d+1)φm(x, y) . Hence (3.9) follows by Lemma

2.3. This proves (3.9).

Now, we prove (3.10). For j ∈ Z, let

T∞Φ
δ
,Ω,j(f)(x) = p.v.

∫
2j−1<|x−y|≤2j

eiΦδ (x,y) |x− y|−n Ω(x − y)f(y)dy.

Then

T∞Φ
δ
,Ω(f)(x) =

∞∑
j=1

T∞Φ
δ
,Ω,j(f)(x). (3.13)
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By similar argument as in ([8]), for fixed y′ ∈ Sn−1, let Y be the hyperplane through
the origin orthogonal to y′. Then for x ∈ Rn, there exist s ∈ R and z ∈ Y such that
x = z + sy′. Therefore,

T∞Φ
δ
,Ω,j(f)(x) =

∫
Sn−1

Ω(y′)Nδ ,j,y′,z(f(z + ·y′)(t)dtdσ(y′), (3.14)

where N
δ,j,y′,z is the operator defined on L2 (R) by

Nδ,j,y′,z(g)(s) =
∫

2j−1≤s−t<2j
eiΦδ (z+sy′,z+ty′)(s− t)−1g(t)dt.

Now, it is easy to see that the operator (N
δ ,j,y′,z)

∗N
δ ,j,y′,z has the kernel

M
δ ,j(u, v) =

∫
1
2<r≤1,2j−1<2jr+v−u≤2j

eiEδ,j(y
′,z,u,v,r)r−1(2jr + v − u)−1dr,

where

E
δ,j(y

′, z, u, v, r) = Φ
δ
(2jry′ + z + vy′, z + vy′)− Φ

δ
(2jry′ + z + vy′, z + uy′).

Now by the choice of φm, simple manipulations imply that

E
δ,j(y

′, z, u, v, r) =
∑M

m=1
λmδ

−(d+1){[2(d+1)jr(d+1) − (2jr + v − u)(d+1)]φm(y′, 0)

+[2djrd − (2jr + v − u)d]
∑n

j=1
zjφm,j(y′, 0)

+n[2djrdv − (2jr + v − u)du]φm(y′, 0)}+ R(r, j, z, y′, u, v, δ),

where x′jφm,j(x
′, 0) = φm(x′, 0) and R is a function with dd

drd
(R(r, j, z, y′, u, v, δ)) = 0.

Therefore,

dd

drd
(E

δ,j(y
′, z, u, v, r)) = C(n, d)(v − u)2dj

∑M

m=1
λmδ

−(d+1)φm(y′, 0) (3.15)

with constant C(n, d) that depends only on n and d.
By (3.15) and Lemma 2.2, we get

|Mδ,j(u, v)| ≤ C |v − u|
− 1
d 2−j

∣∣∣∣∑M

m=1
λmδ

−(d+1)φm(y′, 0)
∣∣∣∣− 1

d

. (3.16)
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Now by (3.16) and the estimate |M
δ,j(u, v)| ≤ 2−jCχ[0,2j−1](|v − u|), we have

|M
δ,j(u, v)| ≤ C |v − u|

− εd 2−j
∣∣∣∣∑M

m=1
λmδ

−(d+1)φm(y′, 0)
∣∣∣∣− εd χ[0,2j−1](|v − u|) (3.17)

for all ε ∈ (0, 1]. Thus if we choose ε < d, we have

∫
|v−u|<2j−1

|M
δ,j(u, v)|dv ≤ C2−

ε
d j

∣∣∣∣∑M

m=1
λmδ

−(d+1)φm(y′, 0)
∣∣∣∣− εd ; (3.18)

which implies that

‖(N
δ ,j,y′,z)

∗N
δ ,j,y′,z‖L∞→L∞ ≤ C2−

ε
d j

∣∣∣∣∑M

m=1
λmδ

−(d+1)φm(y′, 0)
∣∣∣∣− εd . (3.19)

Similarly, we obtain

‖(N
δ ,j,y′,z)

∗N
δ ,j,y′,z‖L1→L1 ≤ C2−

ε
d j

∣∣∣∣∑M

m=1
λmδ

−(d+1)φm(y′, 0)
∣∣∣∣− εd .

Hence, we have

‖N
δ ,j,y′,z‖L2→L2 ≤ C2−

ε
d j

∣∣∣∣∑M

m=1
λmδ

−(d+1)φm(y′, 0)
∣∣∣∣− εd . (3.20)

Now, since

|N
δ ,j,y′,zg(s)| ≤ CHL(g)(s),

where HL is the Hardy Littlewood maximal function which is bounded on Lp for all
1 < p <∞ , we have

‖N
δ ,j,y′,z‖Lp→Lp ≤ C (3.21)

for all 1 < p <∞.
By interpolation between (3.20) and (3.21), we have

‖Nδ ,j,y′,z‖Lp→Lp ≤ C2−
θε
d j

∣∣∣∣∑M

m=1
λmδ

−(d+1)φm(y′, 0)
∣∣∣∣− θεd (3.22)
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for 0 < θ < 1. Therefore, we immediately obtain

∥∥∥T∞Φ
δ
,Ω,j(f)

∥∥∥
Lp
≤ C2−

θε
d j2A(

∫
Sn−1

∣∣∣∣∑M

m=1
λmδ

−(d+1)φm(y′, 0)
∣∣∣∣− θεd dσ(y′)) ‖f‖Lp .

(3.23)

Thus if we choose ε very small, then (3.5), Lemma 2.1, and (3.23) imply that∥∥∥T∞Φ
δ
,Ω,j(f)

∥∥∥
Lp
≤ C2−

θε
d j2A ‖f‖Lp . (3.24)

On the other hand, it is easy to see that∣∣∣T∞Φ
δ
,Ω,j(f)(x)

∣∣∣ ≤ ∫
2j−1<|y|≤2j

|y|−n Ω(y) |f(x − y)| dy. (3.25)

Thus, by (3.25) and the fact that ‖Ω‖1 ≤ 1, we have∥∥∥T∞Φ
δ
,Ω,j(f)

∥∥∥
Lp
≤ ‖f‖p . (3.26)

Therefore, by interpolation between (3.24) and (3.26), we get∥∥∥T∞Φ
δ
,Ω,j(f)

∥∥∥
Lp
≤ C2−

θε
dA j ‖f‖p (3.27)

for all 1 < p <∞. Hence by (3.13) and (3.27), we have

∥∥∥T∞Φ
δ
,Ω(f)

∥∥∥
Lp

≤ C{
∞∑
j=1

2−
θε
dA j} ‖f‖p

≤ CA ‖f‖p (3.28)

for all 1 < p <∞. This completes the proof. 2

Now we give the proof of Theorem 1.2.

Proof(of Theorem 1.2). Suppose Ω ∈ L(log+ L)(Sn−1) that satisfies (1.1). Then by
Lemma 2.6 there exist a subset D of N, a sequence {λm : m ∈ N} of non negative real
numbers, and a sequence of functions {Ωm : m ∈ D∪{0}} in L1(Sn−1) that satisfy

∫
Sn−1

Ωmdσ = 0, for m ∈ D∪ {0} ; (3.29)
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‖Ωm‖∞ ≤ 24(m+2) and ‖Ωm‖L1(Sn−1) ≤ 2, for m ∈ D∪{0} ; (3.30)

∑
m∈D∪{0}

(m+ 2)λm <∞; (3.31)

Ω =
∑

m∈D∪{0}
λmΩm. (3.32)

For m ∈ D∪{0}, let TΦ,Ω,m(f) be the operator defined by (1.2) with Ω replaced by Ωm
and P by Φ. Then by (3.32), TΦ,Ω is decomposed as

TΦ,Ω(f)(x) =
∑

m∈D∪{0}
λmTΦ,m(f)(x). (3.33)

Now by (3.29)-(3.30) and Theorem 1.2 with A = 4(m+ 2), we have

‖TΦ,Ω,m(f)‖Lp ≤ (m+ 2)C ‖f‖p (3.34)

for all 1 < p <∞. Hence by (3.31) and (3.34), the proof is complete. 2

Finally, the authors would like to point out that the class of operators discussed in
this paper has been introduced by the same authors in ([3]) under the assumption that
Ω ∈ Lq(Sn−1) for some q > 1, from a different point of view.
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