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Moments Equalities for Nonnegative Integer-Valued

Random Variables
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Abstract

We present and prove two theorems about equalities for the nth moment of

nonnegative integer-valued random variables. These equalities generalize the well

known equality for the first moment of a nonnegative integer-valued random variable

X in terms of its cumulative distribution function, or in terms of its tail distribution.
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1. Introduction

There is a well-known equality for the nth moment of a nonnegative random variable
Y as an integral of a function of its tail distribution. A similar equality for the first
moment of a nonnegative integer-valued random variable as a sum over x of a function
of its tail distribution is also well known and used a lot in the literature (See [1, p. 43],
for example). What we prove in this paper is a generalization of this sum equality when
the random variable is integer-valued.

In the next section we will prove a generalization of the well-known equality in the
discrete case. Our equality gives a neat formula of the nth moment, when it exists, for
nonnegative integer-valued variables.
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2. Main Theorems

In this section we prove two identities that each will be used to prove one of our main
theorems. The first identity is used to express a product of terms of the form (X − i) as
a finite sum of products of similar terms when the sum ranges from 1 to a nonnegative
integer x. The second identity is used to express xn as a finite sum that ranges from 1
to a nonnegative integer x.

Before we proceed to the main theorems, we need the following lemma.

Lemma 2.1 Let x and n be nonnegative integers such that x > n. Then(
x

n + 1

)
=

x−n∑
j=1

(
x− j
n

)
.

Proof. Apply Pascal’s identity, namely(
x

n+ 1

)
=
(
x− 1
n

)
+
(
x− 1
n+ 1

)
,

to each last term on the right-hand side of the resulting equation. Continue this procedure
x− n− 1 times to get (

x

n+ 1

)
=

x−n−1∑
j=1

(
x− j
n

)
+
(
n+ 1
n+ 1

)

=
x−n∑
j=1

(
x− j
n

)
.

2

Lemma 2.2 Let gn(x) :=
∑x

i=1

∏n
j=1(i − j) and fn(x) :=

∏n
j=0(x − j), where x and n

are nonnegative integers such that x > n. Then (n + 1)gn(x) = fn(x) = (x)n+1, where
(z)m = z(z − 1) . . . (z −m+ 1).

Proof. Notice that

fn(x) = x(x− 1) · · · (x− n) = (x)n+1 = (n + 1)!
(

x

n+ 1

)
.
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We also notice that gn(x) is a finite sum of terms of the form (x−j)(x−j−1)(x−j−
2) · · · of length n. Such a general term can be expressed as (x− j)n for j = 1, 2, . . . , n.
The number of these terms is x− n. Therefore,

gn(x) =
x−n∑
j=1

(x− j)n. (2.1)

Since (x− j)n = n!
(
x−j
n

)
, (2.1) can be written as

gn(x) = n!
x−n∑
j=1

(
x− j
n

)
.

By Lemma 2.1, we have

gn(x) = n!
(

x

n+ 1

)
.

This implies that (n+ 1)gn(x) = fn(x). 2

Remark 2.1 Lemma 2.2 simply says that, for x > n ≥ 2,

n−1∏
i=0

(x− i) = n

x∑
y=1

n−1∏
i=1

(y − i). (2.2)

Theorem 2.1 Let X be a nonnegative integer-valued random variable and n ≥ 2. Then

E

(
n−1∏
i=0

(X − i)
)

=

n
∑∞

x=n−1

(∏n−2
i=0 (x− i)P (X > x)

)
if X > n

0 if X ≤ n,
(2.3)

provided that the sum on the right-hand side of (2.3) exists.

Proof. Note that when X < n, the left-hand side of (2.3) is 0. The proof of this

113



RIFFI

theorem when X > n mainly depends on (2.2) which is proved in Lemma 2.2.

E

(
n−1∏
i=0

(X − i)
)

=
∑
x≥0

n−1∏
i=0

(x− i)P (X = x)

= n
∑
x≥0

P (X = x)
x∑
y=1

n−1∏
i=1

(y − i) (by (2.2))

= n

∞∑
y=1

∞∑
x=y

n−1∏
i=1

(y − i)P (X = x) (Fubini’s Theorem)

= n

∞∑
y=1

n−1∏
i=1

(y − i)P (X ≥ y)

= n

∞∑
x=n

n−1∏
i=1

(x − i)P (X ≥ x)

= n
∞∑

x=n−1

n−2∏
i=0

(x− i)P (X > x),

(2.4)

where we have changed the dummy variable y to x. 2

Remark 2.2 We may start the sum on the right-hand side of (2.3) at x = 0, since the

first n− 1 terms of the product n
∏n−2
i=0 (x− i) are equal to 0.

Remark 2.3 The case when n = 1 is well known and can be stated separately for
notational convenience, where the proof can be found in [1], for example, and will be
part of our next main theorem.

E(X) =
∞∑
x=0

P (X > x).

Our second main theorem provides an explicit formula for the nth moment of a
nonnegative integer-valued random variable X. We need the following lemma before
we state and prove the second main theorem.
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Lemma 2.3 Let An(x) be defined for n = 1, 2, . . . as follows:

An(x) :=
n∑
y=1

(−1)y+1

(
n

y

)
xn−y, x = 1, 2, . . .

Then we have the following:
(1) An(x+ 1) =

∑n
y=1

(
n
y

)
xn−y

(2)
∑x
i=1 An(i) = xn

(3)
∑x
i=1 An(i + 1) = (1 + x)n − 1.

Proof. To prove (1), note first that by adding and subtracting the term of the sum
when y = 0 we get

An(x) =
n∑
y=0

(−1)y+1

(
n

y

)
xn−y + xn

= −
n∑
y=0

(−1)y
(
n

y

)
xn−y + xn

= xn − (x − 1)n (by the binomial theorem).

Therefore, we have

An(x+ 1) = (1 + x)n − xn

=
n∑
y=0

(
n

y

)
xn−y − xn

=
n∑
y=1

(
n

y

)
xn−y.

To prove (2) we see that
x∑
i=1

An(i) =
x∑
i=1

in −
x∑
i=1

(i− 1)n

=
x∑
i=1

in −
x−1∑
j=0

jn (by setting j = i− 1)

=
x∑
j=0

jn −
x−1∑
j=0

jn = xn.
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To prove (3) we see that

x∑
i=1

An(i + 1) =
x∑
i=1

(1 + i)n −
x∑
i=1

in

=
x+1∑
j=2

jn −
x∑
i=1

in (by setting j = i+ 1)

=
x∑
j=1

jn −
x∑
j=1

jn − 1 + (1 + x)n

= (1 + x)n − 1.

2

Theorem 2.2 Let X be a nonnegative integer-valued random variable and n ≥ 1. If the
sum

∑∞
x=0 An(x+ 1)P (X > x) exists, then

E(Xn) =
∞∑
x=0

An(x+ 1)P (X > x)

=
∞∑
x=0

[(1 + x)n − xn]P (X > x),

(2.5)

where An(x + 1) :=
∑x

y=1

(
n
y

)
xn−y.

Proof. Note that Xn =
∑X
i=1 An(i). Take the expectation of both sides to get

E(Xn) = E(
X∑
i=1

An(i))

=
∞∑
x=0

x∑
i=1

An(i)P (X = x)

=
∞∑
i=1

∞∑
x=i

An(i)P (X = x) (by Fubini’s Theorem)

116



RIFFI

=
∞∑
i=1

An(i)P (X ≥ i)

=
∞∑
i=0

An(i + 1)P (X > i)

=
∞∑
x=0

An(x+ 1)P (X > x),

by changing the dummy variable i to x.
Now the last part of (2.5) follows from the fact that

An(x+ 1) =
n∑
y=1

(
n

y

)
xn−y = (1 + x)n − xn.

2
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