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Abstract

Let G be a finite subgroup of SL(3, C ) acting with an isolated singularity on
C

3 . A crepant resolution of C
3/G comes together with a set of tautological

line bundles associated to each irreducible representation of G. In this note we
give a formula for the triple product of the first Chern class of the tautolog-
ical bundles in terms of both the geometry of the crepant resolution and the
representation theory of G. From here we derive the way these triple products
change when we perform a flop.

1. Introduction

Let G ⊂ SL(3,C) be a nontrivial finite subgroup. Then G acts on C3, and the quotient
C3/G is a Calabi-Yau orbifold. We are interested in studying crepant resolutions π :
X → C3/G of this orbifold. These are resolutions of singularities of C3/G with the
property that X is a smooth Calabi-Yau manifold. A result of Roan shows that a crepant
resolution exists for any quotient C3/G; it uses the classification of the finite subgroups
of SL(3,C), [Ro]. In general such a crepant resolution is not unique: a flop on X gives
another crepant resolution. Recall that if we have a nonsingular complex manifold X of
dimension 3 containing a rational curve l0 with normal bundle O(−1) ⊕ O(−1) we can
contract the curve to get a variety with a single node and then resolve it in another way
to get a nonsingular manifold X′; we say that X′ is obtained from X by performing a
flop along l0.

Even if the orbifold C3/G might have more that a crepant resolution, the Betti numbers
of these resolutions are the same; these are the stringy orbifold numbers of [DHVW]. In
order to explain this we first need to define the “age function” on G (see Joyce’s book [Jo]
for most of the definitions included).

Definition 1. Let G ⊂ SL(3,C) be a finite subgroup. Each element g ∈ G has 3
eigenvalues e2πia(g), e2πib(g), e2πic(g), where a(g), b(g), c(g) ∈ [0, 1) are uniquely defined up
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to order. We define the age of g to be age(g) := a(g) + b(g) + c(g); it is a well-defined
integer with 0 ≤ age (g) < 3. It gives the age function, age : G→ {0, 1, 2}.

Note that since the age function does not change under conjugation, it is an invariant of
the conjugacy class of g. The relation between the age function and the Betti numbers of
a crepant resolution is given by the following theorem of Ito and Reid [IR96].

Theorem 1. Let X be a crepant resolution of C3/G. Then there exists a one-to-one
correspondence between compact prime divisors in X, which form a basis for H2

c (X,Q),
and conjugacy classes of elements of G with age 1.

In 1995, Nakamura introduced a candidate for a crepant resolution of C3/G

HilbG(C3) := {Z ⊂ C3 G-invariant subscheme of dimension zero |H0(OZ) = R}; (1)

it is now known under the name of Nakamura’s G-Hilbert scheme [Nak]. Here R is
the regular representation of G: if R0, R1, . . . , Rr−1 are the irreducible representations
of G of dimensions ni, and R0 denotes the trivial one, then R := ⊕r−1

i=0Cni⊗Ri. In
1999, Bridgeland, King and Reid proved that indeed the Hilbert-Chow morphism π :
HilbG(C3) → C3/G is a crepant resolution [BKR]. This space comes with a natural set
of tautological sheaves associated to each irreducible representation of G: we define the
sheaf Ri associated to Ri as

Ri = π∗Oi/Tors, (2)

where Oi is the coherent sheaf on C3/G corresponding to the irreducible representation
Ri (see the discussion in 2.2.1). The proof of [BKR] also implies that the sheaves Ri
are locally free (therefore they are holomorphic vector bundles) and form a Z-basis in
K-theory.

Any other crepant resolution is obtained from HilbG(C3) by a sequence of flops. In the
case when G ⊂ SL(3,C) is a finite abelian subgroup, Craw and Ishii exhibited all the
crepant resolutions as moduli spaces. Moreover their construction allows one to define
tautological vector bundles on X – associated to each irreducible representation of G–
and show that they form a basis in K-theory (thus generalizing the known results for
HilbG(C3) to all the crepant resolutions of C3/G).

In this note we assume that G ⊂ SL(3,C) is a finite group which acts with an isolated
singularity on C3; this implies that G is an abelian group. Let X be a crepant resolution
of C3/G and let R0, . . . ,Rr be its corresponding tautological bundles. The manifold X
is endowed with a Ricci-flat ALE metric, and therefore allows us to use index theory
methods to understand the cohomology of X. In this way we obtained the cohomological
generalization of the McKay Correspondence [De2]. We describe it now: Let Q = C3 be
the natural 3-dimensional representation of G induced by the embedding G ⊂ SL(3,C).
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We consider the tensor product decompositions:

Ri⊗Q =
r−1∑
j=0

aij Rj , Ri⊗Λ2Q =
r−1∑
j=0

bij Rj .

Using the positive integers aij and bij we define the generalized Cartan matrix

C := [aij − bij]i,j=1,...r−1 . (3)

In this set-up we obtain:

Proposition 1 ([De2]). Let G ⊂ SL(3,C) be a finite subgroup which acts with an isolated
singularity on C3, and let (X, π) be a crepant resolution of C3/G with tautological bundles
R0, . . . ,Rr−1. Then, their Chern characters – which form a basis for H∗(X;Q) – satisfy
the following multiplicative relations[∫

X

(ch(Ri)− rk(Ri))
(
ch(R∗j )− rk(Rj)

)]
i,j=1,... ,r−1

= C−1 . (4)

The above formula is the generalization of Kronheimer and Nakajima’s formula [KN]
for the case of surface singularities. It gives the Cartan matrix C from the topology
of the crepant resolution and therefore it is a geometrical interpretation of the McKay
Correspondence.

However, the relations (4) are common for all the crepant resolutions of C3/G. They do
not give any insight about what changes when two crepant resolutions differ by a flop.
The purpose of this note is to use the analytical approach developed in [De2] to show
how the triple intersection

∫
X
c1(Rj)3 depends on the crepant resolution X of C3/G (see

Theorem 5). As a consequence, we prove that given X with the tautological line bundles
R0, . . . ,Rr−1, and given X′ obtained from X via the flop of a (−1,−1) curve l0 with its
tautological bundles R′0, . . . ,R′r−1 given by the proper transforms of the ones on X, we
have either ∫

X

c1(R′j)3 =
∫
X

c1(Rj)3, or
∫
X

c1(R′j)3 =
∫
X

c1(Rj)3 − 1. (5)

The choice above depends on the irreducible representation Rj and on the crepant res-
olution X (i.e. it is independent of the choice of tautological line bundles) in a manner
which is made explicit in Corollary 4.

Acknowledgements: We thank the referee for useful comments involving the impor-
tance of walls of type 0, and for pointing out the results of Logvinenko [Lo] which we
were not aware of at the time of writing this paper.

2. Crepant Resolutions

We consider G ⊂ SL(3,C) a finite subgroup of SL(3,C) which acts with an isolated
singularity on C3. It follows that G is an abelian group, and therefore we can understand
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a crepant resolution X of C3/G from two perspectives: (1) the moduli space description
of Craw and Ishii [CI], and (2) toric geometry. The interplay between these two views
will allow us to gain more insight about the tautological bundles on X.

First a little bit of notation. Let r := |G|, the order of the group G. Let R0, . . . , Rr−1 be
the irreducible representations of G, and let R be its regular representation R = ⊕r−1

i=0Ri.
We denote by R(G) the representation ring of G.

2.1. Moduli description of crepant resolutions

Let Q = C3 be the natural 3-dimensional representation of G induced by its embedding
into SL(3,C). For B ∈ Hom(R,Q⊗R) we have B ∧B ∈ Hom(R,Λ2Q⊗R). We consider
the algebraic variety

N = {B ∈ HomG(R,Q⊗R)|B ∧B = 0}.

The group GLG(R) acts on N by conjugation. Its quotient by the scalar matrices

PGLG(R) := GL(R0)× . . .GL(Rr−1)/C∗.

acts faithfully. Each element θ ∈ HomZ(R(G),Z) satisfying θ(R) = 0 induces a character
χθ of PGLG(R) by: χ

θ
([g0, . . . , gr−1]) = Πr−1

i=0 det (gi)θi . We take the GIT quotient of N
by PGLG(R) with respect χθ

Mθ := N//χ
θ
PGLG(R).

Recall that the character χθ defines a PGLG(R)-equivariant structure on the line bundle
L = C×N → N – call this Lθ. A point p ∈ N is said to be χ

θ
-semistable if there exists

as PGLG(R)-invariant section of Lkθ – for some positive integer k – which does not vanish
at p; the set of χ-semistable points of N is denoted by N ss(Lθ). Among the points of
N ss(Lθ) we have an extended G-equivalence induced by the closure of PGLG(R)-orbits:
p ∼ q if and only if the closure of the PGLG(R)-orbits of p and q intersect. The GIT
quotient of N by PGLG(R) with respect χθ is N//χ

θ
PGLG(R) := N ss(Lχ)/∼. Moreover

since Mθ
∼=Mkθ for any positive integer k, this quotient is well-defined for parameters θ

in

Θ := {θ ∈ HomZ(R(G),Q) | θ(R) = 0} . (6)

The space Mθ comes together with a projective morphism

ρθ :Mθ →M0.

Theorem 2 (Sardo-Infirri [SIa]). Let G ⊂ SL(3,C) be a finite subgroup of SL(3,C)
which acts with an isolated singularity on C3. Then

(i) M0
∼=C3/G;

(ii) The morphism ρθ :Mθ → C3/G is a (partial) resolution of singularities.
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The following result gives a characterization of all the crepant resolutions of C3/G as a
GIT quotient and also extends the result of Bridgeland, King and Reid [BKR].

Theorem 3 (Craw and Ishii [CI]). Let G ⊂ SL(3,C) be a finite abelian subgroup. Then
any projective crepant resolution X of C3/G is isomorphic to Mθ for some θ ∈ Θ.
Moreover the projective morphism ρθ :Mθ → C3/G induces – via the universal bundle of
Mθ ×C3 – an equivalence

Φθ : D(Mθ)→ DG(C3)
between the bounded derived categories of coherent sheaves onMθ and the derived category
of G-equivariant coherent sheaves on C3.

Corollary 1. For each irreducible representation Rj of G, the associated sheaf

Rθ,j := Φ−1
θ (Rj⊗OC3)∨ (7)

is locally free. We call Rj the tautological Rj-bundle on Mθ; the set of all these bundles
form a Z-basis in K(Mθ).

Remark . Ito and Nakajima showed that for θ ∈ Θ so that θ(R0) < 0 and θ(Ri) > 0 for
i 6= 0 the GIT quotient Mθ is isomorphic to Nakamura’s G-Hilbert scheme HilbG(C3),
and that the description (2) of the tautological bundles coincides to (7), [IN].

Remark . The moduli spaces Mθ where studied by Sardo-Infirri as moduli of representa-
tions of the McKay quiver of G [SIb]. In the work of Craw and Ishii the spacesMθ arrive
as moduli spaces of G-constellations. The equivalence between the two perspectives is
supplied by a result of King [Ki].

The stability condition induces a chamber structure on Θ, [CI]. The moduli space Mθ

and its tautological bundles are independent of the chamber C in which θ lies. For this
reason we will refer to MC and the corresponding tautological bundles RC,0, . . . ,RC,r−1

from now on.

Following Craw and Ishii [CI], a wall WQ of a chamber C corresponds to a subrepresen-
tation Q ⊂ R so that θ(Q) = 0 – and also θ(R/Q) = 0 – for a generic θ ∈ WQ; each
such wall has an unstable locus. The change in the geometry of the moduli space MC

while crossing the wall determines the type of the wall. In this note we will be concerned
with walls of type 0 and of type 1. A wall of type 0 has an unstable locus E given by a
compact, reduced and connected divisor of MC; there is no change in the geometry of
MC while crossing it, but the tautological line bundles change according to the following
rule

if R0 ⊂ Q, then R′j ∼= Rj for ρj ⊂ Q and R′j ∼= Rj(−E) for ρj ⊂ R/Q
if R0 ⊂ R/Q, then R′j ∼= Rj(E) for ρj ⊂ Q and R′j ∼= Rj for ρj ⊂ R/Q

(8)

The divisor E can be written as E =
∑

age(g)=1 a(g)Dg , with a(g) = 0 or 1 and also so
that E is connected.
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The walls of type 1 correspond to flops and they have the unstable locus given by the
(−1,−1)-curve l0 which is flopped. The tautological line bundles on the flop are the
proper transforms of the initial tautological bundles.

There are also some other type of walls, which are not significant for our note (the wall
of type 0 and 1 are the only ones coming into the game when we perform flops). For the
general discussion we refer to the original article of Craw and Ishii.

2.2. Toric description of a crepant resolution

Again, assume that G ⊂ SL(3,C) is a finite subgroup acting with an isolated singularity
on C3. Such a group G must be cyclic of order r = |G| and so that the 1

r -integers a(g),
b(g) and c(g) of Definition 1 do not vanish for any nontrivial g ∈ G. Since G is abelian the
orbifold singularity C3/G is toric and therefore we can study its toric crepant resolutions.

Let L = Z3 be the standard lattice and consider the supralattice of index r

L := L +
∑
g∈G

Z · (a(g), b(g), c(g)). (9)

We consider the junior triangle in L

∆ := { (m, n, p) ∈ L |m+ n+ p = 1}. (10)

This triangle has vertices at

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Its interior lattice points are in one-to-one correspondence with the elements of g ∈ G
with age(g) = 1. We denote these points by vg := (a(g), b(g), c(g)). Since G acts with an
isolated singularity on C3 there are r−1

2 such points.

The cone in L supported on the junior triangle ∆ represents the orbifold C3/G. In
order to get a (partial) resolution of singularities for C3/G we need a subdivision of this
cone. We look at subdivisions arising from triangulations of the junior triangle. Such a
triangulation is called basic if it cannot be further triangulated, i.e. each triangle in the
triangulation contains exactly three lattice points: its vertices. Since L is a supralattice
of index r of L the condition that a triangle is basic is equivalent to the condition that
the determinant of the 3 × 3-matrix formed with the coordinates of its vertices is ±1

r .
The following theorem is now folklore for the people working in the field [CR, and the
references therein].

Theorem 4. Let G ∈ SL(3,C) be a finite abelian subgroup. Then the crepant resolutions
of C3/G are in one-to-one correspondence to the basic triangulations of the junior triangle.

In order to use this theorem we need to go to the dual picture. Let Λ be the dual lattice
to the standard lattice L; we think of it as the lattice of Laurent monomials in three
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variables. Let Λ be the dual lattice of L: it is a sublattice of order r in Λ, and we identify
it with the lattice of G-invariant Laurent monomials. The positive cone in Λ is the ring
of G-invariant monomials

Λ+ ≡ CG[X, Y, Z],

and corresponds to the coordinate ring of the algebraic variety C3/G.

This duality allows us to translate the purely combinatorial picture which takes place in L
into a commutative algebra picture. Let T be a basic triangulation of the junior triangle
∆. Each triangle τ ∈ T determines a cone in L. We denote by τ∨ its dual cone in Λ.
Each such τ∨ determines the ring Λτ – generated by the three primitive vectors along its
edges – to which we associate the affine open set

Uτ : = Spec Λτ .

Given two basic triangles which share a common edge, we glue together the corresponding
affine open sets according to the identification given by it. In this way we obtain a smooth
algebraic variety XT associated to T together with a morphism πT : XT → C3/G – it is
one of the crepant resolutions given by Theorem 4.

Let Star(vg) denote the star of an interior lattice point vg in the junior triangle. It consists
of the basic triangles with this point as a vertex. Gluing together the affine open sets
corresponding to these cones we obtain a torus-invariant surface Dg. These surfaces are
exactly the compact prime divisors induced by the resolution (XT , πT ). In this way we
see the motivation for Theorem 1.

2.2.1. Toric description of the tautological bundles

The orbifold C3/G inherits r distinct coherent sheaves O0, . . . ,Or−1 corresponding to the
irreducible representations of G by defining their module of holomorphic sections to be

Mj : = HomG(Rj,C[X, Y, Z]). (11)

Note that M0 ≡ Λ+ and all the other Mj ’s are finitely generated Λ+-modules. Equiv-
alently, each irreducible representation Rj gives rise to a G-equivariant sheaf on C3:
Rj⊗OC3 . The pushforward of this sheaf to C3/G via the projection map is exactly Oj .
The sheaves O0, . . . ,Or−1 are locally free on the smooth locus C3/G \ {[O]} – their
associated line bundles represent the r elements in

H2(S5/G,Z)∼=G.

But, for any j 6= 0 they do not extend in a locally free way over the singular point [O].
However, upon the identification of XT =MC for some chamber C ⊂ Θ, there is a unique
way to extend them to locally free sheaves over any crepant resolution XT , giving exactly
the tautological bundles Rj of Craw and Ishii (see Corollary 1).
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For each irreducible representation Rj of G and for each lattice point w in the junior
triangle (it could be a vertex or an interior lattice point) we define

1
r
ρj(w) := min{ 〈m,w 〉 |m ∈ Mj}.

Note that 〈m,w 〉 is a 1
r -integer so this definition gives that ρj(w) is a well-defined integer.

Lemma 1. Let T be a basic triangulation of the junior triangle, and let τ be one of its
basic triangles. There exists a unique element mj(τ ) ∈ ΛMj so that

〈mj(τ ), w 〉 = ρj(w), for all vertices of τ . (12)

Proof. Let w1, w2, w3 be the vertices of τ . The statement of the Lemma follows easily
from Cramer’s rule applied to the system: the determinant of the matrix of coefficients
is det [w1, w2, w3]tr = ±1

r and all its 2× 2-minors are 1
r -integers.

Proposition 2. Let T be a basic triangulation of the junior triangle ∆ and let XT be the
associated crepant resolution of singularities. Then for each irreducible representation Rj
of G there exists a unique holomorphic line bundle Sj on XT so that for each τ a basic
triangle, the Λτ -module of holomorphic sections of Sj|Uτ is generated by mj(τ ).

Moreover, in the case when T gives Nakamura’s G-Hilbert scheme HilbG(C3), these are
exactly its tautological line bundles.

We postpone the proof of this proposition to the next subsection.

The problem with the GIT construction of the crepant resolutions of singularities is that
we do not know that the bundles introduced by the above Proposition are a basis in K-
theory for an arbitrary crepant resolution of singularities. Rather, we know that starting
from a crepant resolution MC , there is a sequence of crossing walls of type 0 and type
1 to arrive to any other crepant resolution. If we did not have any walls of type 0 then
the above Proposition gave exactly the tautological line bundles; otherwise, the bundles
S0, . . . ,Sr−1 give the tautological line bundles after some twisting.

Proposition 3. Let T be a basic triangulation of the junior triangle ∆ and let XT be
the associated crepant resolution of singularities. Then for each chamber C ⊂ Θ so that
MC = XT , and for each irreducible representation Rj there exists a compact divisor
Ej ⊂ XT so that the tautological line bundle RC, j satisfies

RC, j = Sj⊗OXT (−Ej). (13)

The divisors Ej =
∑

age(g)=1 aj(g)Dg with aj(g) integers are determined by the walls of
type 0 which we need to cross in order to arrive from the chamber which gives HilbG(C3)
to the chamber C. The result follows from Proposition 2 and (8).

Now we have the following characterization of the tautological line bundles in terms of
the crepant divisors Dg.

30



DEGERATU

Corollary 2. For each irreducible representation Rj of G, and for each basic triangula-
tion T of the junior triangle ∆, the corresponding tautological bundle Rj corresponding
to the chamber C satisfies

RrC, j = OX(−
∑
g∈G

age(g)=1

(ρj(g) + r aj(g)) Dg). (14)

Proof. Let T be a basic triangulation of ∆ and denote by X the corresponding crepant
resolution. Each of the tautological bundles Rj give, after tensoring by OXT (Ej), the
Cartier divisor {(Uτ ,−rmj(τ ))} onX (corresponding to Srj ). The corresponding principal
divisor on Uτ is

div(−r mj(τ )) =
∑

vg∈∆

〈−r mj(τ ), vg 〉Dg.

From the definition of mj(τ ) the conclusion of the corollary follows.

Remark . The search for such a result was inspired by a similar result of Mrowka, Ozsváth
and Yu [MOY, Section 11] for the case of tautological line bundles on minimal resolutions
of surface singularities. Recently Logvinenko [Lo] proved this result in much greater
generality.

2.2.2. Proof of Proposition 2

We will first show that the Proposition is true for the triangulation which gives HilbG(C3)
with the tautological sheaves R0, . . . ,Rr−1. Then we show that the result holds for any
flop of HilbG(C3) (i.e. when we cross a wall of type 1) with the proper transforms of the
tautological sheaves Rj.

Nakamura proved that there exists a basic triangulation which gives HilbG(C3) [Nak].
Craw and Reid gave an algorithm to construct this triangulation [CR]. Using a combi-
natorial procedure involving continued fractions they showed that there exists a coarser
triangulation called the regular triangulation. The triangles of the regular triangulation
are equilateral triangles of size s – call them regular triangles. Any basic triangulation is
obtained by futher subdividing every regular triangle of size s ≥ 2 into s2 basic triangles.
The basic triangulation which gives HilbG(C3) is the most symmetric one: each regular
triangle is subdivided using s− 1 parallel lines to its sides. Craw and Reid call this pro-
cess regular tesselation. Each new edge l0 arising through the regular tesselation gives a
(−1,−1)-curve C0 on HilbG(C3).

Lemma 2 (Nakamura [Nak]). Let T be the triangulation which gives HilbG(C3). Then
for any basic triangle τ we have mj(τ ) ∈ Λ+Mj. The tautological sheaves satisfy Rj =
π∗Oj and are locally free. Moreover, the natural map

Oj → π∗π
∗Oj
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(a) (b)

Figure 1. (a) corner triangle of size 3 and its regular tesselation; (b) meeting
of champions of size 2 and its regular tesselation

is an isomorphism.

Proof. This Lemma was also proved by Craw and Reid [CR]. Our proof is similar to
theirs.

We show that for each basic triangle τ = τ (w1, w2, w3) of the triangulation T there are
exactly r lattice points in Λ+ (thus monomials in C[X, Y, Z]) which satisfy Lemma 1.
Moreover, each such point belongs to a different representation space Mj which gives the
conclusion to the first part of the lemma.

In order to show this claim, we need an analysis on different type of basic triangles which
might show up in the basic triangulation T . We base our analysis on the discussion in [CI,
Subsection 9.1]. We start with the easier case of triangles of size 1 to set up the notations
and the line of reasoning. However, this situation is also handled by the general case.

Case 1a: Corner triangle of size 1. This means that the triangle is basic with vertices
w1, w2, w3 and the dual cone spanned (up to a permutation of the coordinates) by

w⊥1 := (a,−b, 0), w⊥2 := (−a+ 1, b+ c+ 1, 0), w⊥3 := (0,−c, 1),

The functional 〈m,w1 〉 reaches its minimum at lattice points in Λ+ with the property
that m−w⊥1 is not in Λ+ – meaning that m−w⊥1 does not represent a honest monomial
– giving that 0 ≤ m1 < a. In the same way the condition for minimum for the other two
functionals 〈m,w2 〉 and 〈m,w3 〉 gives the bounds 0 ≤ m2 < b+ c + 1 and 0 ≤ m3 < 1.
Moreover the point w⊥1 + w⊥2 = (1, c + 1, 0) corresponds to an invariant monomial and
therefore the candidates for the minimum belong to

[0, a− 1]× [0, c]× {0} ∪ {0} × [c+ 1, b+ c]× {0}.
(see Figure 2 a). The number of lattice points in this set is a(c + 1) + b = r since
det [w⊥1 , w⊥2 , w⊥3 ] = r (being the dual of the triangle τ of volume 1

r ).
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a−i−j a−i−

b−j−1

s−i−j

c−k−1

(b)

a−1

b+c

1

c

(a)

1

Figure 2. Possible mj(τ) for: (a) Corner triangle of size 1;
(b) Up triangle in a meeting of champions of size s.

Case 1b: Meeting of champions of size 1. This is the easiest of the cases. The dual cone
is spanned (up to a permutation of the coordinates) by

w⊥1 = (a,−b+ 1, 0), w⊥2 = (0, b,−c+ 1), w⊥3 = (−a + 1, 0, c). (15)

The points where the functionals 〈m,wi 〉 attain their minimum in Λ+ satisfy respectively

0 ≤ m1 < a, 0 ≤ m2 < b, 0 ≤m3 < c.

Since (1, 1, 1) corresponds to an invariant monomial, the points of minimum can only lie
on the coordinate planes. Because of this and that fact that the triangle is basic (i.e.
det [w⊥1 , w

⊥
2 , w

⊥
3 ] = r), the total number of lattice points satisfying the above condition

is r.

Case sa: Corner triangle of size s. This case and the next one are similar in their
treatment.

Case sb: meeting of champions of size s. The regular tessellation of this triangle gives s2

basic triangles. They correspond to α, β, γ = 0, . . . , s− 1 with α+ β+ γ = s− 1 (and we
call this an up triangle) or α+ β + γ = s+ 1 (and we call this a down triangle).

Subcase sb-up: We have τ = τ (w1, w2, w3) an up triangle with the dual cone spanned by

w⊥1 = (a−α,−b+s−α,−α), w⊥2 = (−β, b−β,−c+s−β), w⊥3 = (−a+s−γ,−γ, c−γ),

and α+ β + γ = s− 1. From the existence of this triangle we must also have α+ β < a
and the corresponding cyclic permutations. The points where the functionals attain their
minimum must satisfy

0 ≤ m1 < a− α, 0 ≤ m2 < b− β, 0 ≤ m3 < c− γ
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due to the fact that m−w⊥i does not belong to Λ+. Moreover w⊥1 +w⊥2 = (a−α−β, s−
α−β,−c+ s−α−β) giving that the monomial corresponding to (a−α−β, s−α−β, 0)
is obtained from the monomial associated to (0, 0, c− γ − 1) by multiplication with an
element in the ring Λτ . Therefore the red rectangle in Figure 2 (b) does not contain
points of minima for all three functionals. We deal in the same way with the conditions
coming out of w⊥2 +w⊥3 and w⊥1 +w⊥3 , obtaining at the end that the number of possible
lattice points is exactly det [w⊥1 , w

⊥
2 , w

⊥
3 ] = r.

Subcase sb-down: In this case the dual cone is spanned by

w⊥1 = (−a + α, b− s+ α, α), w⊥2 = (β,−b + β, c − s+ β), w⊥3 = (a − s+ γ, γ,−c + γ),
(16)

with α + β + γ = s + 1 and α + β + 1 < a and the corresponding cyclic permutations.
From the condition that m− w⊥i does not belong to Λ+ we obtain

(m2−b+s−α)(m3−α) < 0, (m3−c+s−β)(m1−β) < 0, (m1−a+s−γ)(m2−γ) < 0.

Also the fact that w⊥1 + w⊥2 and its cyclic permutations are in the invariant lattice give
new relations for the possible minima. Counting the lattice points which satisfy these
relations we see we get exactly det [w⊥1 , w

⊥
2 , w

⊥
3 ] = r.

Now, we need to prove that for each τ a basic triangle of T , the Λτ -module ΛτMj is free
and generated by the element mj(τ ). For this, we must verify that the map

Λτ → ΛτMj

which takes
m→ m+ mj(τ )

is surjective (since it is clearly injective). Let m be in Mj . By the definition of ρj(wi) we
must have 〈m,wi 〉 ≥ 1

rρj(wi). We need to show that m−mj(τ ) is in Λτ . By construction
m −mj(τ ) ∈ Λ and m −mj(τ ) = α1w

⊥
1 + α2w

⊥
2 + α3w

⊥
3 , for some integers α1, α2, α3.

But now α1 = 〈m−mj(τ ), w⊥1 〉 ≥ 0 etc, and it gives that m ∈ Λτ .

Moreover, given any u ∈
⋂

ΛτMj it is actually in Mj . This is true since for any τ basic
triangle in T the element m−mj(τ ) is in all Λτ . Since

⋂
Λτ = Λ+, it follows that u ∈Mj .

In this way we proved that Rj = π∗(Oj) are locally free sheaves of rank 1.

Lemma 3. Let l0 be an edge in the triangulation T of HilbG(C3) which determines a
(−1,−1) curve C0. Then degRj |C0 is 0 or 1.

Proof. This is a result already noticed by Craw and Ishii [CI, Proposition 9.7.]. We
reprove it here using our notation.

Let τ1 and τ2 be two basic triangles arriving via the regular tesselation which have a
common edge l0. Without loss of generality we can assume that τ1 is an up triangle
– corresponding to α + β + γ = s − 1 – and τ2 is a down triangle – corresponding to
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(α+ 1) + (β + 1) + γ = s+ 1. We denote by C0 the (−1,−1)-curve corresponding to l0
(see left side of Figure 3).

For Rj an irreducible representation of G, we have mj(τ1) and mj(τ2) given by Lemma 2
which correspond respectively to the generators of Rj |Uτ1 and Rj |Uτ1 .

If mj(τ1) = mj(τ2), then degRj |C0 = 0. On the other hand, if mj(τ1) 6= mj(τ2) it means
that mj(τ1) is not a minimum for the point D. Therefore we get the corresponding
minimum mj(τ2) = mj(τ1) + kl⊥0 , where k is a strictly positive integer. We claim that
k = 1 which gives that deg(Rj |C0) = 1.

Assume that k ≥ 2. Then from (15) we get −l⊥0 = (−a + s − γ,−γ, c − γ). Also the
discussion in Lemma 2 for the case of an up triangle gives that 0 ≤ (mj(τ2))3 < c − γ.
We have a contradiction for k ≥ 2.

w1

w2

w
3

w4

β+1

τ2

τ1

w1

w2

w4

w
3

τ1
’

τ2
’l0 l ’

0

A B

D C

α+1

α

β

γ

A

D C

Bα+1

α

β β+1

Figure 3. The flop of the curve corresponding to l0.

Lemma 4. Let T ′ be the triangulation obtained by flopping the edge l0. Then, the proper
transforms R′j on the crepant resolution (XT ′ , πT ′) have the property that R′j|Uτ is gen-
erated by mj(τ ), for each τ a basic triangle in T ′.

Proof. We continue in the same set-up as in the proof of Lemma 3.

In the new triangulation T ′ we denote by l′0 the transformation of the edge l0 (see Fig-
ure 3), and by τ ′1 and τ ′2 the new basic triangles.

If mj(τ1) = mj(τ2) then they are also equal to mj(τ ′1) = mj(τ ′2), and the conclusion
follows.
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Now assume that mj(τ1) 6= mj(τ2). The proof of the previous Lemma gives mj(τ2) =
mj(τ1) + l⊥0 . Also, since we are dealling with basic triangles we have

l⊥0 = (1, 1, 1)−w⊥1 − w⊥2 = −(1, 1, 1) +w⊥3 + w⊥4 .

The monomials corresponding to mj(τ1) and mj(τ2) are a set of generators for the Λ+-
module Λ+Mj . However the module of holomorphic sections of R′j |Uτ′1 is Λτ′1Mj (recall

that Λτ′1 = C[w⊥1 , w
⊥
4 , l

′⊥
0 ]). Take mj(τ1)− w⊥1 . Of course this belongs to Λτ′1Mj, and it

can be seen that it generate it as a Λτ′1 -module. This is because

〈mj(τ1)− w⊥1 , A 〉 = 〈mj(τ1), A 〉 =
1
r
ρj(A),

〈mj(τ1) −w⊥1 , B 〉 = 〈mj(τ1), B 〉 =
1
r
ρj(B),

〈mj(τ1) −w⊥1 , D 〉 = 〈mj(τ2), D 〉 − 〈 (1, 1, 1), D 〉+ 〈w⊥2 , D 〉

= 〈mj(τ2), D 〉 =
1
r
ρj(D).

For the last equation we used the fact that D has the sum of its components adding up
to 1. It follows that mj(τ1) −w⊥1 = mj(τ ′1).

Remark . In the same way, we havemj(τ ′2) = mj(τ2)−w⊥3 proving thatmj(τ ′2) = mj(τ ′1)+
l⊥0 , i.e. that deg(R′j |l′0) = 1. This is actually true in general, under a flop if deg(L|l0) = a

then the proper transform satisfies deg(L′|l′0) = a.

To finish the proof, we take the bundle Sj to be Rj in the case of HilbG(C3,G) and we
take them to be the proper transforms of Rj under a sequence of flops which makes us
arrive at the given crepant resolution.

Corollary 3. With the notations from the previous Lemma, it also follows that

ρj(A) + ρj(C)− ρj(B) − ρj(D) = −k,

where k = deg(Sj |l0). (Note that in fact k it is 0 or 1.)

Proof. This follows since if mj(τ2) = mj(τ1) + kl⊥0 then

ρj(A)+ρj (C)−ρj (B)−ρj (D)=〈mj(τ1), A 〉+〈mj (τ2), C 〉−〈mj (τ2), B 〉−〈mj (τ1), D 〉
= 〈mj(τ1), A−D 〉+ 〈mj(τ2), C − B 〉
= k〈 l⊥0 , C −B 〉
= −k.
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3. Triple Products

We base our analysis here on previous results from [De2]. Let G ⊂ SL(3,C) be a finite
subgroup which acts with an isolated singularity on C3. Let X be a crepant resolution of
C3/G. It is endowed with a Ricci-flat ALE metric – meaning that at infinity it is close
to the orbifold metric h0 on C3/G – of the form g = h0 +O(r−6) and with appropriate
decays on the derivative of the metric. Also, the tautological line bundles Rj come with
canonical L2-connections. In this way we think of the first Chern class c1(Rj) as being a
class in the L2-cohomology of X. It is known that the L2-cohomology in degree k of an
ALE manifold X is the image of Hk

c (X,Q) into Hk(X,Q) [APS].

Theorem 5. Let G be a finite subgroup of SL(3,C) which acts with an isolated singularity
at the origin. Let X be a crepant resolution of C3/G. For each irreducible representation
Rj of G we consider the tautological line bundle Rj – upon choosing a chamber C ⊂MC

so that X =MC. Then∫
X

c1(Rj)3 =
1
|G|

∑
g∈G

age(g)=1

ρj(vg) + raj(g)) (ng − 6) +
3
|G|

∑
g∈G
g 6=1

Trace (g, Rj)
−Trace (g, Q) + Trace (g,Λ2Q)

.

(17)

Here ng denotes the number of edges emanating out of the lattice point vg in the regular
triangulation T of the junior triangle ∆ determined by X. The integers aj(g) come from
Ej =

∑
age(g)=1 aj(g)Dg which is the twisting divisor for each irreducible representation

Rj introduced by the choice of the chamber C.

Proof. We consider the Dirac operator on X twisted by the line bundle Rj. We complete
the space of smooth twisted spinors in α-weighted Sobolev norm – a function which is
bounded in this norm behaves like r−α at infinity. For all, but a discrete number of
weights the completion of this operator is Fredholm, and moreover for the weight in the
interval (0, 5) the index is given

indexD+
Rj =

∫
X

ch(Rj)Â(X) −
ηRj

2
. (18)

Here Rj is the fiber at infinity of the line bundle Rj , and ηRj is the η-invariant, a spectral
invariant of S5/G the boundary at infinity. For our choice of the weight α ∈ (0, 5)

ηRj = − 1
|G|

∑
g∈G
g 6=1

Trace (g, ρj)
−Trace (g,C3) + Trace (g,Λ2C3)

.

Also, the main result in [De2], a vanishing theorem for the index of the Dirac operator,
gives that

indexD+
Rj = 0, (19)
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so that the formula (18) becomes∫
X

ch(Rj)Â(X) =
ηRj

2
. (20)

The left-hand-side of the above formula can be written explicitly as
1
6

∫
X

c1(Rj)3 − 1
12

∫
X

c1(Rj) c2(X).

From formula (14) it follows that the second term is

− 1
12 |G|

∑
g∈G

age(g)=1

(ρj(vg) + raj(g)) c2(X)|Dg .

Recall that Dg is the crepant divisor corresponding to Star(vg). We have

c2(X)|Dg = c2(Dg) + c1(Dg) c1(NDg/X)

= c2(Dg)− c1(Dg)2,

where the last equality comes from c1(Dg) = −c1(NDg/X) due to the fact that X is
Calabi-Yau.

Since the crepant divisors are toric, it follows that they are rational surfaces. Therefore
they are obtained either from the projective plane CP 2 or the Hirzebruch surfaces Fn
through a finite number of blow-ups [GH].

In the situation when the crepant divisor Dg is obtained from CP 2 through a series of k
blow-ups

c2(Dg) = 3 + k,

being the Euler number of Dg . Also

c1(Dg)2 = c1(CP 2)2 − k = 9− k.
On the other hand, in the toric picture there will be k + 3 edges emanating from vg the
junior lattice point corresponding to g. This means

c2(X)|Dg = 2(k + 3)− 12. (21)

In the same way, in the situation when the crepant divisor Dg is obtained from the
Hirzebruch surface Fn through a series of k blow-ups, it follows that

c2(X)|Dg = 2(k + 4) − 12, (22)

with k + 4 being the number of edges emanating from vg .

The above two formulas can be put together into

c2(X)|Dg = 2(ng − 6), (23)

with ng the number of edges out of vg in the triangulation T .
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Remark . When the crepant resolution is HilbG(C3), Craw and Reid’s algorithm gives
that every interior lattice point vg has valency 3, 4, 5 or 6, thus giving crepant divisors
which are respectively the projective plane CP 2, a Hirzebruch surface Fn, a Hirzebruch
surface blown up at one or two points. The last one includes dP6, the del Pezzo surface of
degree 6, which corresponds to the lattice points which are in the interior of the regular
triangles. In this way the crepant divisors corresponding to dP6 do not contribute to the
formula (17).

Corollary 4. Let G be a finite subgroup of SL(3,C) which acts with an isolated singu-
larity at the origin. Let X be a crepant resolution of C3/G and let C ⊂ Θ be a chamber
so that X = MC and so that the tautological line bundles on X are R0, . . . ,Rr−1. Let
X′ be the crepant resolution obtained by crossing a wall of type 1 of C – the unstable locus
is a (−1,−1)-curve l0 – and let R′0, . . . ,R′r−1 denote the corresponding tautological line
bundles. Then ∫

X

c1(R′j)3 =
∫
X

c1(R′j)3 if deg(Sj |l0) = 0∫
X

c1(R′j)3 =
∫
X

c1(R′j)3 − 1 if deg(Sj |l0 ) = 1.
(24)

Here S0, . . . ,Sr−1 are the holomorphic line bundles on X uniquely associated to each
irreducible representation by Proposition 2.

Proof. By Corollary 2, for each irreducible representation Rj there exists a divisor Ej =∑
age(g)=1 aj(g)Dg so that Rj = Sj⊗OX(−Ej). The proper transform of this bundle is

R′j = S′j⊗OX(−E′j) where E′j is the proper transform of Ej, i.e. E′j =
∑

age(g)=1 aj(g)D
′
g

with D′g the crepant divisors on X′. Theorem 5 gives∫
X

c1(R′j)3−
∫
X

c1(Rj)3 =ρj(A)+ρj (C)−ρj (B)−ρj (D)+r(aj (A)+aj (C)−aj(B)−aj (D))

= −deg(Sj |l0)+r (aj(A)+aj (C)−aj(B)−aj (D)) .

Here the curve which is flopped is l0 corresponding to a line AC in the junior triangle
∆ and the transformed curve l′0 corresponds to the line BD (see Figure 3). We applied
Corollary 3 to deduce the last equality. Now the last parenthesis is nothing else but
r(deg(OX(Ej)|l0) − deg(OX′ (E′j)|l′0 )) which is zero. The conclusion follows.
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[MOY] T. Mrowka, P. Ozsváth, Peter and B. Yu Seiberg-Witten monopoles on Seifert fibered
spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685–791.

[Nak] I. Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), no. 4,
757–779.

[Re1] M. Reid, McKay correspondence, preprint, alg-geom/9702016.
[Re2] M. Reid, La correspondance de McKay, Séminaire Bourbaki, Vol. 1999/2000. Astérisque
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