Turk J Math 28 (2004) , 137 – 142. © TÜBİTAK

On θ -Euclidean L-Fuzzy Ideals of Rings

Ayten Koç, Erol Balkanay

Abstract

In this paper we define a θ -Euclidean level subset and a θ -Euclidean level ideal. We also give some properties of a θ -Euclidean level subset.

Key Words: Ideal; Fuzzy ideal; Level subset; θ -Euclidean level ideal; θ -Euclidean *L*-fuzzy ideal.

1. Introduction

In this paper we define a new set denoted by μ_{θ_y} . We call it a θ -Euclidean level subset. Then we will show that for $0 \neq y \in R$, the set μ_{θ_y} is an ideal of R if $\mu \colon R \to L$ is an L-fuzzy ideal of R. We also give a theorem on θ -Euclidean L-fuzzy ideal of R.

2. Preliminaries

Throughout this paper, R denotes a commutative ring with identity. L denotes a lattice with the least element 0 and the greatest element 1. Unless stated otherwise L is complete and completely distributive in the sense that it satisfies the following law:

$$\bigvee \{a_i \mid i \in I\} \land \bigvee \{b_j \mid j \in J\} = \bigvee \{a_i \land b_j \mid i \in I, j \in J\}$$
[3]

for all $a_i, b_j \in L$.

Definition 2.1 [3]. An L-fuzzy ideal is a function $J: R \to L$ satisfying the following axioms:

- (i) $J(x+y) \ge J(x) \wedge J(y)$, (ii) J(-x) = J(x),
- $(u) \ o (u) = o(u),$
- (*iii*) $J(xy) \ge J(x) \lor J(y)$.

Since we are considering L-fuzzy ideals over a fixed lattice L, we shall call them fuzzy ideals only.

Definition 2.2 [5]. Let μ be any fuzzy subset of a set S and let $t \in [0, 1]$. The set $\mu_t = \{ x \in S \mid \mu(x) \ge t \}$ is called a level subset of μ .

Proposition 2.3 [2, 3].

(i) A function J: R → L is a fuzzy ideal iff J(x - y) ≥ J(x) ∧ J(y) and J(xy) ≥ J(x) ∨ J(y).
(ii) If J: R → L is a fuzzy ideal, then
(a) J(0) ≥ J(x) ≥ J(1), for all x ∈ R;
(b) J(x - y) = J(0) implies J(x) = J(y) for all x, y ∈ R;
(c) the level cuts J_α = {x ∈ R | J(x) ≥ α} are ideals of R, for α ≤ J(0). Conversely,
if each J_α is an ideal, then J is a fuzzy ideal.

3. θ -Euclidean *L*-fuzzy ideal

Definition 3.1 [1]. Let $\theta: R \to L$ be a non-constant fuzzy subset of R. A function $\mu: R \to L$ is called a θ -Euclidean L-fuzzy ideal if μ satisfies the following axioms:

(i) $\mu(x+y) \ge \mu(x) \land \mu(y)$ for all x, y in R,

(*ii*)
$$\mu(-x) = \mu(x);$$

(*iii*) $\mu(xy) \ge \mu(x) \lor \mu(y);$

(iv) For any $x, y \in R$, with $y \neq 0$, there exist elements $q, r \in R$ such that x = yq + rwhere either r = 0 or else $\mu(r) \lor \theta(r) \ge \mu(y) \lor \theta(y)$.

Now we will define a new set called a θ -Euclidean Level subset and examine this set.

Definition 3.2 Let $\mu: R \to L$ and $\theta: R \to L$ be fuzzy sets. For $0 \neq y \in R$, the set $\mu_{\theta_y} = \{x \in R \mid \text{there exist elements } q, r \in R \text{ such that } x = yq + r \text{ where either } r = 0 \text{ or else } \mu(r) \geq \mu(y) \lor \theta(y)\}$ is called a θ -Euclidean level subset of μ .

KOÇ, BALKANAY

Theorem 3.3 Let $\mu: R \to L$ be an L-fuzzy ideal of R. Then for $0 \neq y \in R$, μ_{θ_y} is an ideal of R. Also $\mu_{\theta_y} \neq \{0\}$.

Proof. Let x_1 and x_2 be elements of μ_{θ_y} . We have to show that $x_1 + x_2 \in \mu_{\theta_y}$.

Then there exist elements $q_1, r_1 \in R$ such that $x_1 = yq_1 + r_1$ where either $r_1 = 0$ or else $\mu(r_1) \geq \mu(y) \lor \theta(y)$. And then there exist elements $q_2, r_2 \in R$ such that $x_2 = yq_2 + r_2$ where either $r_2 = 0$ or else $\mu(r_2) \geq \mu(y) \lor \theta(y)$. Hence $x_1 + x_2 = y(q_1 + q_2) + r_1 + r_2$ and $q_1 + q_2, r_1 + r_2 \in R$. Also we know that $\mu(r_1 + r_2) \geq \mu(r_1) \land \mu(r_2)$ since μ is an *L*-fuzzy ideal of *R*. If $r_i \neq 0$ for i = 1 or i = 2, then $\mu(r_i) \geq \mu(y) \lor \theta(y)$. Therefore we can say that there exist elements $q_1 + q_2, r_1 + r_2 \in R$ such that $x_1 + x_2 = y(q_1 + q_2) + r_1 + r_2$ where either $r_1 + r_2 = 0$ or else $\mu(r_1 + r_2) \geq \mu(y) \lor \theta(y)$. This means that $x_1 + x_2$ is an element of μ_{θ_y} .

Now, we need to show that $ax \in \mu_{\theta_y}$ for all $x \in \mu_{\theta_y}$ and $a \in R$. Let $a \in R$ and $x \in \mu_{\theta_y}$. Then there exist elements $q, r \in R$ such that x = yq + r where either r = 0 or else $\mu(r) \ge \mu(y) \lor \theta(y)$. Suppose that $r \ne 0$. Then $\mu(r) \ge \mu(y) \lor \theta(y)$. Since μ is an *L*-fuzzy ideal of *R*, we can write

$$\mu(ar) \ge \mu(a) \lor \mu(r) \ge \mu(r) \ge \mu(y) \lor \theta(y).$$

Hence there exist elements $aq, ar \in R$ such that ax = yaq + ar where either ar = 0 or else $\mu(ar) \ge \mu(y) \lor \theta(y)$. Therefore we get $ax \in \mu_{\theta_y}$. This means that μ_{θ_y} is an ideal of R. We can write y = y.1 + 0 where $q = 1, r = 0 \in R$. Then $0 \ne y \in \mu_{\theta_y}$. Thus $\mu_{\theta_y} \ne \{0\}$. \Box

Definition 3.4 Let μ be any L-fuzzy ideal of a ring R. The ideals μ_{θ_y} are called θ -Euclidean level ideals of μ .

Corollary 3.5 Let $\mu: R \to L$ be an L-fuzzy ideal of R and $\theta: R \to L$ be a fuzzy set. If $\mu(1) \ge \mu(y) \lor \theta(y)$ for $0 \ne y \in R$, then $\mu_{\theta_n} = R$.

Proof. μ_{θ_y} is an ideal of R from Theorem 3.3. So $\mu_{\theta_y} \subseteq R$. To obtain $R \subseteq \mu_{\theta_y}$, we have to show that $1 \in \mu_{\theta_y}$. Since R is a ring with identity, we can write 1 = y.0+1 where r = 1 and q = 0.

There exist elements $0 = q, 1 = r \in R$ such that 1 = y.0 + 1 where $\mu(r) = \mu(1) \ge \mu(y) \lor \theta(y)$. So $1 \in \mu_{\theta_y}$. Since $1 \in \mu_{\theta_y}$ and μ_{θ_y} is an ideal of R, we obtain that $R \subseteq \mu_{\theta_y}$. Thus $R = \mu_{\theta_y}$.

KOÇ, BALKANAY

Definition 3.6 Let $\mu: R \to L$ and $\theta: R \to L$ be fuzzy sets. For $0 \neq y \in R$ we define $\mu_{\theta_y}^*$ as follows:

 $\mu_{\theta_{u}}^{*} = \{x \in R \mid \text{ there exist elements } q, r \in R \text{ such that } x = yq + r \text{ where}$

$$\theta(r) \ge \mu(y) \lor \theta(y) \}.$$

Theorem 3.7 Suppose that L is a chain and that $\mu: R \to L$ and $\theta: R \to L$ are fuzzy sets. Then $\mu: R \to L$ is a θ -Euclidean L-fuzzy ideal of R if and only if μ_{α} is an ideal of R for $\alpha \leq \mu(0)$ and $R = \mu_{\theta_y} \cup \mu_{\theta_y}^*$ for all $0 \neq y \in R$.

Proof. Suppose first that $\mu: R \to L$ is a θ -Euclidean L-fuzzy ideal of R. Then $\mu: R \to L$ is an L-fuzzy ideal of R. Because of Proposition 2.3, μ_{α} is an ideal of R. Now it must be shown that $R = \mu_{\theta_y} \cup \mu_{\theta_y}^*$ for all $0 \neq y \in R$. Let $0 \neq y \in R$ and $x \in \mu_{\theta_y} \cup \mu_{\theta_y}^*$. Then $x \in R$. So $\mu_{\theta_y} \cup \mu_{\theta_y}^* \subseteq R$.

Let $a \in R$. Since $\mu: R \to L$ is a θ -Euclidean *L*-fuzzy ideal of *R*, for $0 \neq y, a \in R$ there exist elements $q, r \in R$ such that a = yq + r where either r = 0 or else $\mu(r) \lor \theta(r) \ge \mu(y) \lor \theta(y)$. If $\mu(r) \lor \theta(r) = \mu(r)$, then we get $\mu(r) \ge \mu(y) \lor \theta(y)$. So $a \in \mu_{\theta_y}$.

If $\mu(r) \vee \theta(r) = \theta(r)$, then $a \in \mu_{\theta_y}^*$. So $a \in \mu_{\theta_y} \cup \mu_{\theta_y}^*$. Thus $R \subseteq \mu_{\theta_y} \cup \mu_{\theta_y}^*$. We obtain that $R = \mu_{\theta_y} \cup \mu_{\theta_y}^*$.

Conversely, suppose that μ_{α} is an ideal of R for $\alpha \leq \mu(0)$ and $R = \mu_{\theta_y} \cup \mu_{\theta_y}^*$ for all $0 \neq y \in R$. Because of Proposition 2.3, $\mu \colon R \to L$ is an *L*-fuzzy ideal.

Let $0 \neq y, x \in R$. Since $\mu_{\theta_y} \cup \mu_{\theta_y}^* = R$, $x \in \mu_{\theta_y} \cup \mu_{\theta_y}^*$. If $x \in \mu_{\theta_y}$, then there exist elements $q, r \in R$ such that x = yq + r where either r = 0 or else $\mu(r) \ge \mu(y) \lor \theta(y)$. We can write $\mu(r) \lor \theta(r) \ge \mu(r) \ge \mu(y) \lor \theta(y)$. If $x \in \mu_{\theta_y}^*$, then there exist elements $q_1, r_1 \in R$ such that $x = yq_1 + r_1$ where $\theta(r_1) \ge \mu(y) \lor \theta(y)$. Also $\mu(r_1) \lor \theta(r_1) \ge \theta(r_1) \ge \mu(y) \lor \theta(y)$. Finally $\mu \colon R \to L$ is a θ -Euclidean *L*-fuzzy ideal of *R*.

Properties of μ_{θ_n}

- (i) Let $\mu \colon R \to L$ and $\theta \colon R \to L$ be fuzzy sets. For $0 \neq y \in R$,
 - (a) μ_α ⊆ μ_{θy} for all α ∈ L such that α ≥ μ(y) ∨ θ(y) ;
 (b) (y) ⊆ μ_{θy} ;

(c) $\mu_{\theta_1} = R$ (for y = 1).

(ii) Let L be a chain, $\mu \colon R \to L$ be an L-fuzzy ideal, $\theta \colon R \to L$ be a fuzzy set and $0 \neq y \in R$. If $x, y \in \mu_{\theta_u} \cap \mu_{\theta_x}$ and $\theta(x) = \theta(y)$, then $\mu_{\theta_x} = \mu_{\theta_u}$.

Proof.

(a) Let $x \in \mu_{\alpha}$. Then $x \in R$ and $\mu(x) \ge \alpha$. We can write x = y.0 + x where $q = 0, r = x \in R$. Also $\mu(r) = \mu(x) \ge \alpha \ge \mu(y) \lor \theta(y)$. Hence $x \in \mu_{\theta_y}$. So $\mu_{\alpha} \subseteq \mu_{\theta_y}$.

(b) We know that $y \in \mu_{\theta_y}$. So $(y) \subseteq \mu_{\theta_y}$.

(c) Let $a \in R$. We can write a = 1.a + 0 where $r = 0, q = a \in R$. Thus $a \in \mu_{\theta_1}$ and $R \subseteq \mu_{\theta_1}$. Also $\mu_{\theta_1} \subseteq R$. So $R = \mu_{\theta_1}$.

(ii) Since $x \in \mu_{\theta_y}$, there exist elements q, $r \in R$ such that x = yq + r where either r = 0 or else $\mu(r) \ge \mu(y) \lor \theta(y)$.

Let $t \in \mu_{\theta_x}$. Then there exist elements $q_1, r_1 \in R$ such that $t = xq_1 + r_1$ where either $r_1 = 0$ or else $\mu(r_1) \ge \mu(x) \lor \theta(x)$. We can write

$$t = (yq + r)q_1 + r_1 = yqq_1 + rq_1 + r_1$$

and qq_1 , $rq_1 + r_1 \in R$.

Finally we can say that there exist elements qq_1 , $rq_1 + r_1 \in R$ such that $t = y(qq_1) + (rq_1 + r_1)$ where either $rq_1 + r_1 = 0$ or else

$$\mu(rq_1 + r_1) \ge \mu(y) \lor \theta(y).$$

This means that $\mu_{\theta_x} \subseteq \mu_{\theta_y}$. We obtain $\mu_{\theta_y} \subseteq \mu_{\theta_x}$ in a similiar way. So $\mu_{\theta_y} = \mu_{\theta_x}$. \Box

KOÇ, BALKANAY

Acknowledgement

The authors would like to thanks the referees for their valuable suggestions.

References

- A. Koç and E. Balkanay, θ-Euclidean L-fuzzy Ideals of Rings, Turkish Journal of Mathematics 26 (2002) 149-158.
- [2] H.V. Kumbhojkar and M.S. Bapat, Correspondence theorem for fuzzy ideals, Fuzzy Sets and Systems 41 (1991) 213-219.
- [3] H.V. Kumbhojkar and M.S. Bapat, On semiprime fuzzy ideals, Fuzzy Sets and Systems 60 (1993) 219-223.
- [4] R.Kumar, Fuzzy cosets and some fuzzy radicals, Fuzzy Sets and Systems 46 (1992) 261-265.
- [5] R.Kumar, Fuzzy prime spectrum of a ring, Fuzzy Sets and Systems 46 (1992) 147-154.

Received 26.12.2002

Ayten KOÇ, Erol BALKANAY İstanbul Kültür University Department of Mathematics Computer, Şirinevler 34510 İstanbul-TURKEY e-mail: akoc@iku.edu.tr e-mail: e.balkanay@iku.edu.tr