On near-rings with two-sided α-derivations

Nurcan Argaç*

Abstract

In this paper, we introduce the notion of two-sided α-derivation of a near-ring and give some generalizations of [1]. Let N be a near ring. An additive mapping $f: N \rightarrow N$ is called an (α, β)-derivation if there exist functions $\alpha, \beta: N \rightarrow N$ such that $f(x y)=f(x) \alpha(y)+\beta(x) f(y)$ for all $x, y \in N$. An additive mapping $d: N \rightarrow N$ is called a two-sided α-derivation if d is an ($\alpha, 1$)-derivation as well as a ($1, \alpha$)derivation. The purpose of this paper is to prove the following two assertions: (i) Let N be a semiprime near-ring, I be a subset of N such that $0 \in I, I N \subseteq I$ and d be a two-sided α-derivation of N. If d acts as a homomorphism on I or as an antihomomorphism on I under certain conditions on α, then $d(I)=\{0\}$. (ii) Let N be a prime near-ring, I be a nonzero semigroup ideal of N, and d be a ($\alpha, 1$)-derivation on N . If $d+d$ is additive on I, then $(\mathrm{N},+)$ is abelian.

Key words and phrases: Prime near-ring, semiprime near-ring, ($\alpha, 1$)-derivation, (1, α)-derivation, two-sided α-derivation

1. Introduction

Throughout this paper N stands for a right near-ring. An additive map $d: N \rightarrow N$ is a derivation if $d(x y)=x d(y)+d(x) y$ for all $x, y \in N$ - or equivalently (cf. [8]) that $d(x y)=d(x) y+x d(y)$ for all $x, y \in N$. The study of derivations of near-rings was initiated by H. E. Bell and G. Mason in 1987 [4], but thus for only a few papers on this subject in near-rings have been published (see [1], [2], [5] and [7]). According to [4], a near ring N is said to be prime if $x N y=\{0\}$ for $x, y \in N$ implies $x=0$ or $y=0$, and semiprime

[^0]
ARGAÇ

if $x N x=\{0\}$ for $x \in N$ implies $x=0$. A non empty subset I of N will be called a semigroup ideal if $I N \subseteq I$ and $N I \subseteq I$.

Let S be a nonempty subset of N and d be a derivation of N. If $d(x y)=d(x) d(y)$ or $d(x y)=d(y) d(x)$ for all $x, y \in S$, then d is said to act as a homomorphism or antihomomorphism on S, respectively. Bell and Kappe proved [3] that if d is a derivation of a semiprime ring R which is either an endomorphism or anti-endomorphism, then $d=0$. They also showed that if d is a derivation of a prime ring R which acts as a homomorphism on I, where I is a nonzero right ideal, then $d=0$ on R these results were proved for near-rings in [1].

Now we introduce the notion of two-sided α-derivation of a near-ring N as follows.
An additive mapping $f: N \rightarrow N$ is called a (α, β)-derivation if there exist functions $\alpha, \beta: N \rightarrow N$ such that $f(x y)=f(x) \alpha(y)+\beta(x) f(y)$ for all $x, y \in N$. An additive mapping $d: N \rightarrow N$ is called a two-sided α-derivation if d is an $(\alpha, 1)$-derivation as well as $(1, \alpha)$-derivation.

For $\alpha=1$, a two-sided α-derivation is of course just a derivation. In case N is a prime ring and $d \neq 0$, Chang ($[6$, Theorem 1]) has shown that α must necessarily be a ring endomorphism. Now we give an example of a two-sided α-derivation on a near-ring.

Example. Let $N=N_{1} \oplus N_{2}$, where N_{1} is a zero-symmetric near-ring and N_{2} is a ring. Let d_{1} be any map on N_{1} and d_{2} be a right and left N_{2}-module map on N_{2} which is not a derivation. Define $d: N \rightarrow N$ by $d\left(\left(n_{1}, n_{2}\right)\right)=\left(0, d_{2}\left(\left(n_{2}\right)\right)\right.$ and $\alpha: N \rightarrow N$ by $\alpha\left(\left(n_{1}, n_{2}\right)\right)=\left(d_{1}\left(n_{1}\right), 0\right)$. Then d is a two-sided α-derivation on N but not a derivation.

2. The Results

We need the following lemmas.

Lemma 1 . Let N be a prime near-ring and I a nonzero semigroup ideal of N. If $u+v=v+u$ for all $u, v \in I$, then $(N,+)$ is abelian.

Proof. By the hypothesis, we have $x u+y u=y u+x u$ for all $u \in I$ and $x, y \in N$. Then we get $(x+y-x+y) u=0$ for all $u \in I$ and $x, y \in N$. It means that $(x+y-x-y) I=(x-y-x-y) N I=0$. Since I is a nonzero semigroup ideal we have $x+y-x-y=0$ for all $x, y \in N$ by the primeness of N. Thus $(N,+)$ is abelian.

ARGAÇ

Lemma 2 Let N be a right near-ring, d a ($\alpha, 1$)-derivation of N and I a multiplicative semigroup of N which contains 0 . If d acts as an anti-homomorphism on I and $\alpha(0)=0$, then $x 0=0$ for all $x \in I$.

Proof. Since $0 x=0$ for all $x \in I$ and d acts as anti-homomorphism on I it is clear that $d(x) 0=0$ for all $x \in I$. Taking $x 0$ instead of x, one can obtain $d(x) \alpha(0)+x 0=0$ for all $x \in I$. Thus we have $x 0=0$ for all $x \in I$.

Lemma 3 Let N be a near-ring and I be a multiplicative subsemigroup of N. If d is a two-sided α-derivation of N such that $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$, then

$$
n(d(x) \alpha(y)+x d(y))=n d(x) \alpha(y)+n x d(y) \text { for all } n, x, y \in I .
$$

Furthermore, if $\alpha(I)=I$, then

$$
n(d(x) y+\alpha(x) d(y))=n d(x) y+n \alpha(x) d(y) \text { for all } n, x, y \in I .
$$

A proof can be given by using a similar approach to that in the proof of [8, Lemma 1].

Lemma 4 . Let N be a prime near-ring and I a nonzero semigroup ideal of N. Let d be a nonzero $(\alpha, 1)$-derivation on N such that $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$. If $x \in N$ and $x d(I)=\{0\}$, then $x=0$.

Proof. Assume that $x d(I)=0$. Then $x d(u y)=0$ for all $y \in N, u \in I$. Hence $0=x(d(u) \alpha(y)+u d(y))=x u d(y)$ for all $y \in N, u \in I$. Since I is a nonzero semigroup ideal and d is nonzero, it is clear that $x=0$ by the primeness of N.

Lemma 5 Let N be a prime near-ring and I a nonzero semigroup ideal of N and d a nonzero $(\alpha, 1)$-derivation on N. If $d(x+y-x-y)=0$ for all $x, y \in I$, then $(x+y-x-y) d(z)=0$ for all $x, y, z \in I$.

ARGAÇ

Proof. Assume that $d(x+y-x-y)=0$ for all $x, y \in I$. Let us take $y z$ and $x z$ instead of y and x, where $z \in I$ respectively. Then $0=d((x+y-x-y) z)=$ $d(x+y-x-y) \alpha(z)+(x+y-x-y) d(z)=(x+y-x-y) d(z)$ for all $x, y, z \in I$.

Lemma 6 Let N be a near-ring and I a multiplicative subsemigroup of N. Let d be a $(\alpha, 1)$ - derivation of N such that $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$ and $\alpha(I)=I$.
(i) If d acts as a homomorphism on I, then
$d(y) x d(y)=y x d(y)=d(y) x \alpha(y)$ for all $x, y \in I$.
(ii) If d acts as an anti-homomorphism on I, then
$d(y) x d(y)=x y d(y)=d(y) \alpha(y) x$ for all $x, y \in I$.

Proof. (i) Let d act as a homomorphism on I. Then

$$
\begin{equation*}
d(x y)=d(x) \alpha(y)+x d(y)=d(x) d(y) \quad \text { for all } x, y \in I \tag{1}
\end{equation*}
$$

Substituting $y x$ for x in (1), we infer that

$$
\begin{equation*}
d(y x) \alpha(y)+y x d(y)=d(y x) d(y)=d(y) d(x y) \quad \text { for all } x, y \in I \tag{2}
\end{equation*}
$$

By Lemma 3, $d(y) d(x y)=d(y) d(x) \alpha(y)+d(y) x d(y)=d(y x) \alpha(y)+d(y) x d(y)$. Using this relation in (2), we get $y x d(y)=d(y) x d(y)$.

Similarly, taking $y x$ instead of y in (1) we obtain

$$
\begin{equation*}
d(x) \alpha(y x)+x d(y x)=d(x) d(y x)=d(x y) d(x) \text { for all } x, y \in I . \tag{3}
\end{equation*}
$$

On the other hand $d(x y) d(x)=(d(x) \alpha(y)+x d(y)) d(x)=d(x) \alpha(y) d(x)+x d(y) d(x)=$ $d(x) \alpha(y) d(x)+x d(y x)$. Using this relation in (3) we get $d(x) \alpha(y x)=d(x) \alpha(y) \alpha(x)=$

ARGAÇ

$d(x) \alpha(y) d(x)$. Since $\alpha(I)=I$ it is clear that $d(x) w d(x)=d(x) w \alpha(x)$ for all $x, w \in I$.
(ii) Since d acts as an anti-homomorphism on I, we have

$$
\begin{equation*}
d(x y)=d(x) \alpha(y)+x d(y)=d(y) d(x) \quad \text { for all } x, y \in I \tag{4}
\end{equation*}
$$

Taking $x y$ for y in (4), we get

$$
\begin{aligned}
d(x) \alpha(x y)+x d(x y)= & d(x y) d(x) \\
& =(d(x) \alpha(y)+x d(y)) d(x) \\
& =d(x) \alpha(y) d(x)+x d(y) d(x) \\
& =d(x) \alpha(y) d(x)+x d(x y) \quad \text { for all } x, y \in I .
\end{aligned}
$$

From this relation we get $d(x) \alpha(x y)=d(x) \alpha(y) d(x)$. Since $\alpha(I)=I$, we get $d(x) \alpha(x) y=$ $d(x) y d(x)$ for all $x, y \in I$. Similarly, taking $x y$ instead of x in (4), one can prove the relation $d(y) x d(y)=x y d(y)$.

The following theorem is a generalization of [1, Theorem].

Theorem 1 Let N be a semiprime near-ring and I be a subset of N such that $0 \in I$ and $I N \subseteq I$. Let d be a two-sided α-derivation on N such that $\alpha(I)=I$ and $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$.
(i) If d acts as a homomorphism on I, then $d(I)=\{0\}$.
(ii) If d acts as an anti-homomorphism on I and $\alpha(0)=0$, then $d(I)=\{0\}$.

Proof. (i) Suppose that d acts as a homomorphism on I. By Lemma 6 we have

$$
\begin{equation*}
d(y) x d(y)=d(y) x \alpha(y) \quad \text { for all } x, y \in I \tag{5}
\end{equation*}
$$

Right multiplying (5) by $d(z)$, where $z \in I$, and using the hypothesis that d acts as a homomorphism on I together with Lemma 3, we obtain $d(y) x d(y) z=0$ for all $x, y, z \in I$.

ARGAÇ

Taking $x n$ instead of x, where $n \in N$, we get $d(y) x n d(y) z=0$ for all $x, y, z \in I$ and $n \in N$. In particular, $d(y) x N d(y) x=\{0\}$. By the semiprimeness of N we conclude that $d(y) x=0$. Since $\alpha(I)=I$, it is clear that

$$
\begin{equation*}
d(y) \alpha(x)=0 \quad \text { for all } x, y \in I \tag{6}
\end{equation*}
$$

Substituting $y n$ for y in (6) and left-multiplying (6) by $d(z)$, where $z \in I$, we get $d(z) d(y) n \alpha(x)+d(z) \alpha(y) d(n) \alpha(x)=0$. Since the second summand is zero by (6) we get $0=d(z) d(y) n \alpha(x)=d(z y) n \alpha(x)=d(z) \alpha(y) n \alpha(x)+z d(y) n \alpha(x)=z d(y) n \alpha(x)$, that is $z d(y) n x=0$ for all $x, y, z \in I, n \in N$. Since N is semiprime, we have

$$
\begin{equation*}
z d(y)=0 \quad \text { for all } y, z \in I \tag{7}
\end{equation*}
$$

Combining (6) and (7) shows that $d(y z)=0$ for all $y, z \in I$. In particular, $d(x n x)=0$ for all $x \in I, n \in N$; and since d acts as a homomorphism on I, we have

$$
0=d(x n) d(x)=d(x) n d(x)+\alpha(x) d(n) d(x) .
$$

Since $\alpha(I)=I$, the second summand is zero by (7). Hence $d(x)=0$ for all $x \in I$.
(ii). Now assume that d acts as an anti-homomorphism on I. Note that $a 0=0$ for all $a \in I$ by Lemma 2. According to Lemma 6 we have

$$
\begin{array}{cc}
x y d(y)=d(y) x d(y) & \text { for all } x, y \in I \\
d(y) \alpha(y) x=d(y) x d(y) & \text { for all } x, y \in I \tag{9}
\end{array}
$$

Replacing x by $x d(y)$ in (8) and using Lemma 6, we get

$$
\begin{align*}
x d(y) y d(y)=d(y) x d\left(y^{2}\right) & =d(y) x(d(y) \alpha(y)+y d(y)) \\
& =d(y) x d(y) \alpha(y)+d(y) x y d(y) \tag{10}
\end{align*}
$$

Substituting $x y$ for x in (8), we have

$$
\begin{array}{cl}
& \text { ARGAC } \\
x y^{2} d(y)=d(y) x y d(y) & \text { for all } x, y \in I . \tag{11}
\end{array}
$$

Right-multiplying (8) by $\alpha(y)$, we obtain

$$
\begin{equation*}
x y d(y) \alpha(y)=d(y) x d(y) \alpha(y) \quad \text { for all } x, y \in I \tag{12}
\end{equation*}
$$

Replacing x by y in (8) we get $y^{2} d(y)=d(y) y d(y)$; and left-multiplying this relation by x, we have

$$
\begin{equation*}
x y^{2} d(y)=x d(y) y d(y) \quad \text { for all } x, y \in I \tag{13}
\end{equation*}
$$

Using (11), (12) and (13) in (10), one obtains $x y d(y) \alpha(y)=0$. In particular, $y n y d(y) \alpha(y)=$ 0 , where $n \in N$. Hence $y d(y) \alpha(y) N y d(y) \alpha(y)=\{0\}$. By the semiprimeness of N

$$
\begin{equation*}
y d(y) \alpha(y)=0 \quad \text { for all } x, y \in I \tag{14}
\end{equation*}
$$

According to (12) we get $d(y) x d(y) \alpha(y)=0$. Using this relation in (9), we have

$$
\begin{equation*}
d(y) \alpha(y) x \alpha(y)=0 \quad \text { for all } x, y \in I \tag{15}
\end{equation*}
$$

Replacing x by $x n d(y)$ in (15), we have $d(y) \alpha(y) x d(y) \alpha(y)=d(y) \alpha(y) x n d(y) \alpha(y) x=0$ for all $x, y \in I, n \in N$. Hence

$$
\begin{equation*}
d(y) \alpha(y) x=0 \quad \text { for all } x, y \in I \tag{16}
\end{equation*}
$$

Using (16) in (9), we obtain that $d(y) x d(y)=0$, and so we have $d(y) x n d(y) x=0$ for all $x, y \in I, n \in N$. Hence

$$
\begin{equation*}
d(y) x=0 \quad \text { for all } x, y \in I \tag{17}
\end{equation*}
$$

Therefore $x d(z) d(y n) x=0$ for all $x, y, z \in I, n \in N$. Thus $0=x d(z)(d(y) n+$ $\alpha(y) d(n)) x=x d(z) d(y) \alpha(y) d(n) x$ for all $x, y, z \in I, n \in N$. Since $\alpha(I)=I$ the second summand is zero by (17). Hence $x d(z) d(y) N x=\{0\}$, and so $x d(z) d(y) N x d(z) d(y)=\{0\}$. By the semiprimeness of N we get $0=x d(z) d(y)=x d(y z)$. Therefore $0=x d(y) z+$

ARGAÇ

$x \alpha(y) d(z)=x \alpha(y) d(z)$. In particular $0=\alpha(y) d(z) n \alpha(y) d(z)$. Hence $0=\alpha(y) d(z)$. Recalling (17) we now have $0=d(x y)$ for all $x, y \in I$, so $d(x x n)=0$ for all $x \in I, n \in N$.Thus $0=d(x n) d(x)=(d(x) n+\alpha(x) d(n)) d(x)=d(x) n d(x)+\alpha(x) d(n) d(x)=d(x) n d(x)+$ $\alpha(x) d(x n)$. Since the second summand is zero, we get $d(x) n d(x)=0$. Therefore $d(x)=0$ for all $x \in I$.

Corollary 1 Let N be a semiprime near-ring and da two-sided α-derivation of N such that α is onto and $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in N$.
(i)If d acts as a homomorphism on N, then $d=0$.
(ii) If d acts as an anti-homomorphism on N such that $\alpha(0)=0$, then $d=0$.

Corollary 2 Let N be a prime near-ring and I a nonzero subset of N such that $0 \in I$ and $I N \subseteq I$. Let d be a two-sided α-derivation on N such that $\alpha(I)=I$ and $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$.
(i) If d acts as a homomorphism on I, then $d=0$.
(ii) If d acts as an anti-homomorphism on I and $\alpha(0)=0$, then $d=0$.

Proof. By Theorem 1, we have $d(x)=0$ for all $x \in I$. Then $0=d(x n)=$ $d(x) \alpha(n)+x d(n)=x d(n)$, and so $x m d(n)=0$ for all $x \in I, n, m \in N$. By the primeness of N we have $x=0$ or $d(n)=0$ for all $x \in I, n \in N$. Since I is nonzero, we have $d(n)=0$ for all $n \in N$.

Theorem 2. Let N be a prime near-ring, I a nonzero semigroup ideal of N and d a nonzero ($\alpha, 1$)-derivation of N such that $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$. If $d(x+y-x-y)=0$ for all $x, y \in I$, then $(N,+)$ is abelian.

Proof. Suppose that $d(x+y-x-y)=0$ for all $x, y \in I$. Then we have $(x+y-x-y) d(z)=0$ for all $x, y, z \in I$ by Lemma 5 . Since $d \neq 0$, it is clear that $x+y-x-y=0$ for all $x, y \in I$ by Lemma 4 . Hence $(N,+)$ is abelian by Lemma 1 .

ARGAÇ

Corollary 3. Let N be a prime near-ring, I a nonzero semigroup ideal of N and d a nonzero $(\alpha, 1)$-derivation of N such that $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in I$. If $d+d$ is additive on I, then $(N,+)$ is abelian.

Proof. Assume that $d+d$ is an additive on I. Then

$$
(d+d)(x+y)=(d+d)(x)+(d+d)(y)=d(x)+d(x)+d(y)+d(y) .
$$

for all $x, y \in I$. On the other hand,

$$
(d+d)(x+y)=d(x+y)+d(x+y)=d(x)+d(y)+d(x)+d(y)
$$

for all $x, y \in I$. The above two expressions for $(d+d)(x+y)$ yield $d(x)+d(y)=d(y)+d(x)$ for all $x, y \in I$, that is $d(x+y-x-y)=0$. Then the proof is complete by Theorem 2 .

Example. Let $N=N_{1} \oplus N_{2}$, where N_{1} and N_{2} are prime near-rings. Define $d: N \rightarrow N$ by $d((x, y)))=(0, y)$ and $\alpha: N \rightarrow N$ by $\alpha((x, y))=(x, 0)$ for all $(x, y) \in N$. Then d is a two-sided α-derivation on N such that d acts as a homomorphism on N and $\alpha(x y)=\alpha(x) \alpha(y)$ for all $x, y \in N$. Furthermore, if N_{2} is commutative, then d acts as an anti-homomorphism on N and if N_{2} is abelian, then $d(x+y-x-y)=0$ for all $x, y \in N$. But $d \neq 0$ and $(N,+)$ is not abelian. Therefore the primeness condition on N in Corollary 2 and Theorem 2 cannot be omitted.

References

[1] Argaç, N.: On prime and semiprime near-rings with derivations. Internat. J. Math. and Math. Sci. 20 (4) (1997), 737-740.
[2] Beidar, K.I, Fong, Y. and Wang, X.K.: Posner and Herstein theorems for derivations of 3-prime near-rings. Comm. Algebra, 24(5) (1996), 1581-1589.
[3] Bell, H.E. and Kappe, L.C.: Rings in which derivations satisfy certain algebraic conditions. Acta. Math. Hungar. 53 (1989), no.3-4, 339-346.
[4] Bell, H. E. and Mason, G.: On derivations in near-rings, Near-rings and Near-fields, NorthHolland Mathematics Studies 137 (1987), 31-35.
[5] Bell, H.E. and Argaç, N.: Derivations, products of derivations, and commutativity in nearrings. Algebra Colloq. 81(8) (2001), 399-407.

ARGAÇ
[6] Chang, J.C.: On semiderivations of prime rings, Chinese J. Math. 12 (1984), 255-262.
[7] Hongan, M.: On near-rings with derivation. Math. J. Okayama Univ. 32 (1990), 89-92.
[8] Wang, X.K.: Derivations in prime near-rings. Proc. Amer. Math. Soc. 121 (2), 1994, 361-366.

[^0]: 1991 AMS Subject Classification: 16Y30, 16W25, 16U80
 *Dedicated to Professor Atsushi Nakajima for his $60^{\text {th }}$ birthday

