On the Power Subgroups of the Extended Modular Group $\bar{\Gamma}$

Recep Şahin, Sebahattin İkikardeş, Özden Koruoğlu

Abstract

In this paper we describe the group structure of power subgroups $\bar{\Gamma}^{m}$ of the extended modular group $\bar{\Gamma}$ and the quotients to them. Then we give some relations between the power subgroups $\bar{\Gamma}^{m}$, the commutator subgroups $\bar{\Gamma}^{\prime}$ and $\bar{\Gamma}^{\prime \prime}$ and also the information of interest about free normal subgroups of the extended modular group $\bar{\Gamma}$.

Key Words: Extended Modular Group, Power Subgroup, Commutator Subgroup, Free Subgroup

1. Introduction

The modular group Γ is the discrete subgroup of $\operatorname{PSL}(2, \mathbb{Z})$ generated by two linear fractional transformations

$$
T(z)=-\frac{1}{z} \quad \text { and } \quad U(z)=z+1
$$

Let $S=T \cdot U$, that is,

$$
S(z)=-\frac{1}{z+1} .
$$

Then modular group Γ has a presentation

$$
\Gamma=<T, S \mid T^{2}=S^{3}=I>\cong C_{2} * C_{3}
$$

[^0]
ŞAhin, íkikardeş, KORUOĞLu

By adding the reflection $R(z)=1 / \bar{z}$ to the generators of the modular group Γ, the extended modular group $\bar{\Gamma}$ has been defined in [1]. The extended modular group $\bar{\Gamma}$ has a presentation

$$
\bar{\Gamma}=<T, S, R \mid T^{2}=S^{3}=R^{2}=I, R T=T R, R S=S^{-1} R>
$$

or

$$
\begin{equation*}
\bar{\Gamma}=<T, S, R \mid T^{2}=S^{3}=R^{2}=(R T)^{2}=(R S)^{2}=I>\cong D_{2} *_{\mathbb{Z}_{2}} D_{3} \tag{1}
\end{equation*}
$$

The modular group Γ is a subgroup of index 2 in $\bar{\Gamma}$.
Let us define $\bar{\Gamma}^{m}$ to the subgroup generated by the $m^{\text {th }}$ powers of all elements of $\bar{\Gamma}$, for some positive integer $m . \bar{\Gamma}^{m}$ is called the $m^{\text {th }}$ power subgroup of $\bar{\Gamma}$. As fully invariant subgroups, they are normal in $\bar{\Gamma}$.

From the definition one can easily deduce that

$$
\bar{\Gamma}^{m k}<\bar{\Gamma}^{m}
$$

and that

$$
\bar{\Gamma}^{m k}<\left(\bar{\Gamma}^{m}\right)^{k}
$$

Also, it is easy to deduce that

$$
\bar{\Gamma}^{m} \cdot \bar{\Gamma}^{k}=\bar{\Gamma}^{(m, k)}
$$

where (m, k) denotes the greatest common divisor of m and k.
The power subgroups of the modular group Γ was studied by [4]. In [4], M. Newman showed that

$$
\begin{align*}
& \Gamma^{2}=<S>*<T S T> \\
& \Gamma^{3}=<T>*<S T S^{2}>*<S^{2} T S> \tag{2}\\
& \Gamma^{\prime}=\Gamma^{2} \cap \Gamma^{3}, \Gamma^{\prime}=<T S T S^{2}>*<T S^{2} T S>\text { and } \Gamma^{\prime \prime} \subset \Gamma^{6} \subset \Gamma^{\prime}
\end{align*}
$$

Also, M. Newman proved that the groups $\Gamma^{6 m}$ are free groups and the index $\left|\Gamma: \Gamma^{6 m}\right|=$ ∞ for $m \geq 72$ and $\left|\Gamma: \Gamma^{6 m}\right|$ when $2 \leq m \leq 71$ is unknown. Γ^{6} is a free group of rank 37 .

The commutator subgroup of $\bar{\Gamma}$ is denoted by $\bar{\Gamma}^{\prime}$ and defined by

$$
<[g, h] \mid g, h \in \bar{\Gamma}>
$$

ŞAhin, íkikardeş, KORUOĞLu

where $[g, h]=g h g^{-1} h^{-1} . \bar{\Gamma}^{\prime}$ is a normal subgroup of $\bar{\Gamma}$, and therefore we can form the quotient group $\bar{\Gamma} / \bar{\Gamma}^{\prime}$.

The commutator subgroup $\bar{\Gamma}^{\prime}$ of the extended modular group $\bar{\Gamma}$ was investigated in [1], and it was shown that

$$
\begin{align*}
& \left|\bar{\Gamma}: \bar{\Gamma}^{\prime}\right|=4 \\
& \bar{\Gamma}^{\prime}=<S>*<T S T> \tag{3}\\
& \left|\bar{\Gamma}: \bar{\Gamma}^{\prime \prime}\right|=36
\end{align*}
$$

so that $\bar{\Gamma}^{\prime \prime}$ is a free group with basis $[S, T S T],\left[S, T S^{2} T\right],\left[S^{2}, T S T\right],\left[S^{2}, T S^{2} T\right]$.
The purpose of this paper is to determine the structure of the power subgroups $\bar{\Gamma}^{m}$ of the extended modular group $\bar{\Gamma}$ and to give some relations between them, the commutator subgroups $\bar{\Gamma}^{\prime}$ and $\bar{\Gamma}^{\prime \prime}$ and also to investigate free normal subgroups of the extended modular group $\bar{\Gamma}$. In our discussion we use Reidemeister-Schreier method, (for more detail about this method, see [2]).

2. The Power Subgroups of the Extended Modular Group

We consider the presentation of the extended modular group $\bar{\Gamma}$ given in (1):

$$
\bar{\Gamma}=<T, S, R \mid T^{2}=S^{3}=R^{2}=(R T)^{2}=(R S)^{2}=I>
$$

We find a presentation for the quotient $\bar{\Gamma} / \bar{\Gamma}^{m}$ by adding the relation $X^{m}=I$ to the presentation of $\bar{\Gamma}$. The order of $\bar{\Gamma} / \bar{\Gamma}^{m}$ gives us the index. We have

$$
\begin{align*}
\bar{\Gamma} / \bar{\Gamma}^{m} \cong<T, S, R \mid & T^{2}=S^{3}=R^{2}=(T R)^{2}=(R S)^{2}=I \\
& T^{m}=S^{m}=R^{m}=(T R)^{m}=(R S)^{m}=I> \tag{4}
\end{align*}
$$

Thus we use Reidemeister-Schreier process to find the presentation of the power subgroups $\bar{\Gamma}^{m}$. First we have the following theorem.

Theorem 2.1 i) The normal subgroup $\bar{\Gamma}^{2}$ is isomorphic to the free product of two finite
cyclic groups of order 3. Also

$$
\begin{gathered}
\left|\bar{\Gamma}: \bar{\Gamma}^{2}\right|=4 \\
\bar{\Gamma}^{2}=<S>*<T S T> \\
\bar{\Gamma}=\bar{\Gamma}^{2} \cup T \bar{\Gamma}^{2} \cup R \bar{\Gamma}^{2} \cup T R \bar{\Gamma}^{2} .
\end{gathered}
$$

The elements of $\bar{\Gamma}^{2}$ are characterised by the property that the sum of the exponents of T is even.
ii) The normal subgroup $\bar{\Gamma}^{3}$ is isomorphic to the extended modular group $\bar{\Gamma}$, i.e.

$$
\bar{\Gamma}^{3}=\bar{\Gamma}
$$

Proof. i) By (4), we have

$$
\begin{aligned}
\bar{\Gamma} / \bar{\Gamma}^{2} \cong<T, S, R \mid T^{2}=S^{3}=R^{2}=(T R)^{2}=(R S)^{2}=I, \\
T^{2}=S^{2}=R^{2}=(T R)^{2}=(R S)^{2}=I>
\end{aligned}
$$

Since

$$
S^{3}=S^{2}=I,
$$

we obtain $S=T^{2}=R^{2}=I$. Therefore

$$
\bar{\Gamma} / \bar{\Gamma}^{2} \cong<T, R \mid T^{2}=R^{2}=(T R)^{2}=I>\cong D_{2}
$$

and

$$
\left|\bar{\Gamma}: \bar{\Gamma}^{2}\right|=4
$$

Now we choose $\{I, T, R, T R\}$ as a Schreier transversal for $\bar{\Gamma}^{2}$. According to the Reidemeister-Schreier method, we can form all possible products :

$$
\begin{array}{lll}
I \cdot T \cdot(T)^{-1}=I, & I \cdot S \cdot(I)^{-1}=S, & I \cdot R \cdot(R)^{-1}=I, \\
T \cdot T .(I)^{-1}=I, & T . S .(T)^{-1}=T S T, & T \cdot R \cdot(T R)^{-1}=I, \\
R . T \cdot(T R)^{-1}=R T R T, & R . S .(R)^{-1}=R S R, & R \cdot R \cdot(I)^{-1}=I, \\
T R . T \cdot(R)^{-1}=T R T R, & T R . S .(T R)^{-1}=T R S R T, & T R \cdot R \cdot(T)^{-1}=I .
\end{array}
$$

Since $R T R T=I, T R T R=I, R S R=S^{-1}, T R S R T=T S^{-1} T=(T S T)^{-1}$, the generators are S and $T S T$. Thus we have

$$
\bar{\Gamma}^{2}=<S, T S T \mid S^{3}=(T S T)^{3}=I>\cong C_{3} * C_{3}
$$

ŞAHİ, İKíKARDEŞ, KORUOĞLU

and

$$
\bar{\Gamma}^{2}=\bar{\Gamma}^{2} \cup T \bar{\Gamma}^{2} \cup R \bar{\Gamma}^{2} \cup T R \bar{\Gamma}^{2} .
$$

ii) By (4), we have

$$
\begin{aligned}
\bar{\Gamma} / \bar{\Gamma}^{3} \cong<T, S, R \mid T^{2}=S^{3}=R^{2}=(T R)^{2}=(R S)^{2}=I, \\
T^{3}=S^{3}=R^{3}=(T R)^{3}=(R S)^{3}=I>
\end{aligned}
$$

Therefore we find $S=T=R=I$ from the relations

$$
R^{2}=R^{3}=I, S^{3}=(S R)^{2}=I, T^{2}=T^{3}=I
$$

Thus we have

$$
\left|\bar{\Gamma}: \bar{\Gamma}^{3}\right|=1 ;
$$

that is,

$$
\bar{\Gamma}^{3}=\bar{\Gamma}
$$

The following results are easy to see:

Theorem 2.2 i) $\bar{\Gamma}^{2}=\Gamma^{2}=\bar{\Gamma}^{\prime}=\bar{\Gamma}^{2} \cap \bar{\Gamma}^{3}$
ii) $\left(\bar{\Gamma}^{\prime}\right)^{3} \subset \bar{\Gamma}^{\prime \prime}$.

Now we have

Theorem 2.3 Let m be a positive integer. The normal subgroups $\bar{\Gamma}^{m}$ satisfy the following:
i) $\bar{\Gamma}^{m}=\bar{\Gamma}$ if $2 \nmid m$,
ii) $\bar{\Gamma}^{m}=\bar{\Gamma}^{2}$ if $2 \mid m$ but $6 \nmid m$.

Proof. i) If $2 \nmid m$ then by (4), we find $S=T=R=I$ from the relations

$$
R^{2}=R^{m}=I, S^{3}=S^{m}=(S R)^{2}=(S R)^{m}=I=I, T^{2}=T^{m}=I
$$

ŞAHIN, İKİKARDEŞ, KORUOĞLU

Thus $\bar{\Gamma} / \bar{\Gamma}^{m}$ is trivial and hence $\bar{\Gamma}^{m}=\bar{\Gamma}$.
ii) If $2 \mid m$ but $6 \nmid m$ then $(m, 3)=1$. By (4), we obtain $S=T^{2}=R^{2}=I$ from the relations

$$
R^{2}=R^{m}=I, S^{3}=S^{m}=I, T^{2}=T^{m}=I
$$

as $2 \mid m$ but $6 \nmid m$. These show that

$$
\bar{\Gamma} / \bar{\Gamma}^{m} \cong<T, R \mid T^{2}=R^{2}=(T R)^{2}=I>\cong D_{2}
$$

and

$$
\left|\bar{\Gamma}: \bar{\Gamma}^{m}\right|=4
$$

Since $\bar{\Gamma}^{2}$ is the only normal subgroup of index 4 we have $\bar{\Gamma}^{m}=\bar{\Gamma}^{2}$.

Therefore the only case left is that when m is divisible by 6 . In this case, the above techniques do not say much about $\bar{\Gamma}^{m}$. To do this we use the second commutator subgroup $\bar{\Gamma}^{\prime \prime}$ of $\bar{\Gamma}$.

Theorem 2.4 Let m be a positive integer. The groups $\bar{\Gamma}^{6 m}$ are the subgroups of the second commutator subgroup $\bar{\Gamma}^{\prime \prime}$.
Proof. i) Since $\bar{\Gamma}^{6} \subset\left(\bar{\Gamma}^{2}\right)^{3} \subset \bar{\Gamma}^{2}$ and $\bar{\Gamma}^{\prime}=\bar{\Gamma}^{2}$ implies that $\bar{\Gamma}^{6} \subset\left(\bar{\Gamma}^{\prime}\right)^{3} \subset \bar{\Gamma}^{\prime}$ and $\bar{\Gamma}^{6 m} \subset \bar{\Gamma}^{6} \subset \bar{\Gamma}^{\prime \prime}$. Since $\bar{\Gamma}^{\prime}$ does not contain any reflection, $\bar{\Gamma}^{6 m}$ does not contain any reflection. Also we know that $\Gamma^{6 m} \subset \bar{\Gamma}^{6 m}$. Thus we get

$$
\bar{\Gamma}^{6 m}=\Gamma^{6 m} \subset \bar{\Gamma}^{\prime \prime}
$$

Then because $\bar{\Gamma}^{\prime \prime}$ is a free group and $\bar{\Gamma}^{6 m} \subset \bar{\Gamma}^{\prime \prime}$, we have by Schreier's theorem the following theorem

Theorem 2.5 The groups $\bar{\Gamma}^{6 m}$ are free groups.

ŞAhin, íkikardeş, KORUOĞLU

Therefore

$$
\begin{aligned}
\left|\bar{\Gamma}: \bar{\Gamma}^{6 m}\right| & =\left|\bar{\Gamma}: \Gamma^{6 m}\right| \\
& =|\bar{\Gamma}: \Gamma| \cdot\left|\Gamma: \Gamma^{6 m}\right| \\
& =2\left|\Gamma: \Gamma^{6 m}\right|
\end{aligned}
$$

since $|\bar{\Gamma}: \Gamma|=2$. In [4], the index $\left|\Gamma: \Gamma^{6}\right|$ was computed as 216 . Therefore

$$
\left|\bar{\Gamma}: \bar{\Gamma}^{6}\right|=432
$$

Also, the index $\left|\bar{\Gamma}: \bar{\Gamma}^{6 m}\right|$ is unknown since $\left|\Gamma: \Gamma^{6 m}\right|, 2 \leq m \leq 71$, is unknown.

Corollary 2.6 $\bar{\Gamma}^{6}$ is a free group of rank 37.

3. Free Normal Subgroups of the Extended Modular Group

As $\bar{\Gamma}$ is isomorphic to the free product of dihedral groups D_{2} and D_{3} with amalgamation \mathbb{Z}_{2}, it has two kinds of normal subgroups : Free ones and free products of some infinite cyclic groups, some cyclic groups of order 2 and order 3, some dihedral groups D_{2} and D_{3} with some dihedral groups D_{2} and D_{3} with amalgamation \mathbb{Z}_{2}. Therefore the study of free normal subgroups and their group theoretical structures will be important to us. Here we discuss them for extended modular group $\bar{\Gamma}$. This has been done for modular group by Newman in [3]. His results can be generalized to the extended modular group.

Before giving the main theorem we need the following lemmas.

Lemma 3.1 Let N be a non-trivial normal subgroup of finite index in $\bar{\Gamma}$. Then N is free if and only if it contains no elements of finite order.
Proof. By (1), $\bar{\Gamma}$ is isomorphic to a free product of $D_{2}=C_{2} \times C_{2}$ and $D_{3}=C_{2} \times C_{3}$ each amalgamated over \mathbb{Z}_{2}. A subgroup of finite index in $\bar{\Gamma}$ is isomorphic to a free product of the groups F, C_{r}, and $D_{m_{1}} *_{\mathbb{Z}_{2}} D_{m_{2}}$, where r and each m_{i} divide 2 or 3 . Thus if N is a subgroup of finite index in $\bar{\Gamma}$, it follows that

$$
\begin{equation*}
N=F * \prod_{*} C_{r} * \prod_{*}\left(D_{m_{1}} *_{\mathbb{Z}_{2}} D_{m_{2}}\right) \tag{5}
\end{equation*}
$$

ŞAHİN, İKİKARDEŞ, KORUOĞLU

where F is either free or $\{I\}$ and each C_{r} is conjugate to $\{T\}$ or to $\{S\}$ or to $\{R\}$ and each $D_{m_{i}}$ is conjugate to $\{T, R\}$ or to $\{S, R\}$. As N contains no elements of finite order the free product $\prod_{*} C_{r} * \prod_{*}\left(D_{m_{1}} *_{\mathbb{Z}_{2}} D_{m_{2}}\right)$ is vacuous; and also as N is non-trivial, N must be free.

Conversely, if N is free, then by definition, it contains no elements of finite order.

Lemma 3.2 The only normal subgroups of finite index in $\bar{\Gamma}$ containing elements of finite order are

$$
\bar{\Gamma}, \Gamma, \Gamma^{2} \text { and } \Gamma^{3} .
$$

Proof. Let N be a normal subgroup of finite index in $\bar{\Gamma}$ containing an element of finite order. Then N contains an element of order 2 or an element of order 3 or two elements of order 2 or two elements of order 2 and 3 or three elements so that two elements of order 2 and an element of order 3 . An element of order 2 in $\bar{\Gamma}$ is conjugate to T or to R and an element of order 3 in $\bar{\Gamma}$ is conjugate to a power of S. Therefore if a normal subgroup N contains an element of finite order, then it contains T or R or S. Therefore there are seven cases:
(i) N contains T, R and S. Then $N=\bar{\Gamma}$.
(ii) N contains T but not R and S. Then $N \neq \bar{\Gamma}, \Gamma$ and $\Gamma^{3} \subset N$, as N is normal. Since $\left|\bar{\Gamma}: \Gamma^{3}\right|=6$ we have $N=\Gamma^{3}$.
(iii) N contains T, R but not S. Then $N \neq \bar{\Gamma}$ and $\Gamma^{3} \subset N$, the fact that N is normal and by (ii). Since $\left|\bar{\Gamma}: \Gamma^{3}\right|=6$, we have $N=\bar{\Gamma}$ or Γ or Γ^{3}. But this is not possible since $S \in \bar{\Gamma}, S \in \Gamma$ and $R \notin \Gamma^{3}$.
(iv) N contains T and S, but not R. Then $N \neq \bar{\Gamma}$ and $\Gamma \subset N$, by (1) and the fact that N is normal. Since $|\bar{\Gamma}: \Gamma|=2$ it follows that $N=\Gamma$.
(v) N contains S but not T and R. Then $N \neq \bar{\Gamma}$ and $\Gamma^{2} \subset N$, by (2) and the fact that N is normal. Since $\left|\bar{\Gamma}: \Gamma^{2}\right|=4$, it follows that $N=\Gamma^{2}$.
(vi) N contains S, R but not T. Then $N \neq \bar{\Gamma}$ and $\Gamma^{2} \subset N$, as N is normal and by (v). Since $\left|\bar{\Gamma}: \Gamma^{2}\right|=4$, we have $N=\bar{\Gamma}$ or Γ or Γ^{2}. But this is not possible since $T \in \bar{\Gamma}$, $T \in \Gamma$ and $R \notin \Gamma^{2}$.
(vii) N contains R but not T and S. This is not possible by (iii) and by (vi).

Theorem 3.3 Let N be a non-trivial normal subgroup of finite index in $\bar{\Gamma}$ different from $\bar{\Gamma}, \Gamma, \Gamma^{2}, \Gamma^{3}$. Then N is a free group.
Proof. It can be easily seen as an immediate consequence of the lemmas.

Theorem 3.4 Let N be a normal subgroup of finite index in $\bar{\Gamma}$ different from $\bar{\Gamma}, \Gamma, \Gamma^{2}$, Γ^{3} such that $|\bar{\Gamma}: N|=\mu<\infty$. Then μ is divisible by 12 .
Proof. The quotient group contains subgroups of orders 2,4 and 6 , so its order is divisible by 12 .

References

[1] G. A. JONES and J. S. THORNTON, Automorphisms and congruence subgroups of the extended modular group, J. London Math. Soc. 34 (2), (1986), 26-40.
[2] W. MAGNUS, A. KARRAS, D. SOLITAR, Combinatorial group theory, Dover Publications, Inc., New York, 1976.
[3] M. NEWMAN, Free subgroups and normal subgroups of the modular group, Illinois J. Math. 8 (1964), 262-265.
[4] M. NEWMAN, The structure of some subgroups of the modular group, Illinois J. Math. 6 (1962), 480-487.

Recep ŞAHİN, Sebahattin İKİKARDES,
Received 10.01.2003
Özden KORUOĞLU
Department of Mathematics,
Faculty of Arts and Sciences,
Balıkesir University,
10100 Balıkesir-TURKEY
e-mail : rsahin@balikesir.edu.tr

[^0]: 2000 Mathematics Subject Classification Number: 11F06; 20H05; 20H10

