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The Cross Curvature Flow of 3-Manifolds with
Negative Sectional Curvature

Bennett Chow∗, Richard S. Hamilton

Abstract

We consider the cross curvature flow, an evolution equation of metrics on 3-
manifolds. We establish short time existence when the sectional curvature has
a sign. In the case of negative sectional curvature, we obtain some monotonic-
ity formulas which support the conjecture that after normalization, for initial
metrics on closed 3-manifolds with negative sectional curvature, the solution
exists for all time and converges to a hyperbolic metric. This conjecture is still
open at the present time.

1. The evolution equation

When n = 3, it is an old conjecture, which is also a consequence of the Geometrization
Conjecture, that any closed 3-manifold with negative sectional curvature admits a hyper-
bolic metric. In this article, we introduce an evolution equation which deforms metrics
on 3-manifolds with sectional curvature of one sign. Given a closed 3-manifold with an
initial metric with negative sectional curvature, we conjecture that this flow will exist for
all time and converge to a hyperbolic metric after a normalization. We shall establish
some results, including monotonicity formulae, in support of this conjecture.

Note that in contrast to negative sectional curvature, every closed n -manifold admits
a metric with negative Ricci curvature by the work of Gao and Yau [6], [7] for n = 3
and Lohkamp [12] for all n ≥ 3. When n ≥ 4, Gromov and Thurston [8] have shown that
there exist closed manifolds with arbitrarily pinched negative sectional curvature which
do not admit metrics with constant negative sectional curvature. It is unknown whether
such manifolds admit Einstein metrics. In particular, the stability result for Ricci flow of
Ye [15] assumes more than just curvature pinching depending only on dimension.1

Let (M, g) be a 3-dimensional Riemannian manifold with negative sectional curvature.
The Einstein tensor is Pij = Rij − 1

2Rgij. We find it convenient to raise the indices:

Key words and phrases. Cross curvature flow, geometric evolution equation, negative sectional cur-

vature, monotonicity formula, hyperbolic metric.
∗Partially supported by NSF Grant DMS-0203926.
1We learned from Rugang Ye that according to an example of Farrell and Ontaneda [4], it is not

possible in general to deform negatively pinched metrics to Einstein metrics of negative sectional curvature

in a continuous fashion. In other words, in general there is no continuous map from the space of negatively
pinched metrics to the space of Einstein metrics of negative sectional curvature.

1This article was presented at the 10th Gökova Geometry-Topology Conference
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P ij = gikgj`Rk` − 1
2
Rgij. When P ij has an inverse Vij, the cross curvature tensor is

hij = (detP )Vij where detP =
(

detP k`

det gk`

)
.

Since the tensor Pij is symmetric, we can, at each point, choose an orthonormal basis in
which it is diagonal and gij = δij . In this basis, Rij and hij are also diagonal, and one
sees that if the eigenvalues of Pij are a = −R2323, b = −R1313, c = −R1212, then the
eigenvalues of Rij are − (b+ c) , − (a+ c) , − (a+ b) and the eigenvalues of hij are bc, ac,
ab. Note that our sign convention is such that Rijij, i 6= j, are the sectional curvatures,
that is, Rijk` = Rhij`ghk. Hence if

(
M3, g

)
has negative sectional curvature, then both Pij

and hij are positive definite.

Lemma 1. We have the following identities

(a) ∇iP ij = 0
(b)

(
h−1

)ij∇ihjk = 1
2

(
h−1

)ij∇khij.
Proof. The first identity is the contracted second Bianchi identity gij∇iRjk = 1

2∇kR.
Using (a), we have(

h−1
)ij∇ihjk = (detP )−1

P ij∇i (Vjk detP )

= (detP )−1∇k detP =
1
2
∇k log deth

where deth = dethij/ det gij. That implies (b).

The above identities imply that the cross curvature tensor is dual to the Ricci tensor
in the following sense.

Lemma 2. Let (Mn, g) be Riemannian manifold.

(a) If the Ricci curvature is positive, then the identity map ι : (M, gij) → (M,Rij) is
harmonic, and if the Ricci curvature is negative, then ι : (M, gij) → (M,−Rij) is
harmonic.

(b) If n = 3 and the sectional curvature is negative (or positive), then ι : (M, hij) →
(M, gij) is harmonic.

Proof. Given two Riemannian metrics γ and γ̂ on a manifold M, the Laplacian of the
identity map ι : (M, γ)→ (M, γ̂) is given by

(∆ι)k = γij
(

Γ̂kij − Γkij
)

= γij γ̂k` (∇iγ̂j` +∇j γ̂i` −∇`γ̂ij) (1)

= −γijγk`
(
∇̂iγj` + ∇̂jγi` − ∇̂`γij

)
(2)
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where Γkij , Γ̂kij, ∇ and ∇̂ denote the Christoffel symbols and covariant derivatives for the
metrics γ and γ̂ respectively. Statement (a) follows from (1) with γij = gij and γ̂ij = Rij.
Statement (b) follows from (2) with γij = hij and γ̂ij = gij.

With this duality in mind we define the cross curvature flow (XCF)2 on a 3-manifold
as the flow on the space of Riemannian metrics whose flow lines g (t) satisfy

∂

∂t
gij = 2hij

if the sectional curvature is negative and by ∂
∂tgij = −2hij if the sectional curvature is

positive. This is similar to the much more general Ricci flow equation ∂
∂tgij = −2Rij,

which has been extensively studied (see for example [11] and [13]). However, as we will
see in section 2, the XCF is fully nonlinear, whereas the Ricci flow is quasi-linear.

2. Short time existence

Let µijk denote the volume form and raise indices by µijk = gipgjqgkrµpqr .

Lemma 3. We have the following identities
(a) µpqkRkjrsµ

rs` = −2Pm`
(
δpj δ

q
m − δpmδ

q
j

)
, and

(b) hij = 1
8Ri`pqµ

pqkRkjrsµ
rs`.

Proof. It is straightforward to verify these formulas using the orthonormal basis described
before Lemma 1, noting that µ123 = µ123 = 1 in that basis.

Lemma 4. If (M, g) is a closed 3-manifold with negative (or positive) sectional curvature,
then for any smooth initial metric a solution to the XCF exists for a short time.

Proof. We consider the case of negative sectional curvature since the case of positive
sectional curvature is similar. Let g̃ij denote a variation of the metric gij and let tildes
also denote the variations of various curvature tensors. We have

R̃ijk` =
1
2

(
∂2g̃jk
∂xi∂x`

+
∂2g̃i`
∂xj∂xk

− ∂2g̃j`
∂xi∂xk

− ∂2g̃ik
∂xj∂x`

)
+ · · ·

where the dots denote terms with 1 or less derivatives of the metric. Applying the equality
in Lemma 3 (a) yields

h̃ij = −1
8

(
∂2g̃`p
∂xi∂xq

+
∂2g̃iq
∂x`∂xp

− ∂2g̃`q
∂xi∂xp

− ∂2g̃ip
∂x`∂xq

)
Pm`

(
δpj δ

q
m − δpmδ

q
j

)
− 1

8

(
∂2g̃`p
∂xj∂xq

+
∂2g̃jq
∂x`∂xp

− ∂2g̃`q
∂xj∂xp

− ∂2g̃jp
∂x`∂xq

)
Pm` (δpi δ

q
m − δpmδ

q
i )

+ · · · .

2We owe this nice abbreviation to Ben Andrews.
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Thus the map E which takes g to 2h is a second-order non-linear operator. Its symbol is
obtained from h̃ij by replacing ∂

∂xi
by a cotangent vector ζi in the highest (second) order

terms

σDE (g) (ζ) g̃ij = −Pm` (ζiζmg̃`j + ζ`ζj g̃im − ζiζj g̃`m − ζ`ζmg̃ij) ,
where DE denotes the linearization of E. Since the sectional curvature is negative, Pm`

is positive and the eigenvalues of the symbol are nonnegative.
There are no solutions of E (g) = 2h unless a certain integrability condition holds. One

checks that the integrability condition is L (hij) = 0, where

L (T )k +
(
h−1

)ij∇iTjk − 1
2
(
h−1

)ij∇kTij.
Thus Lemma 1b insures that the integrability condition holds. By Theorem 5.1 of [9], a
solution to the XCF exists for short time.

The cross curvature flow equation is fully nonlinear. In fact, Ben Andrews has observed
that, when the 3-manifold is embeddable into euclidean space or Minkowski space, the
XCF is equivalent to the Gauss curvature flow, which is a parabolic Monge-Ampere
equation.

Since given an initial metric with negative sectional curvature, a solution exists for
short time, the next question is whether negative sectional curvature is preserved. This
requires one to show that there are negative upper and lower bounds for the sectional
curvatures. The estimates in the remainder of the paper assume the existence of the
solution on a given time interval. Hopefully they are steps along the way to prove bounds
for the sectional curvatures and convergence to hyperbolic. However these conjectures
remain open.

3. Evolution of the Einstein tensor

Since Lemma 4 establishes short-time existence for the XCF, we can begin examining
the long-time behavior of the flow and the geometry of the evolving metric g(t). One
important technique is to find functions constructed from g(t) which are decreasing in t.
Such functions are often integrals of curvature quantities; the fact that they are decreasing
gives bounds, valid for all time, on those particular curvature integrals.

In Sections 4 and 5 we will construct two monotone functions for the cross curvature
flow. In preparation for that we derive the formula for the evolution of the Einstein tensor
under the XCF. It is convenient to express the Einstein tensor as

Pmn = −1
4
µijmµk`nRijk`, (3)

which is a special case of Lemma 3a.

Lemma 5. The evolution of the Einstein tensor is given by
∂

∂t
P ij = ∇k∇`

(
P k`P ij − P ikP j`

)
− detP gij −H P ij

4
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where H is the trace gijhij.

Proof. The evolution of the Riemann curvature tensor is given by the standard formula

∂

∂t
Rijk` = ∇i∇`hjk +∇j∇khi` −∇i∇khj` −∇j∇`hik

+ gpq (Rijkphq` + Rijp`hqk) .

Since the evolution of the volume form is given by ∂
∂t
µijk = Hµijk and ∂

∂t
µijk = −Hµijk,

we may compute using (3) that

∂

∂t
Pmn = −1

4
µijmµk`n (∇i∇`hjk +∇j∇khi` −∇i∇khj` −∇j∇`hik)

− 1
4
µijmµk`ngpq (Rijkphq` +Rijp`hqk)− 2HPmn

= µijmµk`n∇i∇khj` −
1
2
µijmµk`ngpqRijp`hqk − 2HPmn.

The lemma follows from the identity

1
2
µijmµk`ngpqRijp`hqk + HPmn = detP gmn .

We can verify this last identity by choosing a basis where gij = δij , P
ij and hij are

diagonal, µ123 = 1, and Rijk` 6= 0 only if (i, j) = (k, `) as unordered pairs. For example:

1
2
µij1µk`1gpqRijp`hqk = µk`1gpqR23p`hqk

= R2323h22 −R2332h33

= −P 11 (h22 + h33)

so that 1
2
µij1µk`1gpqRijp`hqk+HP 11 = P 11h11 = detP. One can similarly check that the

off-diagonal components are zero.

4. Monotonicity of the volume of the Einstein tensor

We will show the monotonicity of

vol (P ) =
∫
M

√
detP dµ

where dµ is the volume form of gij. Note that vol(P ) is scale-invariant.

Proposition 6. If (M, g) is a 3-manifold with negative sectional curvature, then vol(Pij)
is nondecreasing under the XCF.

This follows from the more general computation
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Lemma 7. For any η ∈ R

d

dt

∫
M

(detP )η dµ = η

∫
M

(
1
2

∣∣T ijk − T jik∣∣2
V
− η

∣∣T i∣∣2
V

)
(detP )η dµ

+ (1− 2η)
∫
M

(detP )ηH dµ

where T ijk = P i`∇`P jk, T i = VjkT
ijk = P ij∇j log detP, and the norms are with respect

to the metric Vij.

Proof. We compute using the evolution of P ij that

d

dt

∫
M

(detP )η dµ =
∫
M

(detP )η
(
η
(
Vij∂tP

ij − gij
(
∂tg

ij
))

+ H
)
dµ

= η

∫
M

(detP )η Vij∇k∇`
(
P k`P ij − P ikP j`

)
dµ

+ (1− 2η)
∫
M

(detP )ηH dµ

= −η
∫
M

∇k [(detP )η Vij ]
(
P k`∇`P ij − P j`∇`P ik

)
dµ

+ (1− 2η)
∫
M

(detP )ηH dµ

The lemma follows after rewriting the term ∇k [(detP )η Vij] in the integrand as
(detP )η (ηVpq (∇kP pq)Vij − VipVjq∇kP pq).

Decompose T ijk into its irreducible components (the orthogonal group O (3) for the
metric V acts on the bundle of 3-tensors which are symmetric in the last two components)

T ijk = Eijk − 1
10
(
P ijT k + P ikT j

)
+

2
5
P jkT i,

where the coefficients − 1
10 and 2

5 are chosen so that VijEijk = VikE
ijk = VjkE

ijk = 0
(recall that T ijk is symmetric in j and k). Using this we find that∣∣T ijk − T jik∣∣2

V
=
∣∣Eijk −Ejik∣∣2

V
+
∣∣T i∣∣2

V
. (4)

Taking η = 1/2 in the lemma, we have

d

dt

∫
M

(detP )1/2
dµ =

1
4

∫
M

∣∣Eijk −Ejik∣∣2
V

(detP )1/2
dµ ≥ 0

and Proposition 6 follows.
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5. Approach to hyperbolic in an integral sense

Recall that the goal of the cross curvature flow is to deform a metric with negative
sectional curvature on a 3-manifold to a hyperbolic metric. We shall show that an integral
measure of the difference of the metric from hyperbolic is monotone decreasing. Let

J =
∫
M

(
P

3
− (detP )1/3

)
dµ

where P = gijP
ij. By the arithmetic-geometric mean inequality (applied in a basis in

which Pij is diagonal and gij = δij), the integrand is nonnegative, and identically zero if
and only if Pij = 1

3Pgij, i.e., gij has constant curvature.

Theorem 8. Under the cross curvature flow dJ
dt ≤ 0.

Proof. We compute

d

dt

∫
M

P dµ =
∫
M

[
(∂tgij)P ij + gij∂tP

ij + PH
]
dµ

=
∫
M

[
2hijP ij + gij

(
−detP gij −H P ij

)
+ PH

]
dµ

= 3
∫
M

detP dµ.

By the definition of hij we can replace detP by (deth)1/3 (detP )1/3
. Combining this

with the previous lemma with η = 1/3 and formula (4), we find that

dJ

dt
= −1

6

∫
M

(∣∣Eijk −Ejik∣∣2 +
1
3

∣∣T i∣∣2) (detP )1/3
dµ

−
∫
M

(
H

3
− (det h)1/3

)
(detP )1/3

dµ.

This is nonpositive (and 0 if and only if gij has constant negative sectional curvature).

6. A maximum principle estimate

We can also obtain information about the long-time behavior of geometric flows like the
XCF by using the maximum principle for parabolic equations. That typically involves
finding a function f(x, t), constructed tensorially from the metric and its derivatives,
which satisfies an inequality of the form ∂tf ≥ ∆f . Since the higher order terms in
the evolution of Pij are of divergence form with both first and second order terms, in
comparison to the Ricci flow, it is much more difficult to obtain good maximum principle
estimates. But, as we show next, there is at least one function which, under the XCF,
satisfies an equation for which the maximum principle can be applied. At the end of this
section we use the maximum principle to show that the XCF preserves the set of metrics
of negative sectional curvature unless singularities arise in finite time.

7
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Before starting, note that the formula �f = P ij∇i∇jf defines an elliptic operator
acting on functions f ; by Lemma 1 this is the same as ∇i∇j

(
P ijf

)
.

Proposition 9.
∂

∂t
log detP = � log detP +

1
2

∣∣T ijk − T jik∣∣2 − 2H.

Proof. This follows from the computations
∂

∂t
log detP = Vij∂tP

ij − gij∂tgij

= Vij∇k∇`
(
P k`P ij − P ikP j`

)
− 2H

= ∇k
[
Vij
(
P k`∇`P ij − P j`∇`P ik

)]
− (∇kVij)∇`

(
P k`P ij − P ikP j`

)
− 2H

= P k`∇k
(
Vij∇`P ij

)
− 2H

+ VipVjq∇kP pq
(
P k`∇`P ij − P j`∇`P ik

)
and

� log detP = P k`∇k
(
Vij∇`P ij

)
.

The maximum principle cannot be directly applied to the equation of Proposition 9
because the last term has the wrong sign. But we can proceed as follows. Let f = log detP
and introduce the functions

m (t) = min
M

f (x, t) and X (t) = min{H (x, t) : f (x, t) = m (t)} .

Given t0, let x0 ∈M be any point so that f (x0, t0) = m (t0) , Then m (t0)−m (t0 −∆t) ≥
f (x0, t0) − f (x0, t0 −∆t) . Now divide by ∆t and let ∆t → 0. Using Proposition 9 and
the fact that �f ≥ 0 at a minimum point, we obtain

m′ (t0) ≥ ∂f

∂t
(x0, t0) ≥ (�f − 2H) (x0, t0) ≥ −2H (x0, t0) ,

where the time derivative of the Lipschitz function is the lim inf of backwards difference
quotients. Thus

d

dt
min
M

log detP (t) ≥ −2X (t) .

Suppose for some T < ∞ we have infM×[0,T ) detP = 0. It is not difficult to show that
there then exists a sequence of times ti → T such that minM log detP (ti) → ∞ and
X (ti) → ∞. Hence there exists xi ∈ M such that detP (xi, ti) → 0 and H (xi, ti) → ∞.
Thus, if 0 < a ≤ b ≤ c denote the absolute values of the principal sectional curvatures,
then there exists a sequence of points and times such that bc → ∞ and abc → 0; in

8
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particular, one of the sectional curvatures tends to zero and another tends to minus
infinity.

Proposition 10. Let
(
M3, g (t)

)
, t ∈ [0, T ), be a solution to the XCF on a closed 3-

manifold starting from a metric g(0) with negative sectional curvature. If T < ∞ and
infM×[0,T ) detP = 0, then g(t) has negative sectional curvature for all t ∈ [0, t) and there
exists a sequence of points and times (xi, ti) with ti → T such that c (xi, ti) → ∞ and
a (xi, ti)→ 0.

We are curious if the proposition may be used to prove that infM×[0,T ) detP > 0 for
all T < ∞. One further goal is to show that for any T < ∞, there exist negative upper
and lower bounds for the sectional curvatures on M × [0, T ).

7. Conclusion

We have obtained estimates, in the form of monotonicity formulae, for the cross curva-
ture flow which lead us to hope and expect that it should exist for all time and converge
after normalization to a hyperbolic metric on closed 3-manifolds with initial metric of
negative sectional curvature. In view of the well-developed theory of Ricci flow [11] and
the ground breaking work of Perelman [13] on the second author’s program for Ricci flow
as an approach to the Thurston Geometrization and Poincaré conjectures, it is hopeful
that further progress can be made on the cross curvature flow.

Recently, Ben Andrews has obtained new estimates for the cross curvature flow[1] . In
the case when the universal cover of the initial 3-manifold is isometrically embedded as a
hypersurface in Euclidean or Minkowski 4-space, the Gauss curvature flow (see [5], [14],
[3], [10], [2] for earlier works on the GCF) induces the XCF for the metric. In that case
Andrews has proved convergence results. In general, he expects long time existence and
convergence of the XCF to reduce to proving local in time regularity (higher derivative
estimates). It would be interesting to obtain a Li-Yau-Hamilton Harnack type inequality
for the XCF. Such gradient estimates of Harnack type enable one to compare the curva-
tures at different points and times and often allow one to convert integral estimates to
pointwise estimates. Harnack type estimates exist for many geometric evolution equations
so it is hopeful that one exists for the XCF.

Now suppose that one starts the XCF at a metric of negative sectional curvature. Then
detP = abc is positive, and stays positive as long as the flow remains in the set of metrics
of negative sectional curvature. Conversely, as long as detP > 0, the evolving metric g(t)
has negative sectional curvature, and all the results of the previous sections apply. It is
natural, then, to ask whether detP can limit to zero in finite time. Another interesting
question is to characterize solutions to the XCF where ∂tvol(P ) = 0. Note by the formula
in Theorem 8, ∂tJ = 0 if and only if g has constant sectional curvature.
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