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The Theory of Jacobi Systems and Their Abelian

Representations
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Abstract

In this article we introduce a new generalization of the concept of Lie ring which

we call Jacobi system and we investigate some elementary properties of these systems

and their Abelian representations.

The aim of this article is to introduce a new generalization of the concept of Lie ring.
The importance of Lie rings in the study of nilpotent groups as well as their role in
the investigation of the Burnside problem is known. Researchers have been interested
in those aspects of Lie rings which are concerned with the Burnside problem, nilpotent
groups and regular automorphisms.

In [3], Zamani and Shahryari introduced an algebraic system, dropping the commu-
tativity assumption in a Lie ring. These systems are called Jacobi systems and they are
analogue to near-rings, about which hundreds of papers has been written, (See [2]).

The goodness of the theory of near-rings gives us the hope that we may bring the
theory of Jacobi systems in the interest of doing further research in this area.

In this paper we give the generalities of this theory. Topics such as J-solvable and
J-nilpotent Jacobi systems, Abelian representation and some other elementary topics are
included in this paper. But we do not know how much interest could be gained from this
subject.

We give our appreciation to the Office of Research at Tabriz University and also the
Department of Research at Sahand University of Technology for their financial support
during this research.
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1. Introduction

Let J be a group and suppose that there is a bi-homomorphism

[ , ] : J × J → J

such that
i) [ x, x ] = 1 for all x ∈ J ,
ii) [ [ x, y ], z ][ [ y, z ], x ][ [ z, x ], y ] = 1 for all x, y, z ∈ J .
Then we say that J is a Jacobi system. Obviously any Lie ring is a Jacobi system in

which the underling group is an Abelian group. Another example of a Jacobi system is a
group J with J ′ ≤ Z(J) and the bi-homomorphism defined as ordinary commutator:

[ x, y ] = xyx−1y−1.

Further examples of Jacobi systems will be presented later.

Now suppose J is a Jacobi system. We have

[ xy, xy ] = 1

for all x, y ∈ J . This gives the identity

[ x, y ] = [ y, x ]−1.

A subgroup S ≤ J is a sub-system if [ x, y ] ∈ S for all x, y ∈ S. Clearly every sub-system
is a Jacobi system. An ideal of J is a normal subgroup I in J with the property [ x, y ] ∈ I
for x ∈ I, y ∈ J .
For any x ∈ J we define the J-class of x to be the subgroup [ x, J ]. The J-centralizer of
x is the normal subgroup

C∗J(x) = {y ∈ J | [x, y] = 1}.

In fact C∗J(x) is a sub-system of J . It is easy to see that the map

φ :
J

C∗J(x)
→ [ x, J ]

defined by φ(yC∗J (x)) = [ x, y ] is a well-defined isomorphism of groups.
We now define the Jacobi center, or J-center of J by

Z∗(J) =
⋂
x

C∗J(x).
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It is trivial that Z∗(J) is an ideal of J . One can easily see that J ′ ≤ Z∗(J), where J ′ is
the ordinary commutator subgroup of J . So, if J is a non-abelian group, then Z∗(J) 6= 1.
Especially, J can not be J-simple in this case.

A Jacobi system J is said to be J-abelian, if its bracket is trivial, i.e.

[ x, y ] = 1,

for all x, y ∈ J . If J has no ideals except itself and 1, and moreover, if [ J, J ] 6= 1, we call
J a J-simple Jacobi system. It is easy to see that the ordinary commutator subgroup J ′

is an ideal of J . Let π : J → J/J ′ be the canonical map. If we define

[π(x), π(y)] = π([x, y]),

then we obtain a Lie ring structure on the quotient group J/J ′.
Let X ⊆ J . The ideal generated by X is the smallest ideal of J containing X. For

example, let X = {[x, y]|x, y ∈ J}. Then we write [J, J ] for the ideal generated by X and
we call it the J-derived ideal of J . Clearly J/[J, J ] is J-abelian and if J/I is J-abelian,
then [J, J ] ⊆ I.

Now we can define the derived series of J . Let d1(J) = [J, J ] and define inductively
dn(J) = [dn−1(J), dn−1(J)]. So the series of ideals

J ≥ d1(J) ≥ d2(J) ≥ . . .

is called the J-derived series of J .
A Jacobi system J is J-solvable, if dn(J) = 1 for some n ≥ 1. The smallest n with

this property is called the J-derived length of J . Clearly if J simple, it is J-solvable only
if the bracket is trivial. One can see that if J is J-solvable, then every sub-system and
every quotient of J is J-solvable as well. Conversely, if I is a J-solvable ideal of J with
J-solvable quotient J/I, then J is J-solvable.

A series of ideals
J = I0 ≥ I1 ≥ I2 ≥ · · · ≥ In = 1

is said to be J-abelian series if Ir/Ir+1 is J-abelian for all r. So J is J-solvable if and
only if it has a J-abelian series.

Similar to the concept of J-solvable Jacobi system, we can define the concept of J-
nilpotent Jacobi system. Let p1(J) = J and define inductively pn(J) = [ J, pn−1(J) ].
Then we get a series of ideals

J = p1(J) ≥ p2(J) ≥ . . .
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and J is said to be J-nilpotent if pn(J) = 1 for some n ≥ 1. The smallest n with this
property is called the J-nilpotency class of J .
Clearly, every J-nilpotent Jacobi system is also J-solvable. If J is a J-nilpotent Jacobi
system, then so is every sub-system and every quotient of J . Other standard theorems of
solvable and nilpotent groups can be proved for the J-solvable and J-nilpotent systems.

2. Examples

In this section we obtain some examples of Jacobi systems which are not Lie rings.

Example 2.1 Let n be an even integer and J = D2n be the dihedral group generated by
elements a and b subject to the relations

an = b2 = 1, bab = a−1.

Every element of J can be expressed as aibj where 0 ≤ i ≤ n− 1 and j = 0, 1. We define

[ a, b ] = ab

and we extend this map to whole of J as a bi-homomorphism, i.e.

[ aibj , arbs ] = [ a, b ]si−rj

= (ab)si−rj.

To verify that this is a bi-homomorphism, let

A = aibj, B = aαbβ, C = arbs.

Then we have AB = ai−αbβ+j . So

[ AB,C ] = [ ai−αbβ+j , arbs ]

= (ab)s(i−α)−r(β+j)

= (ab)si−sα−rβ−rj.

On the other hand, we have

[ A,C ][ B,C ] = [ aibj, arbs ][ aαbβ, arbs ]

= (ab)si−rj(ab)sα−rβ

= (ab)si−rj+sα−rβ.
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But o(ab) = 2 and we have

si− sα − rβ − rj ≡ si− rj + sα− rβ (mod 2),

so [ AB,C ] = [ A,C ][ B,C ]. Now we show that the Jacobi identity holds, i.e.

[ [ A,B ], C ][ [ B,C ], A ][ [ C,A ], B ] = 1.

We have

[[A,B], C][[B,C], A][[C,A], B] = [(ab)βi−αj, C][(ab)sα−rβ, A][(ab)jr−is, B]

= [ ab, C ]βi−αj[ ab, A ]sα−rβ[ ab, B ]jr−is

= (ab)(s−r)(βi−αj)+(j−i)(sα−rβ)+(β−α)(jr−is)

But the exponent of the last expression is even, so it equals to 1. Other Jacobi structures
can be defined over J = D2n by considering [ a, b ] to be another suitable element of D2n.

Example 2.2 Let G be any non abelian group and let A be an Abelian subgroup of G.
Let ∞ be a symbol with ∞ 6∈ G. Suppose that G̃ = G ∪ {∞}. Let J be the set of all
functions

f : G̃→ G

such that f |G ∈ Hom(G,A). Now we define an operation on J as follows:

(f.g)(x) = f(x)g(x)

for all f, g ∈ J . It is easy to see that J is a non-abelian group together with this operation.
We define another operation on J by

(f ∗ g)(x) = f(g(x)).

Having defined these two operations, J becomes an algebraic system known as a distribu-
tive near-ring, (See [2]). Now we define a bracket on J as

[ f, g ] = (f ∗ g).(g ∗ f)−1.

It is now easy to verify that J is a Jacobi system.

Example 2.3 We can generalize the foregoing example by considering a distributive
near-ring J . Then by definition

[ a, b ] = ab− ba,

and we obtain a Jacobi system.
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3. J-solvable and J-nilpotent systems

In this section we give some sufficient conditions for a Jacobi system to be J-solvable
or J-nilpotent. First we will prove an analogue version of Kreknin’s theorem which asserts
that every Lie ring with a regular automorphism of finite order is necessarily solvable,
(See [1]). Recall that a regular automorphism is an automorphism which has no fixed
element except 1.

Theorem 3.1 Let J be a Jacobi system together with an automorphism α : J → J with
finite order and the property

x−1α(x) ∈ J ′ ⇒ x ∈ J ′.

Then J is solvable.

Proof. We define a map α∗ : J/J ′ → J/J ′ by

α∗(xJ ′) = α(x)J ′.

This map is well defined because J ′ is a characteristic subgroup of J . Indeed it is a Lie
ring automorphism, since

α∗([ xJ ′, yJ ′ ]) = α∗([ x, y ]J ′)

= α([ x, y ])J ′

= [ α(x), α(y) ]J ′

= [ α∗(xJ ′), α∗(yJ ′) ].

Now let α∗(xJ ′) = xJ . Then
x−1α(x) ∈ J ′,

so x ∈ J by the assumption. Hence α∗ is a regular automorphism of finite order for the
Lie ring J/J ′. Hence J/J ′ is solvable as a Lie ring, so dn(J/J ′) = 0 for some n. But

dn(
J

J ′
) =

dn(J)J ′

J ′
,

so dn(J) ≤ J ′ ≤ Z∗(J). Hence dn+1(J) = 1.
We now prove some Engel type theorems for Jacobi systems. 2
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Theorem 3.2 Let J be a Jacobi system such that J/J ′ is finitely generated and torsion
free. Let for any x ∈ J the homomorphism

ad x : J → J

ad x(y) = [ x, y ]

be nilpotent. Then J is J-nilpotent.

Proof. Let L = J/J ′. Then L is a finitely generated torsion free Lie ring. It is evident
that every element of L is ad-nilpotent. Let

L∗ = L
⊗
Z

Q.

We prove that every element of L∗ is ad-nilpotent. Let X ∈ L∗. Then

X =
∑
i

ri(xi ⊗
mi

ni
)

for some ri, ni, mi ∈ Z. Let N =
∏
i ni. Then

NX =
∑
i

ri(xi ⊗miNi),

where Ni = N/ni. So

NX =
∑
i

(rimiNixi)⊗ 1

= (
∑
i

rimiNixi)⊗ 1.

We now have ad (NX) = ad (
∑

i rimiNixi) ⊗ 1. So ad (NX) is nilpotent. Hence

N l(ad X)l = 0

for some l. But L∗ is vector space over Q, so (ad X)l = 0. This shows that every element
of L∗ is ad-nilpotent. Hence by the Engel’s theorem L∗ is a nilpotent Lie algebra, i.e.

(L∗)n = 0
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for some n. But (L∗)n = pn(J/J ′)
⊗

Z Q. So every element pn(J/J ′) has finite order.
But this is impossible by the assumption, except the case pn(J/J ′) = 0. This implies
that

pn(J) ≤ J ′ ≤ Z∗(J),

so pn+1(J) = 1. 2

Theorem 3.3 Let J be a Jacobi system such that J/J ′ is finitely generated of exponent
p, where p is a prime number. Suppose every element of J is ad-nilpotent. Then J is
J-nilpotent.

Proof. We use a similar argument as in 3.2. Let L = J/J ′ and suppose

L∗ = L
⊗
Z

Zp.

Then L∗ is a finitely generated Lie algebra over Zp with ad-nilpotent elements. Hence
L∗ is a nilpotent Lie algebra, so

Ln
⊗
Z

Zp = 0.

But every element of L has order p, so Ln = 0. This shows that pn+1(J) = 1. 2

4. Abelian representations

In this section we introduce the concept of an Abelian representation of a Jacobi
system. Let J be a Jacobi system. Every Jacobi homomorphism, φ : J → gl(V ) is called
an abelian representation. In this article we will say representation instead of this longer
expression.

Definition 4.1 Let J be a Jacobi system and V be a vector space over a field K. We
say that V is a J-module if there exists a map J × V → V (transforming (x, v) into an
element x.v ∈ V ) such that

i) x.(λv) = λ(x.v),
ii) x.(v + u) = x.v + x.u,
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iii) (xy).v = x.v + y.v,
iv) [ x, y ].v = x.(y.v)− y.(x.v),

where x, y ∈ J, v, u ∈ V and λ ∈ K.

It is evident that if V is a J-module, then we can obtain a representation φ : J → gl(V )
by φ(x)v = x.v. Conversely, if φ is a representation of J over V , then by the definition
x.v = φ(x)v the vector space V becomes a J-module. The following proposition has a
quite elementary proof.

Proposition 4.2 Let J be a Jacobi system. Then there is a one-to-one correspondence
between the set of representations of J and the set of representations of J/J ′.

The notions of J-submodule, quotiont J-module, irreducible J-module, J-module ho-
momorphism and isomorphism of J-modules should be defined in a completely similar
way to the corresponding notions for groups.

All isomorphism theorems are valid in the case of J-modules and we can construct
new J-modules from old by using direct sum or tensor product. Also we have a Schur’s
Lemma about representations of J-modules.

Schur’s Lemma 4.3 Let φ : J → gl(V ) be an irreducible representation of a Jacobi
system J over an algebraically closed field K. Let T : V → V be a linear map commuting
with all φ(x), x ∈ J . Then T is a scalar transformation.

5. Invariant Form

Suppose V is a finite dimensional vector space over a field K and let φ : J → gl(V )
be a representation. We can define a form

< x, y >= Tr(φ(x)φ(y)).

It is easy to see that

< x1x2, y > = < x1, y > + < x2, y >

< x, y1y2 > = < x, y1 > + < x, y2 > .

It is also symmetric, i.e. < x, y >=< y, x >. We prove this form is invariant, i.e.

< [ x, y ], z >=< x, [ y, z ] > .
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To do this, we write

< [ x, y ], z > = Tr(φ([ x, y ])φ(z))

= Tr((φ(x)φ(y) − φ(y)φ(x))φ(z))

= Tr(φ(x)φ(y)φ(z)) −Tr(φ(y)φ(x)φ(z))

= Tr(φ(x)φ(y)φ(z)) −Tr(φ(x)φ(z)φ(y))

= Tr(φ(x)(φ(y)φ(z) − φ(z)φ(y)))

= < x, [ y, z ] > .

Definition 5.1 The radical of φ is the set

Radφ = {x ∈ J | < x, J >= 0}

Theorem 5.2 Radφ is an ideal of J and we have

J ′ ≤ Ker φ ≤ Radφ.

Proof. Let x, y ∈ Radφ and z ∈ J . Then

< xy, z > = < x, z > + < y, z >

= 0 + 0

= 0,

so xy ∈ Radφ. Also, 1 ∈ Radφ, because

< 1, z >=< 1, z > + < 1, z > .

On the other hand,
< x−1, z >= − < x, z >= 0

so x−1 ∈ Radφ. Hence we proved that Radφ is a subgroup of J . We now prove that it is
a normal subgroup. Let x ∈ Radφ and g, z ∈ J . Then

< gxg−1, z > = < g, z > + < x, z > − < g, z >

= 0.

So gxg−1 ∈ Radφ. Finally if x ∈ Radφ and y, z ∈ J , then

< [ x, y ], z > = < x, [ y, z ] >

= 0.
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Hence [ x, y ] ∈ Radφ and so Radφ is an ideal. 2

Theorem 5.3 Suppose exp(J) = ∞ or char K 6 |exp(J) if exp(J) is finite. Let φ be a
non-trivial representation of J . Then

Ker φ 6= Radφ.

Proof. Let Ker φ = Radφ and define Rφ = J/Radφ. Then Rφ is a Lie ring, because
J ′ ⊆ Radφ. We use the notation

x̄ = xRadφ.

Let φ∗ : Rφ → gl(V ) be defined by

φ∗(x̄) = φ(x).

This map is well-defined. Also, we have

< x̄, ȳ > = Tr(φ∗(x̄)φ∗(ȳ))

= Tr(φ(x)φ(y))

= < x, y > .

We claim that Radφ∗ = 0. Since if x̄ ∈ Radφ∗ , then < x̄, Rφ >= 0, so < x, J >= 0.
This shows that x ∈ Radφ and hence x̄ = 0. But

Ker φ∗ ≤ Radφ∗ ,

so φ∗ is faithful. Let m = exp(J) and x ∈ J such that φ(x) 6= 0. Then x 6∈ Radφ so
x̄ 6= 0. But mx̄ = 0, hence

φ∗(mx̄) = 0.

This shows that mφ∗(x̄) = 0. Since φ∗(x̄) 6= 0, we must have charK|m, a contradiction.
We can rewrite the above theorem with some weaker assumptions. 2

Corollary 5.4 Let φ be a non-trivial representation of J such that

charK 6 | exp( J

Radφ
)

Then Ker φ 6= Radφ.
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Definition 5.5 We say that the corresponding form of φ is non-degenerated, if Radφ = 1.

Corollary 5.6 If the corresponding form of a representation φ : J → gl(V ) is non-
degenerated, then charK | exp(J).

6. n-dimensional J-modules

In this section we assume that K is a field and J is a Jacobi system. We investigate
the structure of n-dimensional J-modules over K.
To do this we use Hom(J,K+), the K-space of all group homomorphism λ : J → K+,
where K+ is the additive group of K. If λ, µ ∈ Hom(J,K+), then we define a map

[ λ, µ ] : J × J → K

by
[ λ, µ ](x, y) = λ(x)µ(y) − λ(y)µ(x).

Also we define BJ : J × J → J by

BJ (x, y) = [ x, y ].

Now let V be an n-dimensional J-module with a basis v1, . . . , vn. For any 1 ≤ i ≤ n and
x ∈ J we can write

x.vi =
n∑
j=1

λij(x)vj,

where λij(x) ∈ K. It is easy to see that λij ∈ Hom(J,K+). Now suppose x, y ∈ J . Then
we have

[ x, y ].vi = x.(y.vi) − y.(x.vi).

Hence,

n∑
j=1

λij([ x, y ])vj = x.(
n∑
r=1

λir(y)vr)− y.(
n∑
r=1

λir(x)vr)

=
n∑
j=1

(
n∑
r=1

(λir(y)λrj (x)− λir(x)λrj(y)))vj .
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So we have

λij([ x, y ]) =
n∑
r=1

λir(y)λrj (x)− λir(x)λrj(y).

This is equivalent to

λijoBJ = −
n∑
r=1

[ λir, λrj ];

thus we proved the following theorm.

Theorem 6.1 Let V be an n-dimensional J-module with a basis v1, v2, . . . , vn. Let

x.vi =
n∑
j=1

λij(x)vj.

Then λij ∈ Hom(J,K+) and we have

λijoBJ = −
n∑
r=1

[ λir, λrj ].

Conversely, let V be an n-dimensional vector space over K with a basis v1, v2, . . . , vn.
Let the set

λij ∈ Hom(J,K+)

satisfy the equation

λijoBJ = −
n∑
r=1

[ λir, λrj ].

Then V becomes a J-module by definition

x.vi =
n∑
j=1

λij(x)vj. 2

Suppose Λ be the n × n matrix with entries λij. We will denote the corresponding
J-module by V = VΛ. Note that the matrix Λ is not unique.

Proposition 6.2 Let V = VΛ and W = VM be two n-dimensional J-module with Λ =
[λij] and M = [µij]. Then V is J-isomorphic to W if and only if there exists B ∈ GLn(K)
such that

M = B−1ΛB.
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Proof. We know that VΛ has a basis v1, . . . , vn such that

x.vi =
n∑
j=1

λij(x)vj

and that VM has a basis u1, . . . , un such that

x.ui =
n∑
j=1

µij(y)uj .

Let f : V → W be a J-isomorphism. Let A = [aij] be the matrix representation of f
with respect to the bases vi and ui. For any x ∈ J we have

f(x.vi) = x.f(vi)

= x.(
n∑
r=1

ariur)

=
n∑
r=1

arix.ur

=
n∑
j=1

(
n∑
r=1

ariµrj(x))uj.

On the other hand,

f(x.vi) = f(
n∑
j=1

λij(x)vj)

=
n∑
j=1

λij(x)f(vj )

=
n∑
j=1

(
n∑
r=1

ajrλir(x))uj.

Comparing both sides of these two equations, we get

n∑
r=1

ariµrj(x) =
n∑
r=1

ajrλir(x).
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So we have the equation
n∑
r=1

ariµrj =
n∑
r=1

ajrλir

in the K-space Hom(J,K+). This is equivalent to the formal matrix equality

ATM = ΛAT .

Suppose B = AT . Hence we have M = B−1ΛB. 2

Proposition 6.3 Let VΛ and VM be J-modules with dimensions n and m, respectively,
where Λ = [λij] and M = [µij]. Then VM can be embedded in VΛ if and only if AΛ = MA

for some m× n matrix A.

Proof. According to 6.2 it is enough to show that VM ≤J VΛ if and only if AΛ = MA

for some m×n matrix A. But this can be proved in a similar way as in the proof of 6.2. 2

7. Results on irreducible representations

This final section deals with some properties of irreducible representations of a Jacobi
system. We assume that the field K is algebraically closed and so we can apply Schur’s
lemma.

Proposition 7.1 Let J be a Jacobi system with the property [ x, y ] = [ y, x ] for all
x, y ∈ J . Let V be an irreducible J-module and also assume that charK 6= 2. Then
dimV = 1.

Proof. Let φ be the corresponding representation of V . For any x, y ∈ J we have

φ([ x, y ]) = φ([ y, x ]),

so 2φ(x)φ(y) = 2φ(y)φ(x). But charK 6= 2. Hence we have φ(x)φ(y) = φ(y)φ(x). This
shows that φ(x) commutes with all elements of φ(J). By Schur’s lemma we must have
φ(x) = εI for some ε ∈ K, where I is the identity map.
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Now let W be a subspace of V . Then for any w ∈W we have

x.w = φ(x)w = εw ∈W

so W is a J-submodule. Since V is irreducible, we obtain dimV = 1. 2

Suppose that φ : J → gl(V ) is an irreducible representation and let z ∈ Z∗(J). For
any x ∈ J we have [ x, z ] = 1. So

φ([ x, z ]) = 0.

This shows that φ(z) commutes with all elements of φ(J). Hence by Schur’s lemma we
must have φ(z) = εI for some ε ∈ K. Let λ : Z∗(J) → K be defined as λ(z) = ε. It is
easily seen that λ is an irreducible representation of Z∗(J). We have

φ|Z∗(J) = λI.

Definition 7.2 Let φ : J → gl(V ) be a representation. We define

Z(φ) = {x ∈ J |φ(x) = εI, for some ε ∈ K}

Theorem 7.3 The following statements hold:
i) Z(φ) is an ideal of J ,
ii) Z(φ)/Ker φ ⊆ Z∗(J/Ker φ).
iii) If φ is irreducible then

Z(φ)
Ker φ

= Z∗(J/Ker φ).

In particular, if φ is also faithful, then

Z(φ) = Z∗(J).

Proof. Let x, y ∈ Z(φ). Then φ(x) = ε1I and φ(y) = ε2I for some ε1, ε2 ∈ K. But
then φ(xy) = (ε1 + ε2)I. So xy ∈ Z(φ). Since φ(1) = 0 so 1 ∈ Z(φ). Let x ∈ Z(φ). Then
since φ(x−1) = −φ(x), so x−1 ∈ Z(φ), we have proved that Z(φ) is a subgroup.

Now suppose that x ∈ Z(φ) and y ∈ J . Then

φ([ x, y ]) = φ(x)φ(y) − φ(y)φ(x)

= 0.
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Hence [ x, y ] ∈ Z(φ). Finally, we note that Z(φ) is a normal subgroup because

φ(gxg−1) = φ(x),

so Z(φ) is an ideal.
To prove part (ii), let x̄ ∈ Z(φ)/Ker φ. Then x ∈ Z(φ) and so for any y ∈ J we have

φ([ x, y ]) = 0,

thus [ x, y ] ∈ Ker φ. Hence we have [ x̄, ȳ] = 0, so x̄ ∈ Z∗(J/Ker φ).
Finally, let φ be irreducible and x̄ ∈ Z∗(J/Ker φ). Then for any y ∈ J we have

[ x̄, ȳ] = 0 so [ x, y ] ∈ Ker φ. Thus φ([ x, y ]) = 0. But this implies φ(x)φ(y) = φ(y)φ(x).
By Schur’s lemma we conclude that φ(x) = εI for some ε ∈ K. So x̄ ∈ Z(φ)/Ker φ, prov-
ing part (iii). 2
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