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On near-rings with two-sided α-derivations

Nurcan Argaç∗

Abstract

In this paper, we introduce the notion of two-sided α-derivation of a near-ring

and give some generalizations of [1]. Let N be a near ring. An additive mapping

f : N → N is called an (α, β)-derivation if there exist functions α,β : N → N such

that f(xy) = f(x)α(y) +β(x)f(y) for all x, y ∈ N. An additive mapping d : N → N

is called a two-sided α-derivation if d is an (α, 1)-derivation as well as a (1, α)-

derivation. The purpose of this paper is to prove the following two assertions: (i)

Let N be a semiprime near-ring, I be a subset of N such that 0 ∈ I , IN ⊆ I and d

be a two-sided α-derivation of N . If d acts as a homomorphism on I or as an anti-

homomorphism on I under certain conditions on α, then d(I) = {0}. (ii) Let N be

a prime near-ring, I be a nonzero semigroup ideal of N , and d be a (α, 1)-derivation

on N. If d + d is additive on I , then (N,+) is abelian.

Key words and phrases: Prime near-ring, semiprime near-ring, (α, 1)-derivation,

(1, α)-derivation, two-sided α-derivation

1. Introduction

Throughout this paper N stands for a right near-ring. An additive map d : N → N

is a derivation if d(xy) = xd(y) + d(x)y for all x, y ∈ N - or equivalently (cf. [8]) that
d(xy) = d(x)y+xd(y) for all x, y ∈ N . The study of derivations of near-rings was initiated
by H. E. Bell and G. Mason in 1987 [4], but thus for only a few papers on this subject
in near-rings have been published (see [1], [2], [5] and [7]). According to [4], a near ring
N is said to be prime if xNy = {0} for x, y ∈ N implies x = 0 or y = 0, and semiprime
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if xNx = {0} for x ∈ N implies x = 0. A non empty subset I of N will be called a
semigroup ideal if IN ⊆ I and NI ⊆ I.

Let S be a nonempty subset of N and d be a derivation of N. If d(xy) = d(x)d(y)
or d(xy) = d(y)d(x) for all x, y ∈ S, then d is said to act as a homomorphism or anti-
homomorphism on S, respectively. Bell and Kappe proved [3] that if d is a derivation of
a semiprime ring R which is either an endomorphism or anti-endomorphism, then d = 0.
They also showed that if d is a derivation of a prime ring R which acts as a homomorphism
on I, where I is a nonzero right ideal, then d = 0 on R these results were proved for
near-rings in [1].

Now we introduce the notion of two-sided α-derivation of a near-ring N as follows.

An additive mapping f : N → N is called a (α, β)-derivation if there exist functions
α, β : N → N such that f(xy) = f(x)α(y) + β(x)f(y) for all x, y ∈ N. An additive
mapping d : N → N is called a two-sided α-derivation if d is an (α, 1)-derivation as well
as (1, α)-derivation.

For α = 1, a two-sided α-derivation is of course just a derivation. In case N is
a prime ring and d 6= 0, Chang ([6, Theorem 1]) has shown that α must necessarily be
a ring endomorphism. Now we give an example of a two-sided α-derivation on a near-ring.

Example. Let N = N1 ⊕N2, where N1 is a zero-symmetric near-ring and N2 is a ring.
Let d1 be any map on N1 and d2 be a right and left N2-module map on N2 which is
not a derivation. Define d : N → N by d((n1, n2)) = (0, d2((n2)) and α : N → N by
α((n1, n2)) = (d1(n1), 0). Then d is a two-sided α-derivation on N but not a derivation.

2. The Results

We need the following lemmas.

Lemma 1 . Let N be a prime near-ring and I a nonzero semigroup ideal of N . If
u+ v = v + u for all u, v ∈ I, then (N,+) is abelian.

Proof. By the hypothesis, we have xu + yu = yu + xu for all u ∈ I and x, y ∈ N .
Then we get (x + y − x + y)u = 0 for all u ∈ I and x, y ∈ N . It means that
(x + y − x − y)I = (x − y − x − y)NI = 0. Since I is a nonzero semigroup ideal we
have x+ y− x− y = 0 for all x, y ∈ N by the primeness of N. Thus (N,+) is abelian. 2
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Lemma 2 Let N be a right near-ring, d a (α, 1)-derivation of N and I a multiplicative
semigroup of N which contains 0. If d acts as an anti-homomorphism on I and α(0) = 0,
then x0 = 0 for all x ∈ I.

Proof. Since 0x = 0 for all x ∈ I and d acts as an anti-homomorphism on I it is clear
that d(x)0 = 0 for all x ∈ I. Taking x0 instead of x, one can obtain d(x)α(0) + x0 = 0
for all x ∈ I. Thus we have x0 = 0 for all x ∈ I. 2

Lemma 3 Let N be a near-ring and I be a multiplicative subsemigroup of N . If d is a
two-sided α-derivation of N such that α(xy) = α(x)α(y) for all x, y ∈ I, then

n(d(x)α(y) + xd(y)) = nd(x)α(y) + nxd(y) for all n, x, y ∈ I.

Furthermore, if α(I) = I, then

n(d(x)y + α(x)d(y)) = nd(x)y + nα(x)d(y) for all n, x, y ∈ I.

A proof can be given by using a similar approach to that in the proof of [ 8, Lemma
1].

Lemma 4 . Let N be a prime near-ring and I a nonzero semigroup ideal of N . Let d be
a nonzero (α, 1)-derivation on N such that α(xy) = α(x)α(y) for all x, y ∈ I. If x ∈ N
and xd(I) = {0}, then x = 0.

Proof. Assume that xd(I) = 0. Then xd(uy) = 0 for all y ∈ N, u ∈ I. Hence
0 = x(d(u)α(y) + ud(y)) = xud(y) for all y ∈ N, u ∈ I. Since I is a nonzero semigroup
ideal and d is nonzero, it is clear that x = 0 by the primeness of N . 2

Lemma 5 Let N be a prime near-ring and I a nonzero semigroup ideal of N and d

a nonzero (α, 1)-derivation on N . If d(x + y − x − y) = 0 for all x, y ∈ I, then
(x + y − x− y)d(z) = 0 for all x, y, z ∈ I.
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Proof. Assume that d(x + y − x − y) = 0 for all x, y ∈ I. Let us take yz and xz

instead of y and x, where z ∈ I respectively. Then 0 = d((x + y − x − y)z) =
d(x + y − x − y)α(z) + (x + y − x − y)d(z) = (x + y − x − y)d(z) for all x, y, z ∈ I.

2

Lemma 6 Let N be a near-ring and I a multiplicative subsemigroup of N . Let d be a
(α, 1)- derivation of N such that α(xy) = α(x)α(y) for all x, y ∈ I and α(I) = I.

(i) If d acts as a homomorphism on I, then

d(y)xd(y) = yxd(y) = d(y)xα(y) for all x, y ∈ I.

(ii) If d acts as an anti-homomorphism on I, then

d(y)xd(y) = xyd(y) = d(y)α(y)x for all x, y ∈ I.

Proof. (i) Let d act as a homomorphism on I. Then

d(xy) = d(x)α(y) + xd(y) = d(x)d(y) for all x, y ∈ I. (1)

Substituting yx for x in (1), we infer that

d(yx)α(y) + yxd(y) = d(yx)d(y) = d(y)d(xy) for all x, y ∈ I. (2)

By Lemma 3, d(y)d(xy) = d(y)d(x)α(y) + d(y)xd(y) = d(yx)α(y) + d(y)xd(y). Using
this relation in (2), we get yxd(y) = d(y)xd(y).

Similarly, taking yx instead of y in (1) we obtain

d(x)α(yx) + xd(yx) = d(x)d(yx) = d(xy)d(x) for all x, y ∈ I. (3)

On the other hand d(xy)d(x) = (d(x)α(y) + xd(y))d(x) = d(x)α(y)d(x) + xd(y)d(x) =
d(x)α(y)d(x) + xd(yx). Using this relation in (3) we get d(x)α(yx) = d(x)α(y)α(x) =
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d(x)α(y)d(x). Since α(I) = I it is clear that d(x)wd(x) = d(x)wα(x) for all x, w ∈ I.

(ii) Since d acts as an anti-homomorphism on I, we have

d(xy) = d(x)α(y) + xd(y) = d(y)d(x) for all x, y ∈ I. (4)

Taking xy for y in (4), we get

d(x)α(xy) + xd(xy) = d(xy)d(x)

= (d(x)α(y) + xd(y))d(x)

= d(x)α(y)d(x) + xd(y)d(x)

= d(x)α(y)d(x) + xd(xy) for all x, y ∈ I.

From this relation we get d(x)α(xy) = d(x)α(y)d(x). Since α(I) = I, we get d(x)α(x)y =
d(x)yd(x) for all x, y ∈ I. Similarly, taking xy instead of x in (4), one can prove the
relation d(y)xd(y) = xyd(y).

2

The following theorem is a generalization of [1, Theorem].

Theorem 1 Let N be a semiprime near-ring and I be a subset of N such that 0 ∈ I and
IN ⊆ I. Let d be a two-sided α-derivation on N such that α(I) = I and α(xy) = α(x)α(y)
for all x, y ∈ I.
(i) If d acts as a homomorphism on I, then d(I) = {0}.
(ii) If d acts as an anti-homomorphism on I and α(0) = 0, then d(I) = {0}.
Proof. (i) Suppose that d acts as a homomorphism on I. By Lemma 6 we have

d(y)xd(y) = d(y)xα(y) for all x, y ∈ I. (5)

Right multiplying (5) by d(z), where z ∈ I, and using the hypothesis that d acts as a
homomorphism on I together with Lemma 3, we obtain d(y)xd(y)z = 0 for all x, y, z ∈ I.
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Taking xn instead of x, where n ∈ N, we get d(y)xnd(y)z = 0 for all x, y, z ∈ I and
n ∈ N. In particular, d(y)xNd(y)x = {0}. By the semiprimeness of N we conclude that
d(y)x = 0. Since α(I) = I, it is clear that

d(y)α(x) = 0 for all x, y ∈ I. (6)

Substituting yn for y in (6) and left-multiplying (6) by d(z), where z ∈ I, we get
d(z)d(y)nα(x) + d(z)α(y)d(n)α(x) = 0. Since the second summand is zero by (6) we
get 0 = d(z)d(y)nα(x) = d(zy)nα(x) = d(z)α(y)nα(x) + zd(y)nα(x) = zd(y)nα(x), that
is zd(y)nx = 0 for all x, y, z ∈ I, n ∈ N . Since N is semiprime, we have

zd(y) = 0 for all y, z ∈ I. (7)

Combining (6) and (7) shows that d(yz) = 0 for all y, z ∈ I. In particular, d(xnx) = 0
for all x ∈ I, n ∈ N ; and since d acts as a homomorphism on I, we have

0 = d(xn)d(x) = d(x)nd(x) + α(x)d(n)d(x).

Since α(I) = I, the second summand is zero by (7). Hence d(x) = 0 for all x ∈ I.
(ii). Now assume that d acts as an anti-homomorphism on I. Note that a0 = 0 for

all a ∈ I by Lemma 2. According to Lemma 6 we have

xyd(y) = d(y)xd(y) for all x, y ∈ I, (8)

d(y)α(y)x = d(y)xd(y) for all x, y ∈ I. (9)

Replacing x by xd(y) in (8) and using Lemma 6, we get

xd(y)yd(y) = d(y)xd(y2) = d(y)x(d(y)α(y) + yd(y))

= d(y)xd(y)α(y) + d(y)xyd(y). (10)

Substituting xy for x in (8), we have
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xy2d(y) = d(y)xyd(y) for all x, y ∈ I. (11)

Right-multiplying (8) by α(y), we obtain

xyd(y)α(y) = d(y)xd(y)α(y) for all x, y ∈ I. (12)

Replacing x by y in (8) we get y2d(y) = d(y)yd(y); and left-multiplying this relation
by x, we have

xy2d(y) = xd(y)yd(y) for all x, y ∈ I. (13)

Using (11), (12) and (13) in (10), one obtains xyd(y)α(y) = 0. In particular, ynyd(y)α(y) =
0, where n ∈ N . Hence yd(y)α(y)Nyd(y)α(y) = {0}. By the semiprimeness of N

yd(y)α(y) = 0 for all x, y ∈ I. (14)

According to (12) we get d(y)xd(y)α(y) = 0. Using this relation in (9), we have

d(y)α(y)xα(y) = 0 for all x, y ∈ I. (15)

Replacing x by xnd(y) in (15), we have d(y)α(y)xd(y)α(y) = d(y)α(y)xnd(y)α(y)x = 0
for all x, y ∈ I,n ∈ N. Hence

d(y)α(y)x = 0 for all x, y ∈ I. (16)

Using (16) in (9), we obtain that d(y)xd(y) = 0, and so we have d(y)xnd(y)x = 0
for all x, y ∈ I, n ∈ N . Hence

d(y)x = 0 for all x, y ∈ I. (17)

Therefore xd(z)d(yn)x = 0 for all x, y, z ∈ I, n ∈ N . Thus 0 = xd(z)(d(y)n +
α(y)d(n))x = xd(z)d(y)α(y)d(n)x for all x, y, z ∈ I, n ∈ N. Since α(I) = I the second
summand is zero by (17). Hence xd(z)d(y)Nx = {0}, and so xd(z)d(y)Nxd(z)d(y) = {0}.
By the semiprimeness of N we get 0 = xd(z)d(y) = xd(yz). Therefore 0 = xd(y)z +
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xα(y)d(z) = xα(y)d(z). In particular 0 = α(y)d(z)nα(y)d(z). Hence 0 = α(y)d(z). Re-
calling (17) we now have 0 = d(xy) for all x, y ∈ I, so d(xxn) = 0 for all x ∈ I, n ∈ N.Thus
0 = d(xn)d(x) = (d(x)n + α(x)d(n))d(x) = d(x)nd(x) + α(x)d(n)d(x) = d(x)nd(x) +
α(x)d(xn). Since the second summand is zero, we get d(x)nd(x) = 0. Therefore d(x) = 0
for all x ∈ I. 2

Corollary 1 Let N be a semiprime near-ring and d a two-sided α-derivation of N such
that α is onto and α(xy) = α(x)α(y) for all x, y ∈ N .
(i)If d acts as a homomorphism on N , then d = 0.
(ii) If d acts as an anti-homomorphism on N such that α(0) = 0, then d = 0.

Corollary 2 Let N be a prime near-ring and I a nonzero subset of N such that 0 ∈ I and
IN ⊆ I. Let d be a two-sided α-derivation on N such that α(I) = I and α(xy) = α(x)α(y)
for all x, y ∈ I.

(i) If d acts as a homomorphism on I, then d = 0.

(ii) If d acts as an anti-homomorphism on I and α(0) = 0, then d = 0.

Proof. By Theorem 1, we have d(x) = 0 for all x ∈ I. Then 0 = d(xn) =
d(x)α(n) + xd(n) = xd(n), and so xmd(n) = 0 for all x ∈ I, n,m ∈ N . By the primeness
of N we have x = 0 or d(n) = 0 for all x ∈ I, n ∈ N. Since I is nonzero, we have d(n) = 0
for all n ∈ N. 2

Theorem 2 . Let N be a prime near-ring, I a nonzero semigroup ideal of N and
d a nonzero (α, 1)-derivation of N such that α(xy) = α(x)α(y) for all x, y ∈ I. If
d(x+ y − x− y) = 0 for all x, y ∈ I, then (N,+) is abelian.

Proof. Suppose that d(x + y − x − y) = 0 for all x, y ∈ I. Then we have
(x + y − x − y)d(z) = 0 for all x, y, z ∈ I by Lemma 5. Since d 6= 0, it is clear that
x+ y − x− y = 0 for all x, y ∈ I by Lemma 4. Hence (N,+) is abelian by Lemma 1. 2
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Corollary 3 . Let N be a prime near-ring, I a nonzero semigroup ideal of N and d a
nonzero (α, 1)-derivation of N such that α(xy) = α(x)α(y) for all x, y ∈ I. If d + d is
additive on I, then (N,+) is abelian.

Proof. Assume that d+ d is an additive on I. Then

(d+ d)(x+ y) = (d+ d)(x) + (d+ d)(y) = d(x) + d(x) + d(y) + d(y).

for all x, y ∈ I. On the other hand,

(d+ d)(x+ y) = d(x+ y) + d(x+ y) = d(x) + d(y) + d(x) + d(y).

for all x, y ∈ I. The above two expressions for (d+d)(x+y) yield d(x)+d(y) = d(y)+d(x)
for all x, y ∈ I, that is d(x+y−x−y) = 0. Then the proof is complete by Theorem 2. 2

Example. Let N = N1 ⊕N2, where N1 and N2 are prime near-rings. Define d : N → N

by d((x, y))) = (0, y) and α : N → N by α((x, y)) = (x, 0) for all (x, y) ∈ N. Then
d is a two-sided α-derivation on N such that d acts as a homomorphism on N and
α(xy) = α(x)α(y) for all x, y ∈ N. Furthermore, if N2 is commutative, then d acts as
an anti-homomorphism on N and if N2 is abelian, then d(x + y − x − y) = 0 for all
x, y ∈ N . But d 6= 0 and (N,+) is not abelian. Therefore the primeness condition on N

in Corollary 2 and Theorem 2 cannot be omitted.
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