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Quasipositivity Problem for 3-Braids

Stepan Yu. Orevkov

Abstract

A braid is called quasipositive if it is a product of conjugates of standard
generators of the braid group. We present an algorithm deciding if a given
braid with three strings is quasipositive or not. The complexity (the time of

work) of our algorithm is O(nk+1) where n is the length of the word in standard
generators representing the braid and k is the algebraic length of the braid.
The algorithm is based on the Garside normal form.

The problem of quasipositivity in braid groups is motivated by the topology
of plane real algebraic curves (16th Hilbert’s problem). In particular, our result
can be interpreted as a classification of trigonal real pseudoholomorphic curves
on rational ruled surfaces.

Let G be a group and X a fixed set of its elements. An element g ∈ G is called X -
quasipositive if g =

∏
j ajxja

−1
j where aj ∈ G and xj ∈ X . We shall give a solution for

the quasipositivity problem (i.e. we shall present an algorithm deciding if a given element
is quasipositive or not) for a free group with any number of generators (Section 1) and
for the group of braids with three strings (the rest of the paper). In both cases X is the
set of standard generators.

The complexity (the time of work) of our algorithm is O(nk+1) where n is the length
and k is the algebraic length (the exponent sum) of the word.

The result on the free group is not new (see Remark 1.1) but we present it here because
our proof of this result serves as a model of the proof for 3-braids. The main ingredient
of the proof is the Garside normal form of a braid.

The term ”quasipositive braid” was introduced by Lee Rudolph [5]. For us, the main
motivation of the quasipositivity problem comes from the topology of plane real algebraic
curves (see details in [2, 3]). A necessary condition for existence of a real algebraic curve
realizing a given isotopy type, is the quasipositivity of a certain braid. If one enlarge the
class of real algebraic curves up to the class of real pseudoholomorphic curves, then this
condition becomes necessary and sufficient. In particular, the result of this note can be
interpreted as a classification of trigonal real pseudoholomorphic curves on rational ruled
surfaces.
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1. Quasipositivity problem in free group

Let X be any set and FX be the free group generated by X . We shall call X -
quasipositive elements just quasipositive. In the set of words in alphabet ”[”, ”*”, ”]”,
we define a subset of regular bracket structures (RBS) recursively: the empty word and
the word * are RBS; if a and b are RBS then ab and [a] also are.

Let X−1 = {x−1 | x ∈ X}. A word w = x1x2 . . . xn in alphabet X ∪ X−1 is called
quasipositive if there exists an RBS u1u2 . . . un which agrees with w, i.e. such that

(1) if uj = * then xj ∈ X ;
(2) if uj is the bracket matching to ui then xj = x−1

i .

Proposition 1.1. Any word representing a quasipositive element of FX , is quasipositive.

Proof. By definition, any quasipositive element can be represented by a quasipositive
word

∏
ajxja

−1
j . If a word w is obtained by inserting xx−1 or x−1x into a quasipositive

word then w is also quasipositive (one should just insert ”[]” into the corresponding
place of the RBS). It remains to prove that if a word w′ is obtained by removing xx−1 or
x−1x from a quasipositive word w then w′ is quasipositive.

Let w = x1 . . . xn. Let u1 . . . un be the corresponding RBS and let w′ be obtained from
w by removing xixi+1 where either xi = x and xi+1 = x−1, or xi = x−1 and xi+1 = x for
some x ∈ X . Let us consider separately all the possibilities for the word uiui+1.

Case 1. ”**”. Impossible because xixi+1 contains x−1.
Case 2. ”*]” or ”* [” (the case of ”[ *” and ”] *” is analogous). We have xi = x ∈ X ,

xi+1 = x−1. Let uj be the bracket matching to ui+1. Then we have xj = x, and the word
obtained from u1 . . . un by deleting uiui+1 and replacing uj with ”*”, is an RBS which
agrees with w′.

Case 3. ”[ ]” or ”][”. Deleting uiui+1 yields an RBS which agrees with w′.
Case 4. ”[ [” (the case of ”] ]” is analogous). Let uj = uk = ] , j < k, be the brackets

matching to ui and ui+1. Removing uiui+1 and replacing uj with ”[”, we obtain an RBS
which agrees with w′.

To check that the obtained words are RBS, it is convenient to use the following criterion.
A word in alphabet ”[”, ”*”, ”]” is an RBS if and only if the number of ”[” is equal to
the number of ”]”, and for any initial subword, the number of ”[” is not less than the
number of ”]”.

Corollary 1.2. A word in alphabet X ∪ X−1 defines a quasipositive element if and only
if after removing some positive generators one obtains a word representing the unit of the
group FX .

Remark 1.1. According to a result of Blank [4], the question of extendibility of an immer-
sion S1 → R2 to an immersion D2 → R2 (where D2 is a disk and S1 is its boundary) can
be reduced to the quasipositivity problem in a free group. An algorithm of recognizing
quasipositive words is given in [4], thus, our Proposition 1.1 is not new.

90



OREVKOV

2. Garside normal form in the group of braids with three strings

Let B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 be the group of braids with three strings. Let ∆
be the Garside element: ∆ = σ1σ2σ1. Let r : B3 → B3 be the automorphism defined by
σ1 7→ σ2, σ2 7→ σ1. It is easy to check that

∆β = r(β)∆, β ∈ B3. (1)

Let a be the homomorphism of B3 to the additive group of integers Z, such that a(σ1) =
a(σ2) = 1, i.e. a(β) is the exponent sum (the algebraic length) of β.

Let B+
3 be the submonoid of B3 generated by σ1, σ2. Elements of B+

3 are called positive
braids. For α, β ∈ B+

3 , let us say that β is left (resp., right) divisible by α if there exists
γ ∈ B+

3 such that β = αγ (resp., β = γα). A word in σ1, σ2, is called positive.

Lemma 2.1. (see [1], Theorem 4). Two positive words are equal in B3 if and only if they
can be obtained from each other by applying successively the relation σ1σ2σ1 = σ2σ1σ2.

Corollary 2.2. A positive word is left or right divisible by ∆ if and only if it contains
the subword σ1σ2σ1 or σ2σ1σ2.

Proof. If w contains such a subword then w = α∆β = ∆ r(α)β = α r(β)∆ by (1). Other-
wise, by Lemma 2.1, the word w cannot be equal in B3 to any other positive word.

Corollary 2.3. An element of B+
3 not divisible by ∆ can be represented by a positive

word in a unique way.

Definition. A Garside decomposition of a braid β ∈ B3 is its presentation

β = β+∆m, β+ ∈ B+
3 . (2)

If β+ is not divisible by ∆ then the decomposition (2) is called the Garside normal form
of β. In this case, m is called the power of β.

To find a Garside decomposition, we replace each occurrence of σ−1
1 with σ2σ1∆−1,

and σ−1
2 with σ1σ2∆−1, and then push all ∆−1 to the right using (1). To find further the

Garside normal form, one should successively replace all subwords σ1σ2σ1 and σ2σ1σ2

with ∆, and push them to the right using (1).

3. Quasipositivity problem in the group of braids B3

A braid with three strings (an element of B3) is called quasipositive if it is X -quasi-
positive for X = {σ1, σ2}. It is clear that if a braid admits a decomposition (2) with a
non-negative m then it is quasipositive. A criterion of the quasipositivity in the case of a
negative m is as follows.

Proposition 3.1. Let β = β+∆m where β+ is a positive word (i.e. a word in σ1, σ2),
and m ≤ 0. The braid β is quasipositive if and only if one can delete some letters from
β+ so that the obtained word is equal in B+

3 to the word ∆−m.
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This proposition follows immediately from Proposition 3.2 below. It provides the
following algorithm to decide if a given word in σ±1

1 , σ±1
2 represents a quasipositive braid.

Let k be the algebraic length of the braid.
Algorithm.
1. Compute the Garside normal form β+∆m of the given braid β.
2. Try to remove k letters from β+ in all possible ways, each time computing the

Garside normal form of the obtained braid. If we obtain at least once the trivial
braid then the braid β is quasipositive. Otherwise it is not.

It is clear that the complexity (the time of work) of this algorithm is O(nk+1) where
n is the length of the initial word.

Now we proceed to a proof of Proposition 3.1. In the set of words composed of the
characters ”[”, ”|”, ”]”, ”*”, let us define a subset of regular bracket structures with
delimiters (RBSD) recursively as follows: the empty word and the word ∗ are RBSD; if a
and b are RBSD then ab and [a|b] also are. If a is an RBSD then its wight `(a) is defined as
the number of occurrences of the character ”|”. It is clear that any occurrence of one of the
characters ”[”, ”|”, or ”]” into an RBSD w, uniquely determines the occurrences of the
other two characters such that w = a[b|c]d where b, c, and ad are RBSD. Such a mutual
occurrance of ”[”, ”|”, and ”]” is called a regular mutual occurrance. Let us say that a
positive word x1 . . . xn, xj ∈ {σ1, σ2}, agrees with an RBSD u1 . . . un, if for any regular
mutual ocuurrance of ui = [ , uj = | , uk = ] , into u1 . . . un = auibujcukd = a[b|c]d, we
have either

xi = σ1, xj = r
`(b)(σ2), xk = r

`(bc)(σ1), or xi = σ2, xj = r`(b)(σ1), xk = r`(bc)(σ2).

Proposition 3.2. Let b = w∆m where w is a positive word and m ≤ 0. The braid b is
quasipositive if and only if there exists an RBSD of the weight −m which agrees with w.

This statement easily follows from the results of Section 2 and the following lemma.

Lemma 3.3. Let w = x1 . . . xn be a positive word which agrees with some RBSD of a non-
zero weight. Suppose that w contains a subword xixi+1xi+2 = σ1σ2σ1. Then there exists
an RBSD u1 . . . un of the same weight agreeing with w such that uiui+1ui+2 = [ | ] .

Proof. In the RBSD agreeing with w, let us consider the subword v which corresponds to
xixi+1xi+2. If v = ∗∗∗, then we replace v with [ | ] and we replace an arbitrary regular
mutual occurrance . . .[ . . .| . . .] . . . with · · · ∗ · · · ∗ · · · ∗ · · · .

If v intersects only with one regular mutual occurrance of [ | ] , then we replace v with
[ | ] , and we replace with ∗ each element of this regular mutual occurrance which does
not belong to v. If v intersects with more than one regular mutual occurrance of [ | ] ,
then we shall consider separately all possibilities for v up to symmetry:

1
[
2
[
1
|
. . .2

]
. . .1

|
. . .2

]
−→ 1

[
2
|
1
]
. . .2

[
. . .1

|
. . .2

]

2
[
. . . 1

|
2
[
1
|
. . .2

]
. . .1

]
−→ 2

[
. . .1

[
2
|
1
]
. . .2

|
. . .1

]

2
[
. . . 1

|
2
]
1
[
. . .2

|
. . .1

]
−→ 2

[
. . .1

[
2
|
1
]
. . .2

|
. . .1

]
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1
*
2
[
1
[
. . .2

|
. . .1

]
. . .2

|
. . .1

]
−→ 1

[
2
|
1
]
. . .2

*
. . .1

[
. . .2

|
. . . 1

]

1
[
. . . 1

*
2
|
1
[
. . .2

|
. . .1

]
. . .2

]
−→ 1

*
. . .1

[
2
|
1
]
. . .2

[
. . .1

|
. . . 2

]

2
[
. . . 1

|
. . . 1

*
2
]
1
[
. . .2

|
. . .1

]
−→ 2

[
. . .1

*
. . .1

[
2
|
1
]
. . .2

|
. . . 1

]

1
[
. . . 2

[
. . . 1

|
. . . 1

*
2
]
1
|
. . .2

]
−→ 1

[
. . .2

|
. . .1

]
. . .1

[
2
|
1
]
. . . 2

*

2
[
. . . 1

|
. . . 2

[
. . . 1

|
. . . 1

*
2
]
1
]
−→ 2

[
. . .1

|
. . .2

]
. . .1

*
. . .1

[
2
|
1
]

2
[
. . . 1

|
2
*
1
[
. . .2

|
. . .1

]
. . .1

]
−→ 2

[
. . .1

[
2
|
1
]
. . .2

|
. . .1

]
. . . 1

*

1
[
. . . 2

|
. . . 1

]
2
*
1
[
. . .2

|
. . .1

]
−→ 1

[
. . .2

|
. . .1

[
2
|
1
]
. . .2

]
. . . 1

*

1
[
2
[
1
[
. . .2

|
. . .1

]
. . .2

|
. . .1

]
. . .2

|
. . .1

]
−→ 1

[
2
|
1
]
. . .2

[
. . .1

|
. . .2

]
. . . 1

[
. . . 2

|
. . . 1

]

2
[
. . . 1

|
2
[
1
[
. . .2

|
. . .1

]
. . .2

|
. . .1

]
. . .2

]
−→ 2

[
. . .1

[
2
|
1
]
. . .2

|
. . .1

]
. . . 2

[
. . . 1

|
. . . 2

]

1
[
. . . 2

|
. . . 1

]
2
[
1
[
. . .2

|
. . .1

]
. . .2

|
. . .1

]
−→ 1

[
. . .2

[
. . .1

[
2
|
1
]
. . .2

|
. . . 1

]
. . . 2

|
. . . 1

]

2
[
. . . 1

[
. . . 2

|
. . . 1

]
2
|
1
[
. . .2

|
. . .1

]
. . .2

]
−→ 2

[
. . .1

|
. . .2

]
. . .1

[
2
|
1
]
. . . 2

[
. . . 1

|
. . . 2

]

To simplify notation, we omit r`(... ) in the above list of modifications and we write 1 and
2 instead of σ1 and σ2. For example, the first line on this page should be understood as

σ1
*
σ2
[
σ1
[
a r`(ã)(

|

σ2) b r`(ãb̃)(
]

σ1) c r`(ãb̃c̃)(
|

σ2) d r`(ãb̃c̃d̃)(
]

σ1)

↓
σ1
[

σ2
|

σ1
]

a r`(ã)(
*

σ2) b r`(ãb̃)(
[

σ1) c r`(ãb̃c̃)(
|

σ2) d r`(ãb̃c̃d̃)(
]

σ1) ,

where a, b, c, d are arbitrary words in σ1, σ2, and ã, b̃, c̃, d̃ the corresponding RBSD
(ã, b̃, c̃, d̃ are not changed under the modification).

References

[1] F.A. Garside, The braid group and other groups. Quart. J. Math. 20 (1969), 235-254.
[2] S.Yu. Orevkov, Link theory and oval arrangements of real algebraic curves. Topology, 38

(1999), 779-810.
[3] S.Yu. Orevkov, Classification of FlexibleM-curves of Degree 8 up to Isotopy. GAFA – Geom.

and Funct. Anal. 12 (2002), 723-755.
[4] V. Poenaru, Extension des immersions en codimension 1 (d’après Samuel Blank). Séminaire
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