Moments Equalities for Nonnegative Integer-Valued Random Variables

Mohamed I. Riffi

Abstract

We present and prove two theorems about equalities for the nth moment of nonnegative integer-valued random variables. These equalities generalize the well known equality for the first moment of a nonnegative integer-valued random variable X in terms of its cumulative distribution function, or in terms of its tail distribution.

Key words and phrases: Expectation, Moments, Equalities.

1. Introduction

There is a well-known equality for the nth moment of a nonnegative random variable Y as an integral of a function of its tail distribution. A similar equality for the first moment of a nonnegative integer-valued random variable as a sum over x of a function of its tail distribution is also well known and used a lot in the literature (See [1, p. 43], for example). What we prove in this paper is a generalization of this sum equality when the random variable is integer-valued.

In the next section we will prove a generalization of the well-known equality in the discrete case. Our equality gives a neat formula of the nth moment, when it exists, for nonnegative integer-valued variables.

[^0]
2. Main Theorems

In this section we prove two identities that each will be used to prove one of our main theorems. The first identity is used to express a product of terms of the form $(X-i)$ as a finite sum of products of similar terms when the sum ranges from 1 to a nonnegative integer x. The second identity is used to express x^{n} as a finite sum that ranges from 1 to a nonnegative integer x.

Before we proceed to the main theorems, we need the following lemma.
Lemma 2.1 Let x and n be nonnegative integers such that $x>n$. Then

$$
\binom{x}{n+1}=\sum_{j=1}^{x-n}\binom{x-j}{n}
$$

Proof. Apply Pascal's identity, namely

$$
\binom{x}{n+1}=\binom{x-1}{n}+\binom{x-1}{n+1}
$$

to each last term on the right-hand side of the resulting equation. Continue this procedure $x-n-1$ times to get

$$
\begin{aligned}
\binom{x}{n+1} & =\sum_{j=1}^{x-n-1}\binom{x-j}{n}+\binom{n+1}{n+1} \\
& =\sum_{j=1}^{x-n}\binom{x-j}{n}
\end{aligned}
$$

Lemma 2.2 $\operatorname{Let}^{\prime}(x):=\sum_{i=1}^{x} \prod_{j=1}^{n}(i-j)$ and $f_{n}(x):=\prod_{j=0}^{n}(x-j)$, where x and n are nonnegative integers such that $x>n$. Then $(n+1) g_{n}(x)=f_{n}(x)=(x)_{n+1}$, where $(z)_{m}=z(z-1) \ldots(z-m+1)$.
Proof. Notice that

$$
f_{n}(x)=x(x-1) \cdots(x-n)=(x)_{n+1}=(n+1)!\binom{x}{n+1} .
$$

RIFFI

We also notice that $g_{n}(x)$ is a finite sum of terms of the form $(x-j)(x-j-1)(x-j-$ 2) \cdots of length n. Such a general term can be expressed as $(x-j)_{n}$ for $j=1,2, \ldots, n$. The number of these terms is $x-n$. Therefore,

$$
\begin{equation*}
g_{n}(x)=\sum_{j=1}^{x-n}(x-j)_{n} . \tag{2.1}
\end{equation*}
$$

Since $(x-j)_{n}=n!\binom{x-j}{n},(2.1)$ can be written as

$$
g_{n}(x)=n!\sum_{j=1}^{x-n}\binom{x-j}{n} .
$$

By Lemma 2.1, we have

$$
g_{n}(x)=n!\binom{x}{n+1} .
$$

This implies that $(n+1) g_{n}(x)=f_{n}(x)$.

Remark 2.1 Lemma 2.2 simply says that, for $x>n \geq 2$,

$$
\begin{equation*}
\prod_{i=0}^{n-1}(x-i)=n \sum_{y=1}^{x} \prod_{i=1}^{n-1}(y-i) \tag{2.2}
\end{equation*}
$$

Theorem 2.1 Let X be a nonnegative integer-valued random variable and $n \geq 2$. Then

$$
E\left(\prod_{i=0}^{n-1}(X-i)\right)= \begin{cases}n \sum_{x=n-1}^{\infty}\left(\prod_{i=0}^{n-2}(x-i) P(X>x)\right) & \text { if } X>n \tag{2.3}\\ 0 & \text { if } X \leq n\end{cases}
$$

provided that the sum on the right-hand side of (2.3) exists.
Proof. Note that when $X<n$, the left-hand side of (2.3) is 0 . The proof of this

RIFFI

theorem when $X>n$ mainly depends on (2.2) which is proved in Lemma 2.2.

$$
\begin{align*}
\mathrm{E}\left(\prod_{i=0}^{n-1}(X-i)\right) & =\sum_{x \geq 0} \prod_{i=0}^{n-1}(x-i) P(X=x) \\
& =n \sum_{x \geq 0} P(X=x) \sum_{y=1}^{x} \prod_{i=1}^{n-1}(y-i) \quad(\text { by }(2.2)) \\
& =n \sum_{y=1}^{\infty} \sum_{x=y}^{\infty} \prod_{i=1}^{n-1}(y-i) P(X=x) \quad \text { (Fubini's Theorem) } \tag{2.4}\\
& =n \sum_{y=1}^{\infty} \prod_{i=1}^{n-1}(y-i) P(X \geq y) \\
& =n \sum_{x=n}^{\infty} \prod_{i=1}^{n-1}(x-i) P(X \geq x) \\
& =n \sum_{x=n-1}^{\infty} \prod_{i=0}^{n-2}(x-i) P(X>x),
\end{align*}
$$

where we have changed the dummy variable y to x.

Remark 2.2 We may start the sum on the right-hand side of (2.3) at $x=0$, since the first $n-1$ terms of the product $n \prod_{i=0}^{n-2}(x-i)$ are equal to 0 .

Remark 2.3 The case when $n=1$ is well known and can be stated separately for notational convenience, where the proof can be found in [1], for example, and will be part of our next main theorem.

$$
E(X)=\sum_{x=0}^{\infty} P(X>x)
$$

Our second main theorem provides an explicit formula for the nth moment of a nonnegative integer-valued random variable X. We need the following lemma before we state and prove the second main theorem.

RIFFI

Lemma 2.3 Let $A_{n}(x)$ be defined for $n=1,2, \ldots$ as follows:

$$
A_{n}(x):=\sum_{y=1}^{n}(-1)^{y+1}\binom{n}{y} x^{n-y}, \quad x=1,2, \ldots
$$

Then we have the following:
(1) $A_{n}(x+1)=\sum_{y=1}^{n}\binom{n}{y} x^{n-y}$
(2) $\sum_{i=1}^{x} A_{n}(i)=x^{n}$
(3) $\sum_{i=1}^{x} A_{n}(i+1)=(1+x)^{n}-1$.

Proof. To prove (1), note first that by adding and subtracting the term of the sum when $y=0$ we get

$$
\begin{aligned}
A_{n}(x) & =\sum_{y=0}^{n}(-1)^{y+1}\binom{n}{y} x^{n-y}+x^{n} \\
& =-\sum_{y=0}^{n}(-1)^{y}\binom{n}{y} x^{n-y}+x^{n} \\
& =x^{n}-(x-1)^{n} \quad \text { (by the binomial theorem). }
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
A_{n}(x+1) & =(1+x)^{n}-x^{n} \\
& =\sum_{y=0}^{n}\binom{n}{y} x^{n-y}-x^{n} \\
& =\sum_{y=1}^{n}\binom{n}{y} x^{n-y} .
\end{aligned}
$$

To prove (2) we see that

$$
\begin{aligned}
\sum_{i=1}^{x} A_{n}(i) & =\sum_{i=1}^{x} i^{n}-\sum_{i=1}^{x}(i-1)^{n} \\
& =\sum_{i=1}^{x} i^{n}-\sum_{j=0}^{x-1} j^{n} \quad(\text { by setting } j=i-1) \\
& =\sum_{j=0}^{x} j^{n}-\sum_{j=0}^{x-1} j^{n}=x^{n}
\end{aligned}
$$

RIFFI

To prove (3) we see that

$$
\begin{aligned}
\sum_{i=1}^{x} A_{n}(i+1) & =\sum_{i=1}^{x}(1+i)^{n}-\sum_{i=1}^{x} i^{n} \\
& =\sum_{j=2}^{x+1} j^{n}-\sum_{i=1}^{x} i^{n} \quad(\text { by setting } j=i+1) \\
& =\sum_{j=1}^{x} j^{n}-\sum_{j=1}^{x} j^{n}-1+(1+x)^{n} \\
& =(1+x)^{n}-1 .
\end{aligned}
$$

Theorem 2.2 Let X be a nonnegative integer-valued random variable and $n \geq 1$. If the sum $\sum_{x=0}^{\infty} A_{n}(x+1) P(X>x)$ exists, then

$$
\begin{align*}
E\left(X^{n}\right) & =\sum_{x=0}^{\infty} A_{n}(x+1) P(X>x) \\
& =\sum_{x=0}^{\infty}\left[(1+x)^{n}-x^{n}\right] P(X>x), \tag{2.5}
\end{align*}
$$

where $A_{n}(x+1):=\sum_{y=1}^{x}\binom{n}{y} x^{n-y}$.
Proof. Note that $X^{n}=\sum_{i=1}^{X} A_{n}(i)$. Take the expectation of both sides to get

$$
\begin{aligned}
\mathrm{E}\left(X^{n}\right) & =\mathrm{E}\left(\sum_{i=1}^{X} A_{n}(i)\right) \\
& =\sum_{x=0}^{\infty} \sum_{i=1}^{x} A_{n}(i) P(X=x) \\
& =\sum_{i=1}^{\infty} \sum_{x=i}^{\infty} A_{n}(i) P(X=x) \quad \text { (by Fubini's Theorem) }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} A_{n}(i) P(X \geq i) \\
& =\sum_{i=0}^{\infty} A_{n}(i+1) P(X>i) \\
& =\sum_{x=0}^{\infty} A_{n}(x+1) P(X>x)
\end{aligned}
$$

by changing the dummy variable i to x.
Now the last part of (2.5) follows from the fact that

$$
A_{n}(x+1)=\sum_{y=1}^{n}\binom{n}{y} x^{n-y}=(1+x)^{n}-x^{n}
$$

References

[1] Kai Lai Chung, A Course in Probability Theory, Second Edition, Academic Press, New York, 1974.
[2] George Casella, Roger L. Berger, Statistical Inference, Duxbury Press, California, 1990.

Mohamed I. RIFFI

Received 26.08.2002
Associate Professor of Mathematics
Department of Mathematics
Islamic University of Gaza
Gaza, Palestine
e-mail: miriffi@hotmail.com

[^0]: 2000 Mathematics Subject Classification: Primary 60A99. Secondary 62B99.

