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Perelman’s Monotonicity Formula and Applications

Natasa Sesum

Abstract

This article relies on [15] that the author wrote with Gang Tian and Xiaodong
Wang. In view of Hamilton’s important work on the Ricci flow and Perelman’s
paper on the Ricci low where he developes the techniques that he will later use
in completing Hamilton’s program for the geometrization conjecture, there may
be more interest in the area. We will also discuss the author’s theorem which
says that the curvature tensor stays uniformly bounded under the unnormalized
Ricci flow in a finite time, if the curvatures are uniformly bounded. We will
prove that in the case of a Ké&hler-Ricci flow with uniformly bounded Ricci
curvatures, for each sequence of flows g(t; + t) for t; — oo there exists a
subsequence of metrics converging to a solution to the flow outside a set of

codimension 4.

1. Introduction

The study of the Ricci flow began with Hamilton’s seminal paper [8]. In this paper
he introduced the notion of the Ricci flow, showed its short time existence and applied
it to classify closed 3-manifolds with positive Ricci curvature. In his paper [9] Hamilton
extended his methods and showed that closed 4-manifolds with positive curvature operator
are topologically either S* or RP*. In [10] R.Hamilton proved that for any initial metric
on a closed surface (except that of a 2-sphere with variable curvature) the Ricci flow
converges to a constant curvature metric. In [3] B. Chow extended the result to the case

of any metric on a 2-sphere. The Ricci flow equation is the equation

d .
Egij = 72R1Cij.
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It is a very powerful equation, because if we start with an arbitrary initial metric on
a manifold, sometimes we can expect to get nice metrics in the limit such as Einstein
metrics or soliton type solutions. The stationary points of the Ricci flow on the space of
metrics on a given manifold are the Ricci-flat metrics, or Einstein metrics in the case of the
normalized Ricci flow when the volume of a manifold is fixed. Ricci solitons are important
in the study of the Ricci flow, in particular regarding studying the singularities that
appear along the flow. Soliton solutions evolve by diffeomorphisms g(t) = ¢*¢(0), so that
% g(t) = Ly (g), where vector field V' induces one parameter family of diffeomorphisms
¢(t). Gradient solitons, where V' = Vf for some function f satisfy the equation Ric +
D?f = 0. The Ricci flow is invariant under the whole diffeomorphism group of a manifold.
The stationary points of the Ricci flow on the moduli space M/D are the equivalence
classes of Ricci solitons.

The organization of the paper is as follows: in section 2 we will discuss the functional W
that was introduced by Perelman in [13]. We will also give the detailed proof of Perelman’s
noncollapsing theorem and we will mention the author’s theorem that gives a sufficient
condition for the existence of a solution to the unnormalized Ricci flow for all times. In
section 3 we will state Perelman’s pseudolocality theorem whose proof can be found in
[13] and [15]. In this section we will also prove a subsequential smooth convergence of a
Kéhler-Ricci flow on a given manifold, outside a set of real codimension 4. We believe it
can be proved in a more elementary way, using the parabolic regularity theory, but we
will give a prove that uses Perelman’s pseudolocality theorem and Theorem 7 proved by
J. Cheeger, T. Colding and G. Tian in [5].

2. Functional W and the noncollapsing theorem

On a closed manifold M consider the following functional in a metric g and a smooth

function f on M
Flg.f) = /M<R+ VP av. (1)

If we fix a measure dm = e~/dV we get a functional F™(g) as f is determined by g.

Its first variation is
dF™(v) = / — (v, trRic + D? fYdm. (2)
M

This leads to the consideration of the gradient flow
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at?
where f evolves according to the backward heat equation

= —2(Ric+ D?f),

daf
— =—R-Af.
dt !

In other words, the Ricci flow can be viewed as L? gradient flow of functional F. A

very important property of this functional is its monotonicity along the flow, i.e.

dt

To generalize F' consider the functional

if(g(t), f(t) = 2/ IRic+ D?f|?e~/dV > 0.
M

Wi, f,7) = [ (V1P + B+ £ = namr) - Fav.
M
where 7 > 0 is a scale parameter. It is also monotone along the flow % gi; = —2R;j, while
f and 7 satisfy

d n
= _A 2 _ -
dtf f+IVfl R+2 ;

F=-1,

respectively. Perelman used the monotonicity of these functionals to rule out nontrivial

breathers.

Definition 1. A solution g(t) to the Ricci flow is called a breather if for some #; < to we
have g(t2) = a¢*g(t1) for some constant « and diffeomorphism ¢. The cases « = 1, > 1

and a < 1 correspond to steady, expanding and shrinking breathers, respectively.

Denote by p(g,7) = inf{f|(47w)*rz“ J.y e~fdv=1} W(g, f, 7). Tt is not difficult to show that
this infimum is achieved for some function f, that lim,_o p(g,7) = 0 and that u(g, 7) is
negative for small 7.

One of very nice applications of functional YW and the monotonicity formula for W
is the noncollapsing theorem for solutions for a finite time. This noncollapsing theorem
together with curvature bounds give a uniform lower bound on the injectivity radii along
the flow.
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Definition 2. Let g(t) be a solution to the Ricci flow on [0,7). We say g¢(t) is lo-
cally collapsing at 7" if 3t — T and By = B(pg, 7)) at t; such that 77 /t; is bounded,
IRm|(g(t) < Cry? in By and 7" VolBy, — 0.

Theorem 1. If M is closed and T < oo, then g(t) is not locally collapsing at T.

Proof. Suppose it is locally collapsing at T', then we have a sequence ¢t — T and By as

described in the definition. Let w = e=7/2. pu(g, 1) is the infimum of

W(u) = / ((4|Vu|? + Ru?) — v? Inu? — nu?)(4n7) "2V (3)
M
under the constraint
/ w?(4rr) 2V = 1. (4)
M
Let 7 = 7“,3 and
up = eckqb(r,;ld(x,pk)) (5)

at t, where ¢ is a smooth function, equal 1 on [0, 1/2], decreasing on [1/2, 1] and equal

0 on [1,00). Cf is a constant so that

(4m)™? = eQC’Cr;"/ o(ry td(x, pr))?dV
B(pk,rk)
< eQC’“r;"VdBk.
Since 7, "VolBy — 0, Cx — 400. We compute

W) < (4r) " 2rme [
B(pk k)
Let V(r) = VolB(py, ). We have that Ric > —(n—1)C?r,? in By,. Let Hy, be the simply

connected space of constant sectional curvature —027“;2. Let V(r) be the corresponding

(4]¢')> — 29 log ¢)dV + i, max R —n —2Cj. (6)

volume in Hy. Vry/V(ry/2) is bounded above by a uniform constant C’. By Bishop
comparison theorem, Vry/V(ry/2) < Vrg/V(ri/2) < C'. Hence V(ry) — V(ry/2) <
C'V (ry/2). Therefore

[ e -2togenv < CvVn) - Vi)

B(pk,r)
CV(rr/2)
C [, ¢°dV.

IN

IN
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Finally we get
W(uk) < " —20C,. (7)

Since Cy, — +o0 and pu(g(tx), 73) < W(g(tx), uk, 73), we conclude that u(g(t), rz) — —oo.
By the monotonicity x(g(0), ¢tk + 77) < u(g(tx),r3) and hence u(g(0),tx +r7) — —oc.

This is impossible since ¢ + 77 is bounded. |
We will now state a corollary of noncollapsing theorem.

Corollary 1. Let g;;(t), t € [0,T) be a solution to the Ricci flow on a closed manifold
M, where T < co. Assume that for some sequences tp, — T, p, € M and some constant
C we have Qr = |Rm|(pk,tx) — oo and |[Rm|(z,t) < CQy, whenever t < ti. Then a
subsequence of scalings of g;;(tx) at pr with factors Qi converges to a complete ancient

solution to the Ricci flow, which is k-noncollapsed on all scales for some k > 0.

Short time existence of solutions to the Ricci flow has been proved by Hamilton ([8])
and simplified by DeTurck ([6]). A very interesting and important question that we can
ask is under which conditions the flow will exist for all times, i.e. when the curvature does
not blow up in a finite time. The other very important question is when the curvature
of the flow stays uniformly bounded when the flow exists for all times (i.e. when we can
guarantee that the curvature will not blow up at ¢t = o).

From Hamilton’s work in [11] we know that in the case of unnormalized flow we have

the following result.

Theorem 2 (Hamilton’s theorem). For any smooth initial metric on compact manifold
there exists a maximal time T on which there is a unique smooth solution to the Ricci

flow for 0 <t < T. Fither T = oo or else the curvature is unbounded as t — T.
In [16] the author has proved the following result on the existence time for a solution.

Theorem 3. Let g(t) be a solution to (gi;)¢ = —2R;; with |Ric| < C uniformly for all

times when the solution exist. Then the solution exists for all times t € [0, 00).

The theorem above is an immediate consequence of Theorem 2 and theorem that we

will state below.
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Theorem 4. Consider the unnormalized flow (gij): = —2R;; on a compact manifold M
fort € [0,T), where T < co. Assume that |Ric(g(t))] < C for all t € [0,T). Then the

curvature tensor can not blow up at T'.

Since the Ricci tensor of our flow stays uniformly bounded in a finite time, all metrics
are uniformly equivalent to each other, which prevents the collapsing case to happen when
we take a sequence of dilations. Namely, if the statement of Theorem 4 were not true,
we would get a sequence of dilatations of our flow converging to an ancient, complete,
Ricci-flat, nonflat solution to the Ricci flow. On the other hand, using the fact that the
uniform bounds on the Ricci curvature give a good control over the volume forms and
distances of metrics under the Ricci flow, we can get that for a limit of the sequence of
dilatations the following holds: W = w, for all » > 0, where w,, is the volume of a
unit ball in the euclidean space and p is a point in the limit manifold. That would mean
that our limit solution would have to be Euclidean, which is not the case. The detailed
proof of this theorem can be found in [16].

We would like to mention the local version of monotonicity formula for W that can be
found in [13]. The monotonicity of W along the flow immediatelly follows from Proposition

1 as we will see below.

Proposition 1 (Perelman). Let g;;(t) be a solution to the Ricci flow (gij)¢ = —2Rij,
0<t<T, and let u = (4n(T —t))"3eF satisfy the conjugate heat equation O* =
—uy — Au+ Ru. Then v = [(T —t)2Af — |V f|> + R) + f — n]u satisfies

. 1
O*y = —2(T - t)|Rij + VNjf — mgijp

This immediatelly implies the monotonicity for W, for the following reason. By partial

integration we get

/M v = /M[(T — )|V + R) + f —nle™/ (4n(T — 1))~ 5dV = W(g(t), f(t),7(t))

d d
EW = o MUdV}z/MUtDV}—/M —RvdV;

/ (—O0% — Av)dV; = —/ O*v >0
M M

16



SESUM

by Proposition 1. The advantage of this version of monotonicity formula shows up when
one wants to work locally. There is a nice application of it in the proof of pseudolocality

theorem in section 10.

3. Pseudolocality theorem and the Kéahler-Ricci flow

We will state Perelman’s pseudolocality theorem whose proof can be found in [12], [13]

and [15]. We will show below how it can be used to prove the following theorem about
the Kéhler-Ricci flow.

Theorem 5. Assume we are given the Kdhler-Ricci flow (9;7): = —R;5+ 9,5 on a closed,
Kahler manifold M with ¢;(M) > 0. Assume that the Ricci curvatures are uniformly
bounded, i.e. |Ric| < C for all t. Then for every sequence t; — oo there exists a subse-
quence such that (M, g(t; +t)) — (Y, g(t)), where (Y, g(t)) is an orbifold and the conver-
gence is smooth outside the set S of codimension 4. Moreover, g(t) solves the Kdhler-Ricci

flow equation off S.

Theorem 6 (Perelman’s pseudolocality theorem). For every o > 0 there exists § > 0,
€ > 0 with the following property. Suppose we have a smooth solution to the Ricci flow
(gij)t = —2R;j for 0 <t < (erg)? and assume that at t = 0 we have R(x) > —7“0_2 and
Vol(99Q)™ > (1 — 8§)e, Vol(Q)" =L for any x and Q C B(zo,70), where ¢, is the euclidean
isoperimetric constant. Then we have an estimate |Rm|(z,t) < at=1 + (erg) 2, whenever
0<t<(erg)~2, d(z,t) = disty(z, 20) < erp.

Before we start proving Theorem 5 we will prove simple lemmas about the convergence
of a sequence of 1 parameter families of metrics changing under any Ricci flow that are

consequences of statements that can be found in [7].

Proposition 2 (D. Glickenstein). Let {(M;, gi(t), pi)}52,, wheret € [0,T], be a sequence
of pointed Riemannian manifolds of dimension n which is continuous in the t variable in
the following way: for each § > 0 there exists n > 0 such that if to,t1 € [0,T] satisfies
[to — t1] < n then

(14 6)""gi(to) < gi(t1) < (14 0)gi(to), (8)
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for all i > 0, and such that Ric(g;(t)) > cgi(t), where ¢ does not depend on t or i. Then
there is a subsequence {(M;, gi(t),pi)}52, and a l-parameter family of complete pointed
metric spaces (X (t),d(t),x) such that for each t € [0,T] the subsequence converges to
(X(t),d(t), x) in the pointed Gromov-Hausdorff topology.

Since (M, gi(t)) and (M;, ¢;(0)) are homeomorphic by Lipschitz homeomorphisms, it
can be showed that X (¢) is homeomorphic to X(0).

Theorem 7 (Cheeger, Colding, Tian). If {M;, g;,pi)} converges to (Y,d,y) in pointed
Gromov-Hausdorff topology, if |Ric|y, < C and if Vol(By(p;)) > C for all i, then the
regular part R of Y is a CY*-Riemannian manifold and at points of R, the convergence
is C1®. Moreover the codimension of the set of singular points (which is a closed set in
Y ) is at most 4.

We will consider the Kéahler-Ricci flow

(9:7)t = 9;5 — Riz = d;0u. 9)

In [2] H.D. Cao proved that the solution to this flow exists for all times ¢ € [0, 00).
Perelman proved that there are uniform bounds on C*® norms on the potential functions
u(t), the scalar curvature R(t) and the diamteres diam(M, g(t)). He also proved that
the noncollapsing condition holds along the Kéahler-Ricci flow, i.e. that there exists C
so that VolB(p,r) > Cr™ for all p € M, all » > 0 and all times ¢t > 0, where C is a
constant depending on ¢(0). If ¢; is any sequence such that ¢; — oo, Proposition 2 will
apply to (M, g(t; +t)) for all ¢ and all ¢ belonging to a time interval of finite length (for
|Ric|y(¢) < C for all t and the condition (8) in Proposition 2 is satisfied).

We will restrict ourselves to the case of Kéahler manifolds of complex dimension 2, but it
is easy to generalize the whole argument to an arbitrary dimension, without the essential
changes (in higher dimensions we deal with a singular set of dimension 2n — 4, which is
0, i.e. a set of points in complex dimension 2). In the case of complex dimension 2, for
every sequence t; — oo there is a subsequence {(M, g(¢; + t))} converging to a compact
orbifold (Y, g(t)) with isolated singularities. This is due to the fact that L? norm of the
curvature operator (in the K&hler case) can be uniformly bounded in terms of the first

and the second Chern class of a manifold and its Kéhler class. Combining Proposition 2

18



SESUM

and Theorem 7 gives us that (Y, g(¢)) is an 1 parameter family of orbifolds (it is even
a Lipschitz family for parameter ¢ belonging to an interval of finite length), such that a
regular part of (Y,g(t)) is C1® manifold and the convergence (M,g(t; +t)) — (Y, g(t))
takes place in C'1'® topology, away from the set of singular points (which is common for
all orbifolds (Y, g(t))).

The main tools in the proof of our theorem will be Perelman’s pseudolocality theorem
and Theorem (A.1.5) in [4].

Proof. Assume that the curvature blows up. Let t; — oo be such that Q; = |Ric|(p;, t;) >
maxyso,¢;] and Q; — oo. We have already seen that, since |Ric|(g(t)) < C, there exists
a subsequence (M, g(t; +t)) converging to orbifolds (Y, g(t)) in C*® norm off the set of
singular points. Moreover, metrics g(t) are C1® off the singular set. We may assume
that Sing(Y) = {p}. Our goal is to show that we actually have C*° convergence off the
singular point, due to the fact we are changing our metrics under the Kéhler-Ricci flow.

Adopt the notation of [5]. Let R denote the regular set in Y. Let R. = {y|da# (B1 (Yoo )
B1(0)) < € for every tangent cone (Y, yo)} and R, , is the set of all points y such that
there exists z such that (0,7) € R* x {z} and for some u > r and every s € (0, u]
dan(Bs(y), Bs((0,7))) < es. Re = UrRe,p

Choose ep and ép as in Perelman’s pseudolocality theorem. Choose € > 0 such that
dp > € and € < €y, where € is such that R = R, for all € < ey (such € exists by section
7in [4]).

Pick up any point ¢ € Y\{p}. Then ¢ € Ne<e,Re-

Claim 3.1. For any regular point ¢ € R there exists ig, A and » > 0 such that for all
Byt;+4)(5,4") C Byt,44) (1, q) we have Volg, 1) By(t,+4)(s,¢") > (1 — €')s™, for all i > ig
and all t € [—A, A].

Proof. For ¢ find r and § as in Theorem (A.1.5 (i) and (ii) in [4]). For this § choose 01
and 7 (by Theorem (A.1.5 (iii))) such that z € (WR)ss, » implies that

Yy € Rss Yy € By (x) Vs < (1—=08)r —dist(z,y) ,r’ <ri. (10)

Take any sequence §; — 0 as ¢ — oo. We can choose a sequence 7; such that ¢ € Rs, r,.

We claim that ¢ € Rs,,r, for some » < r;. In order to prove that we may assume
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r; — 0 (otherwise if r; > & for all 4, dau(B.(q), Bx(0)) < §; — 0 and therefore we
would have VolB,(q) = VolB,(0) for all r <

Theorem (A.1.5, (i)) in [4]). Therefore, there exist " < §; and r” < 71 such that
q € WR)s . This implies ¢ € (WR)s, v, since §" < §;. Choose a sequence g; € M

k, and ¢ € Rs, s for some s < ry, by

such that By, 4 (1", ¢:) cH By)(r",q) as i — oo for all t € [-A, A]. Choose ig such
that for 7 > ig we have that dgu(Byt,+4)B(r", ¢i), By (1", q) < 61 for all t € [-A, Al.
We can choose such A because our metrics g(t) are equivalent for ¢ belonging to the
interval of finite length (for the uniform bound on the Ricci curvatures). By the ‘triangle

inequality’ for the Gromov-Hausdorff distance we get that

dar(Bge,+(r", i), Br(0)) < 401,
for all i > ip and ¢t € [—A, A], i.e. ¢ € WR)ss, ». (10) gives us that ¢’ € Rs s for all
q" € By, 44)(r",qi) and s < (1 — §)r"” — disty, 14(qs,¢’) for all i > ig and all t € [-A, A].
By (A.1.5 (ii)) in [4] we get that (since r” < r)

VolByt,+1)(s,¢") > (1 — €')Vol B, (0), (11)

for all ¢ € By, 4+ (r"',q) and s < (1 — 6)r" — distyt,14)(¢i; ¢'). By reducing v we get
that there exists 7" such that the estimate (11) holds for all ¢’ € By, 44 (", q) and all s
such that By, 14)(s,¢") C By, (1", q).

|

Choose r, ig and A as in the claim above (for our regular point ¢ that we have fixed ear-
lier). Reduce 7" if necessary, so that (¢'r”)? < A. Since 1 —€’ > 1—§p, and since for every
ball By, —(erry2/2)(8,q") C By(t,—(errr)2/2) (1", qi) we have that Voly, —(err)2/2)Bs(q') =
(1 —6p)s™, by Perelman’s pseudolocality theorem

|Rm|z,t) < + (€'r"")?,

1
(e'r")?
for all x € Byu)(qi,€'r”) and for every ¢t € [0,t; + (e€'7")?/2]. gi(t) = g(t; + t) is a
sequence of Ricci flows with uniformly bounded curvatures for ¢ € [0, (¢'r')*/2] on balls
By, 1)(qi, €'r"). This together with the volume noncollapsing condition and Hamilton’s
compactness theorem we get that the convergence of the sequence of our metrics is smooth,

and g(t) are smooth metrics on B(q, €'r"), for t € [0, (¢/7"")?/2]. Repeating all these above
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to translated time intervals by (€'r”)? /2 we get that g(t) are smooth metrics on B(q, €'1")
for all times.
Since ¢ was an arbitrary chosen point, the conclusion of our Theorem (5) holds for all

points in Y that are not singular.
O

We will state now a simple corollary of Theorem 5.

Corollary 2. Let g;;(t), t € [0,00) be a solution to the Kdihler-Ricci flow on a closed
manifold M. Assume there exist a sequence t, — oo, pr € M and some constant C' such
that Qi = |Ric|(pk,tr) — oo and |Ric|(z,t) < CQy for all t < ti,. Then a subsequence
of scalings of g;;(tr) at py with factors Qr converges to an ancient, Ricci-flat solution to

the Ricci flow, outside the set of codimension 4.

Proof. The proof that a subsequence of scalings of g,;(tx) at p with factors Q, converges
to an ancient solution to the Ricci flow outside the set of codimension 4 (call it S) is
the same as in 5. The fact that it is Ricci flat off the set of codimension 4 follows from
Perelman’s theorem which says that there exists a constant C' so that |R(g(t))| < C for
all t > 0 and the evolution equation for the scalar curvature

d

1
“R=A a2 L _
dtR R+ |Ric|” + 2nR(R n),

which after rescaling becomes
d ) 1

ERIL‘ =A;R; + |R1C|z2 + %RIL(Rz — 6

K3

where s = s(t) = (¢t — t;)Q;. Since R; = % — 0 as i — 00, smoothly outside S, we have

that the limit solution is Ricci flat outside S.

))

O
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