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Abstract

This article relies on [15] that the author wrote with Gang Tian and Xiaodong

Wang. In view of Hamilton’s important work on the Ricci flow and Perelman’s

paper on the Ricci flow where he developes the techniques that he will later use

in completing Hamilton’s program for the geometrization conjecture, there may

be more interest in the area. We will also discuss the author’s theorem which

says that the curvature tensor stays uniformly bounded under the unnormalized

Ricci flow in a finite time, if the curvatures are uniformly bounded. We will

prove that in the case of a Kähler-Ricci flow with uniformly bounded Ricci

curvatures, for each sequence of flows g(ti + t) for ti → ∞ there exists a

subsequence of metrics converging to a solution to the flow outside a set of

codimension 4.

1. Introduction

The study of the Ricci flow began with Hamilton’s seminal paper [8]. In this paper

he introduced the notion of the Ricci flow, showed its short time existence and applied

it to classify closed 3-manifolds with positive Ricci curvature. In his paper [9] Hamilton

extended his methods and showed that closed 4-manifolds with positive curvature operator

are topologically either S4 or RP 4. In [10] R.Hamilton proved that for any initial metric

on a closed surface (except that of a 2-sphere with variable curvature) the Ricci flow

converges to a constant curvature metric. In [3] B. Chow extended the result to the case

of any metric on a 2-sphere. The Ricci flow equation is the equation

d

dt
gij = −2Ricij.
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It is a very powerful equation, because if we start with an arbitrary initial metric on

a manifold, sometimes we can expect to get nice metrics in the limit such as Einstein

metrics or soliton type solutions. The stationary points of the Ricci flow on the space of

metrics on a given manifold are the Ricci-flat metrics, or Einstein metrics in the case of the

normalized Ricci flow when the volume of a manifold is fixed. Ricci solitons are important

in the study of the Ricci flow, in particular regarding studying the singularities that

appear along the flow. Soliton solutions evolve by diffeomorphisms g(t) = φ∗g(0), so that
d
dtg(t) = LV (g), where vector field V induces one parameter family of diffeomorphisms

φ(t). Gradient solitons, where V = ∇f for some function f satisfy the equation Ric +

D2f = 0. The Ricci flow is invariant under the whole diffeomorphism group of a manifold.

The stationary points of the Ricci flow on the moduli space M/D are the equivalence

classes of Ricci solitons.

The organization of the paper is as follows: in section 2 we will discuss the functionalW
that was introduced by Perelman in [13]. We will also give the detailed proof of Perelman’s

noncollapsing theorem and we will mention the author’s theorem that gives a sufficient

condition for the existence of a solution to the unnormalized Ricci flow for all times. In

section 3 we will state Perelman’s pseudolocality theorem whose proof can be found in

[13] and [15]. In this section we will also prove a subsequential smooth convergence of a

Kähler-Ricci flow on a given manifold, outside a set of real codimension 4. We believe it

can be proved in a more elementary way, using the parabolic regularity theory, but we

will give a prove that uses Perelman’s pseudolocality theorem and Theorem 7 proved by

J. Cheeger, T. Colding and G. Tian in [5].

2. Functional W and the noncollapsing theorem

On a closed manifold M consider the following functional in a metric g and a smooth

function f on M

F(g, f) =
∫
M

(R+ |∇f |2)e−fdV. (1)

If we fix a measure dm = e−fdV we get a functional Fm(g) as f is determined by g.

Its first variation is

dFm(v) =
∫
M

−〈v, trRic +D2f〉dm. (2)

This leads to the consideration of the gradient flow
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d

dt
g = −2(Ric +D2f),

where f evolves according to the backward heat equation

df

dt
= −R−∆f.

In other words, the Ricci flow can be viewed as L2 gradient flow of functional F . A

very important property of this functional is its monotonicity along the flow, i.e.

d

dt
F(g(t), f(t)) = 2

∫
M

|Ric + D2f |2e−fdV ≥ 0.

To generalize F consider the functional

W(g, f, τ) =
∫
M

[τ (|∇f |2 +R) + f − n](4πτ )−
n
2 dV,

where τ > 0 is a scale parameter. It is also monotone along the flow d
dtgij = −2Rij, while

f and τ satisfy

d

dt
f = −∆f + |∇f |2 − R+

n

2τ
,

τ̇ = −1,

respectively. Perelman used the monotonicity of these functionals to rule out nontrivial

breathers.

Definition 1. A solution g(t) to the Ricci flow is called a breather if for some t1 < t2 we

have g(t2) = αφ∗g(t1) for some constant α and diffeomorphism φ. The cases α = 1, α > 1

and α < 1 correspond to steady, expanding and shrinking breathers, respectively.

Denote by µ(g, τ) = inf{f|(4πτ)−
n
2
R
M
e−fdv=1}W(g, f, τ). It is not difficult to show that

this infimum is achieved for some function f , that limτ→0 µ(g, τ) = 0 and that µ(g, τ) is

negative for small τ .

One of very nice applications of functional W and the monotonicity formula for W
is the noncollapsing theorem for solutions for a finite time. This noncollapsing theorem

together with curvature bounds give a uniform lower bound on the injectivity radii along

the flow.
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Definition 2. Let g(t) be a solution to the Ricci flow on [0, T ). We say g(t) is lo-

cally collapsing at T if ∃tk → T and Bk = B(pk, rk) at tk such that r2
k/tk is bounded,

|Rm|(g(tk) ≤ Cr−2
k in Bk and r−nK VolBk → 0.

Theorem 1. If M is closed and T <∞, then g(t) is not locally collapsing at T .

Proof. Suppose it is locally collapsing at T , then we have a sequence tk → T and Bk as

described in the definition. Let u = e−f/2. µ(g, τ) is the infimum of

W(u) =
∫
M

(τ (4|∇u|2 + Ru2)− u2 lnu2 − nu2)(4πτ )−n/2dV (3)

under the constraint ∫
M

u2(4πτ )−n/2dV = 1. (4)

Let τ = r2
k and

uk = eCkφ(r−1
k d(x, pk)) (5)

at tk, where φ is a smooth function, equal 1 on [0, 1/2], decreasing on [1/2, 1] and equal

0 on [1,∞). Ck is a constant so that

(4π)n/2 = e2Ckr−nk

∫
B(pk,rk)

φ(r−1
k d(x, pk))2dV

≤ e2Ckr−nk VolBk.

Since r−nk VolBk → 0, Ck → +∞. We compute

W(uk) ≤ (4π)−n/2r−nk e2Ck

∫
B(pk ,rk)

(4|φ′|2 − 2φ2 logφ)dV + r2
k max

Bk
R− n− 2Ck. (6)

Let V (r) = VolB(pk, r). We have that Ric ≥ −(n−1)C2r−2
k in Bk. Let Hk be the simply

connected space of constant sectional curvature −C2r−2
k . Let V̄ (r) be the corresponding

volume in Hk. V̄ rk/V̄ (rk/2) is bounded above by a uniform constant C ′. By Bishop

comparison theorem, V rk/V (rk/2) ≤ V̄ rk/V̄ (rk/2) ≤ C ′. Hence V (rk) − V (rk/2) ≤
C ′V (rk/2). Therefore∫

B(pk ,rk)

(4|φ′|2 − 2φ2 logφ)dV ≤ C(V (rk)− V (rk/2))

≤ CV (rk/2)

≤ C
∫
Bk
φ2dV.
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Finally we get

W(uk) ≤ C ′′ − 2Ck. (7)

Since Ck → +∞ and µ(g(tk), r2
k) ≤ W(g(tk), uk, r2

k), we conclude that µ(g(tk), r2
k)→ −∞.

By the monotonicity µ(g(0), tk + r2
k) ≤ µ(g(tk), r2

k) and hence µ(g(0), tk + r2
k) → −∞.

This is impossible since tk + r2
k is bounded.

We will now state a corollary of noncollapsing theorem.

Corollary 1. Let gij(t), t ∈ [0, T ) be a solution to the Ricci flow on a closed manifold

M , where T < ∞. Assume that for some sequences tk → T , pk ∈ M and some constant

C we have Qk = |Rm|(pk, tk) → ∞ and |Rm|(x, t) ≤ CQk, whenever t < tk. Then a

subsequence of scalings of gij(tk) at pk with factors Qk converges to a complete ancient

solution to the Ricci flow, which is κ-noncollapsed on all scales for some κ > 0.

Short time existence of solutions to the Ricci flow has been proved by Hamilton ([8])

and simplified by DeTurck ([6]). A very interesting and important question that we can

ask is under which conditions the flow will exist for all times, i.e. when the curvature does

not blow up in a finite time. The other very important question is when the curvature

of the flow stays uniformly bounded when the flow exists for all times (i.e. when we can

guarantee that the curvature will not blow up at t =∞).

From Hamilton’s work in [11] we know that in the case of unnormalized flow we have

the following result.

Theorem 2 (Hamilton’s theorem). For any smooth initial metric on compact manifold

there exists a maximal time T on which there is a unique smooth solution to the Ricci

flow for 0 ≤ t < T . Either T =∞ or else the curvature is unbounded as t→ T .

In [16] the author has proved the following result on the existence time for a solution.

Theorem 3. Let g(t) be a solution to (gij)t = −2Rij with |Ric| ≤ C uniformly for all

times when the solution exist. Then the solution exists for all times t ∈ [0,∞).

The theorem above is an immediate consequence of Theorem 2 and theorem that we

will state below.
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Theorem 4. Consider the unnormalized flow (gij)t = −2Rij on a compact manifold M

for t ∈ [0, T ), where T < ∞. Assume that |Ric(g(t))| ≤ C for all t ∈ [0, T ). Then the

curvature tensor can not blow up at T .

Since the Ricci tensor of our flow stays uniformly bounded in a finite time, all metrics

are uniformly equivalent to each other, which prevents the collapsing case to happen when

we take a sequence of dilations. Namely, if the statement of Theorem 4 were not true,

we would get a sequence of dilatations of our flow converging to an ancient, complete,

Ricci-flat, nonflat solution to the Ricci flow. On the other hand, using the fact that the

uniform bounds on the Ricci curvature give a good control over the volume forms and

distances of metrics under the Ricci flow, we can get that for a limit of the sequence of

dilatations the following holds: Vol(B(p,r)
rn = wn for all r > 0, where wn is the volume of a

unit ball in the euclidean space and p is a point in the limit manifold. That would mean

that our limit solution would have to be Euclidean, which is not the case. The detailed

proof of this theorem can be found in [16].

We would like to mention the local version of monotonicity formula forW that can be

found in [13]. The monotonicity ofW along the flow immediatelly follows from Proposition

1 as we will see below.

Proposition 1 (Perelman). Let gij(t) be a solution to the Ricci flow (gij)t = −2Rij,

0 ≤ t ≤ T , and let u = (4π(T − t))−
n
2 e−f satisfy the conjugate heat equation 2∗ =

−ut −∆u+Ru. Then v = [(T − t)(2∆f − |∇f |2 +R) + f − n]u satisfies

2∗v = −2(T − t)|Rij +∇i∇jf −
1

2(T − t)gij|
2

This immediatelly implies the monotonicity forW, for the following reason. By partial

integration we get

∫
M

v =
∫
M

[(T − t)(|∇f |2 + R) + f − n]e−f(4π(T − t))− n2 dV = W (g(t), f(t), τ (t))

d

dt
W =

d

dt

∫
M

vdVt =
∫
M

vtDVt −
∫
M

−RvdVt

=
∫
M

(−2∗v −∆v)dVt = −
∫
M

2∗v ≥ 0
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by Proposition 1. The advantage of this version of monotonicity formula shows up when

one wants to work locally. There is a nice application of it in the proof of pseudolocality

theorem in section 10.

3. Pseudolocality theorem and the Kähler-Ricci flow

We will state Perelman’s pseudolocality theorem whose proof can be found in [12], [13]

and [15]. We will show below how it can be used to prove the following theorem about

the Kähler-Ricci flow.

Theorem 5. Assume we are given the Kähler-Ricci flow (gij̄)t = −Rij̄ +gij̄ on a closed,

Kähler manifold M with c1(M) > 0. Assume that the Ricci curvatures are uniformly

bounded, i.e. |Ric| ≤ C for all t. Then for every sequence ti → ∞ there exists a subse-

quence such that (M, g(ti + t))→ (Y, ḡ(t)), where (Y, ḡ(t)) is an orbifold and the conver-

gence is smooth outside the set S of codimension 4. Moreover, ḡ(t) solves the Kähler-Ricci

flow equation off S.

Theorem 6 (Perelman’s pseudolocality theorem). For every α > 0 there exists δ > 0,

ε > 0 with the following property. Suppose we have a smooth solution to the Ricci flow

(gij)t = −2Rij for 0 ≤ t ≤ (εr0)2 and assume that at t = 0 we have R(x) ≥ −r−2
0 and

Vol(∂Ω)n ≥ (1 − δ)cnVol(Ω)n−1 for any x and Ω ⊂ B(x0, r0), where cn is the euclidean

isoperimetric constant. Then we have an estimate |Rm|(x, t) ≤ αt−1 + (εr0)−2, whenever

0 < t ≤ (εr0)−2, d(x, t) = distt(x, x0) ≤ εr0.

Before we start proving Theorem 5 we will prove simple lemmas about the convergence

of a sequence of 1 parameter families of metrics changing under any Ricci flow that are

consequences of statements that can be found in [7].

Proposition 2 (D. Glickenstein). Let {(Mi, gi(t), pi)}∞i=1, where t ∈ [0, T ], be a sequence

of pointed Riemannian manifolds of dimension n which is continuous in the t variable in

the following way: for each δ > 0 there exists η > 0 such that if t0, t1 ∈ [0, T ] satisfies

|t0 − t1| < η then

(1 + δ)−1gi(t0) ≤ gi(t1) ≤ (1 + δ)gi(t0), (8)
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for all i > 0, and such that Ric(gi(t)) ≥ cgi(t), where c does not depend on t or i. Then

there is a subsequence {(Mi, gi(t), pi)}∞i=1 and a 1-parameter family of complete pointed

metric spaces (X(t), d(t), x) such that for each t ∈ [0, T ] the subsequence converges to

(X(t), d(t), x) in the pointed Gromov-Hausdorff topology.

Since (Mi, gi(t)) and (Mi, gi(0)) are homeomorphic by Lipschitz homeomorphisms, it

can be showed that X(t) is homeomorphic to X(0).

Theorem 7 (Cheeger, Colding, Tian). If {Mi, gi, pi)} converges to (Y, d, y) in pointed

Gromov-Hausdorff topology, if |Ric|Mi ≤ C and if Vol(B1(pi)) ≥ C for all i, then the

regular part R of Y is a C1,α-Riemannian manifold and at points of R, the convergence

is C1,α. Moreover the codimension of the set of singular points (which is a closed set in

Y ) is at most 4.

We will consider the Kähler-Ricci flow

(gij̄)t = gij̄ −Rij̄ = ∂i∂̄ju. (9)

In [2] H.D. Cao proved that the solution to this flow exists for all times t ∈ [0,∞).

Perelman proved that there are uniform bounds on C1,α norms on the potential functions

u(t), the scalar curvature R(t) and the diamteres diam(M, g(t)). He also proved that

the noncollapsing condition holds along the Kähler-Ricci flow, i.e. that there exists C

so that VolB(p, r) ≥ Crn for all p ∈ M , all r > 0 and all times t > 0, where C is a

constant depending on g(0). If ti is any sequence such that ti → ∞, Proposition 2 will

apply to (M, g(ti + t)) for all i and all t belonging to a time interval of finite length (for

|Ric|g(t) ≤ C for all t and the condition (8) in Proposition 2 is satisfied).

We will restrict ourselves to the case of Kähler manifolds of complex dimension 2, but it

is easy to generalize the whole argument to an arbitrary dimension, without the essential

changes (in higher dimensions we deal with a singular set of dimension 2n − 4, which is

0, i.e. a set of points in complex dimension 2). In the case of complex dimension 2, for

every sequence ti → ∞ there is a subsequence {(M, g(ti + t))} converging to a compact

orbifold (Y, ḡ(t)) with isolated singularities. This is due to the fact that L2 norm of the

curvature operator (in the Kähler case) can be uniformly bounded in terms of the first

and the second Chern class of a manifold and its Kähler class. Combining Proposition 2
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and Theorem 7 gives us that (Y, ḡ(t)) is an 1 parameter family of orbifolds (it is even

a Lipschitz family for parameter t belonging to an interval of finite length), such that a

regular part of (Y, ḡ(t)) is C1,α manifold and the convergence (M, g(ti + t)) → (Y, ḡ(t))

takes place in C1,α topology, away from the set of singular points (which is common for

all orbifolds (Y, ḡ(t))).

The main tools in the proof of our theorem will be Perelman’s pseudolocality theorem

and Theorem (A.1.5) in [4].

Proof. Assume that the curvature blows up. Let ti →∞ be such that Qi = |Ric|(pi, ti) ≥
maxM×[0,ti] and Qi →∞. We have already seen that, since |Ric|(g(t)) ≤ C, there exists

a subsequence (M, g(ti + t)) converging to orbifolds (Y, ḡ(t)) in C1,α norm off the set of

singular points. Moreover, metrics ḡ(t) are C1,α off the singular set. We may assume

that Sing(Y ) = {p}. Our goal is to show that we actually have C∞ convergence off the

singular point, due to the fact we are changing our metrics under the Kähler-Ricci flow.

Adopt the notation of [5]. LetR denote the regular set in Y . LetRε = {y|dGH(B1(y∞),

B1(0)) < ε for every tangent cone (Yy, y∞)} and Rε,r is the set of all points y such that

there exists x such that (0, x) ∈ R4 × {x} and for some u > r and every s ∈ (0, u]

dGH(Bs(y), Bs((0, x))) < εs. Rε = ∪rRε,r.
Choose εP and δP as in Perelman’s pseudolocality theorem. Choose ε′ > 0 such that

δP > ε′ and ε′ ≤ ε0, where ε0 is such that R = Rε for all ε ≤ ε0 (such ε0 exists by section

7 in [4]).

Pick up any point q ∈ Y \{p}. Then q ∈ ∩ε≤ε0Rε.

Claim 3.1. For any regular point q ∈ R there exists i0, A and r > 0 such that for all

Bg(ti+t)(s, q
′) ⊂ Bg(ti+t)(r, q) we have Volg(ti+t)Bg(ti+t)(s, q

′) ≥ (1 − ε′)sn, for all i ≥ i0

and all t ∈ [−A,A].

Proof. For ε′ find r and δ as in Theorem (A.1.5 (i) and (ii) in [4]). For this δ choose δ1
and r1 (by Theorem (A.1.5 (iii))) such that x ∈ (WR)8δ1,r′ implies that

y ∈ Rδ,s ∀y ∈ Br′ (x) ∀s ≤ (1− δ)r′ − dist(x, y) , r′ ≤ r1. (10)

Take any sequence δi → 0 as i→∞. We can choose a sequence ri such that q ∈ Rδi,ri .
We claim that q ∈ Rδ1,r, for some r < r1. In order to prove that we may assume
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ri → 0 (otherwise if ri ≥ κ for all i, dGH(Bκ(q), Bκ(0)) ≤ δi → 0 and therefore we

would have VolBr(q) = VolBr(0) for all r ≤ κ, and q ∈ Rδ1,s for some s < r1, by

Theorem (A.1.5, (i)) in [4]). Therefore, there exist δ′′ < δ1 and r′′ < r1 such that

q ∈ (WR)δ′′,r′′ . This implies q ∈ (WR)δ1,r′′ , since δ′′ < δ1. Choose a sequence qi ∈ M
such that Bg(ti+t)(r

′′, qi)
GH→ Bḡ(t)(r′′, q) as i → ∞ for all t ∈ [−A,A]. Choose i0 such

that for i ≥ i0 we have that dGH(Bg(ti+t)B(r′′, qi), Bḡ(t)(r′′, q) < δ1 for all t ∈ [−A,A].

We can choose such A because our metrics g(t) are equivalent for t belonging to the

interval of finite length (for the uniform bound on the Ricci curvatures). By the ‘triangle

inequality’ for the Gromov-Hausdorff distance we get that

dGH(Bg(ti+t(r
′′, qi), Br′′(0)) < 4δ1,

for all i ≥ i0 and t ∈ [−A,A], i.e. qi ∈ (WR)8δ1,r′′ . (10) gives us that q′ ∈ Rδ,s for all

q′ ∈ Bg(ti+t)(r′′, qi) and s ≤ (1− δ)r′′ − distti+t(qi, q′) for all i ≥ i0 and all t ∈ [−A,A].

By (A.1.5 (ii)) in [4] we get that (since r′′ < r)

VolBg(ti+t)(s, q
′) ≥ (1− ε′)VolBs(0), (11)

for all q′ ∈ Bg(ti+t)(r′′, q) and s ≤ (1 − δ)r′′ − distg(ti+t)(qi, q
′). By reducing r′′ we get

that there exists r′′ such that the estimate (11) holds for all q′ ∈ Bg(ti+t)(r′′, q) and all s

such that Bg(ti+t)(s, q
′) ⊂ Bg(ti+t)(r′′, q).

Choose r, i0 and A as in the claim above (for our regular point q that we have fixed ear-

lier). Reduce r′′ if necessary, so that (ε′r′′)2 < A. Since 1−ε′ > 1−δP , and since for every

ball Bg(ti−(ε′r′′)2/2)(s, q′) ⊂ Bg(ti−(ε′r′′)2/2)(r′′, qi) we have that Volg(ti−(ε′r′′)2/2)Bs(q′) ≥
(1− δP )sn, by Perelman’s pseudolocality theorem

|Rm|(x, t) ≤
1

(ε′r′′)2
+ (ε′r′′)2,

for all x ∈ Bg(t)(qi, ε′r′′) and for every t ∈ [0, ti + (ε′r′′)2/2]. gi(t) = g(ti + t) is a

sequence of Ricci flows with uniformly bounded curvatures for t ∈ [0, (ε′r′′)2/2] on balls

Bgi(t)(qi, ε
′r′′). This together with the volume noncollapsing condition and Hamilton’s

compactness theorem we get that the convergence of the sequence of our metrics is smooth,

and ḡ(t) are smooth metrics on B(q, ε′r′′), for t ∈ [0, (ε′r′′)2/2]. Repeating all these above
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to translated time intervals by (ε′r′′)2/2 we get that ḡ(t) are smooth metrics on B(q, ε′r′′)

for all times.

Since q was an arbitrary chosen point, the conclusion of our Theorem (5) holds for all

points in Y that are not singular.

We will state now a simple corollary of Theorem 5.

Corollary 2. Let gij̄(t), t ∈ [0,∞) be a solution to the Kähler-Ricci flow on a closed

manifold M . Assume there exist a sequence tk →∞, pk ∈M and some constant C such

that Qk = |Ric|(pk, tk) → ∞ and |Ric|(x, t) ≤ CQk for all t < tk. Then a subsequence

of scalings of gij̄(tk) at pk with factors Qk converges to an ancient, Ricci-flat solution to

the Ricci flow, outside the set of codimension 4.

Proof. The proof that a subsequence of scalings of gij̄(tk) at pk with factors Qk converges

to an ancient solution to the Ricci flow outside the set of codimension 4 (call it S) is

the same as in 5. The fact that it is Ricci flat off the set of codimension 4 follows from

Perelman’s theorem which says that there exists a constant C so that |R(g(t))| ≤ C for

all t > 0 and the evolution equation for the scalar curvature

d

dt
R = ∆R+ |Ric|2 +

1
2n
R(R− n),

which after rescaling becomes

d

ds
Ri = ∆iRi + |Ric|2i +

1
2n
Ri(Ri −

n

Qi
),

where s = s(t) = (t− ti)Qi. Since Ri = R
Qi
→ 0 as i → ∞, smoothly outside S, we have

that the limit solution is Ricci flat outside S.
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