Turk J Math 28 (2004) , 143 – 151. © TÜBİTAK

On the Power Subgroups of the Extended Modular Group $\overline{\Gamma}$

Recep Şahin, Sebahattin İkikardeş, Özden Koruoğlu

Abstract

In this paper we describe the group structure of power subgroups $\overline{\Gamma}^m$ of the extended modular group $\overline{\Gamma}$ and the quotients to them. Then we give some relations between the power subgroups $\overline{\Gamma}^m$, the commutator subgroups $\overline{\Gamma}'$ and $\overline{\Gamma}''$ and also the information of interest about free normal subgroups of the extended modular group $\overline{\Gamma}$.

Key Words: Extended Modular Group, Power Subgroup, Commutator Subgroup, Free Subgroup

1. Introduction

The modular group Γ is the discrete subgroup of $PSL(2,\mathbb{Z})$ generated by two linear fractional transformations

$$T(z) = -\frac{1}{z}$$
 and $U(z) = z + 1.$

Let $S = T \cdot U$, that is,

$$S(z) = -\frac{1}{z+1}.$$

Then modular group Γ has a presentation

$$\Gamma = < T, S \mid T^2 = S^3 = I > \cong C_2 * C_3.$$

²⁰⁰⁰ Mathematics Subject Classification Number: 11F06; 20H05; 20H10

By adding the reflection $R(z) = 1/\overline{z}$ to the generators of the modular group Γ , the extended modular group $\overline{\Gamma}$ has been defined in [1]. The extended modular group $\overline{\Gamma}$ has a presentation

$$\overline{\Gamma} = < T, S, R \mid T^2 = S^3 = R^2 = I, \ RT = TR, RS = S^{-1}R >$$

or

$$\overline{\Gamma} = \langle T, S, R \mid T^2 = S^3 = R^2 = (RT)^2 = (RS)^2 = I \ge D_2 *_{\mathbb{Z}_2} D_3.$$
(1)

The modular group Γ is a subgroup of index 2 in $\overline{\Gamma}$.

Let us define $\overline{\Gamma}^m$ to the subgroup generated by the m^{th} powers of all elements of $\overline{\Gamma}$, for some positive integer m. $\overline{\Gamma}^m$ is called the m^{th} - power subgroup of $\overline{\Gamma}$. As fully invariant subgroups, they are normal in $\overline{\Gamma}$.

From the definition one can easily deduce that

$$\overline{\Gamma}^{mk} < \overline{\Gamma}^m$$

and that

$$\overline{\Gamma}^{mk} < (\overline{\Gamma}^m)^k.$$

Also, it is easy to deduce that

$$\overline{\Gamma}^m.\overline{\Gamma}^k = \overline{\Gamma}^{(m,k)},$$

where (m, k) denotes the greatest common divisor of m and k.

The power subgroups of the modular group Γ was studied by [4]. In [4], M. Newman showed that

$$\Gamma^2 = \langle S \rangle * \langle TST \rangle,$$

$$\Gamma^3 = \langle T \rangle * \langle STS^2 \rangle * \langle S^2TS \rangle,$$

$$\Gamma' = \Gamma^2 \cap \Gamma^3, \ \Gamma' = \langle TSTS^2 \rangle * \langle TS^2TS \rangle \text{ and } \Gamma'' \subset \Gamma^6 \subset \Gamma'.$$

$$(2)$$

Also, M. Newman proved that the groups Γ^{6m} are free groups and the index $|\Gamma : \Gamma^{6m}| = \infty$ for $m \ge 72$ and $|\Gamma : \Gamma^{6m}|$ when $2 \le m \le 71$ is unknown. Γ^6 is a free group of rank 37.

The commutator subgroup of $\overline{\Gamma}$ is denoted by $\overline{\Gamma}'$ and defined by

$$< [g,h] \mid g,h \in \overline{\Gamma} >,$$

where $[g,h] = ghg^{-1}h^{-1}$. $\overline{\Gamma}'$ is a normal subgroup of $\overline{\Gamma}$, and therefore we can form the quotient group $\overline{\Gamma}/\overline{\Gamma}'$.

The commutator subgroup $\overline{\Gamma}'$ of the extended modular group $\overline{\Gamma}$ was investigated in [1], and it was shown that

$$\begin{aligned} \left| \overline{\Gamma} : \overline{\Gamma}' \right| &= 4, \\ \overline{\Gamma}' &= \langle S \rangle * \langle TST \rangle, \\ \left| \overline{\Gamma} : \overline{\Gamma}'' \right| &= 36, \end{aligned}$$
(3)

so that $\overline{\Gamma}''$ is a free group with basis [S, TST], $[S, TS^2T]$, $[S^2, TST]$, $[S^2, TST]$.

The purpose of this paper is to determine the structure of the power subgroups $\overline{\Gamma}^m$ of the extended modular group $\overline{\Gamma}$ and to give some relations between them, the commutator subgroups $\overline{\Gamma}'$ and $\overline{\Gamma}''$ and also to investigate free normal subgroups of the extended modular group $\overline{\Gamma}$. In our discussion we use Reidemeister-Schreier method, (for more detail about this method, see [2]).

2. The Power Subgroups of the Extended Modular Group

We consider the presentation of the extended modular group $\overline{\Gamma}$ given in (1):

$$\overline{\Gamma} = < T, S, R \mid T^2 = S^3 = R^2 = (RT)^2 = (RS)^2 = I > .$$

We find a presentation for the quotient $\overline{\Gamma}/\overline{\Gamma}^m$ by adding the relation $X^m = I$ to the presentation of $\overline{\Gamma}$. The order of $\overline{\Gamma}/\overline{\Gamma}^m$ gives us the index. We have

$$\overline{\Gamma}/\overline{\Gamma}^{m} \cong .$$
(4)

Thus we use Reidemeister-Schreier process to find the presentation of the power subgroups $\overline{\Gamma}^m$. First we have the following theorem.

Theorem 2.1 i) The normal subgroup $\overline{\Gamma}^2$ is isomorphic to the free product of two finite

cyclic groups of order 3. Also

$$\begin{split} & \left|\overline{\Gamma}:\overline{\Gamma}^2\right| = 4,\\ & \overline{\Gamma}^2 = ~~* < TST >,\\ & \overline{\Gamma} = \overline{\Gamma}^2 \cup T \ \overline{\Gamma}^2 \cup R \ \overline{\Gamma}^2 \cup TR \ \overline{\Gamma}^2. \end{split}~~$$

The elements of $\overline{\Gamma}^2$ are characterised by the property that the sum of the exponents of T is even.

ii) The normal subgroup $\overline{\Gamma}^3$ is isomorphic to the extended modular group $\overline{\Gamma}$, i.e.

$$\overline{\Gamma}^3 = \overline{\Gamma}.$$

Proof. i) By (4), we have

$$\overline{\Gamma}/\overline{\Gamma}^2 \cong
$$T^2 = S^2 = R^2 = (TR)^2 = (RS)^2 = I > .$$$$

Since

$$S^3 = S^2 = I,$$

we obtain $S = T^2 = R^2 = I$. Therefore

0

$$\overline{\Gamma}/\overline{\Gamma}^2 \cong \langle T, R \mid T^2 = R^2 = (TR)^2 = I \geq D_2$$

and

$$\left|\overline{\Gamma}:\overline{\Gamma}^2\right| = 4.$$

Now we choose $\{I, T, R, TR\}$ as a Schreier transversal for $\overline{\Gamma}^2$. According to the Reidemeister-Schreier method, we can form all possible products :

$I.T.(T)^{-1} = I,$	$I.S.(I)^{-1} = S,$	$I.R.(R)^{-1} = I,$
$T.T.(I)^{-1} = I,$	$T.S.(T)^{-1} = TST,$	$T.R.(TR)^{-1} = I,$
$R.T.(TR)^{-1} = RTRT,$	$R.S.(R)^{-1} = RSR,$	$R.R.(I)^{-1} = I,$
$TR.T.(R)^{-1} = TRTR,$	$TR.S.(TR)^{-1} = TRSRT,$	$TR.R.(T)^{-1} = I.$

Since RTRT = I, TRTR = I, $RSR = S^{-1}$, $TRSRT = TS^{-1}T = (TST)^{-1}$, the generators are S and TST. Thus we have

$$\overline{\Gamma}^2 =$$

and

$$\overline{\Gamma}^2 = \overline{\Gamma}^2 \cup T \ \overline{\Gamma}^2 \cup R \ \overline{\Gamma}^2 \cup TR \ \overline{\Gamma}^2.$$

ii) By (4), we have

$$\overline{\Gamma}/\ \overline{\Gamma}^3 \cong
$$T^3 = S^3 = R^3 = (TR)^3 = (RS)^3 = I > .$$$$

Therefore we find S = T = R = I from the relations

$$R^2 = R^3 = I, \ S^3 = (SR)^2 = I, \ T^2 = T^3 = I.$$

Thus we have

$$\left|\overline{\Gamma}:\overline{\Gamma}^3\right|=1;$$

that is,

$$\overline{\Gamma}^3 = \overline{\Gamma}.$$

The following results are easy to see:

Theorem 2.2 *i*)
$$\overline{\Gamma}^2 = \Gamma^2 = \overline{\Gamma}' = \overline{\Gamma}^2 \cap \overline{\Gamma}^3$$

ii) $(\overline{\Gamma}')^3 \subset \overline{\Gamma}''$.

Now we have

Theorem 2.3 Let *m* be a positive integer. The normal subgroups $\overline{\Gamma}^m$ satisfy the following:

$$i) \overline{\Gamma}^{m} = \overline{\Gamma} if 2 \nmid m,$$

$$ii) \overline{\Gamma}^{m} = \overline{\Gamma}^{2} if 2 \mid m but 6 \nmid m.$$

Proof. i) If $2 \nmid m$ then by (4), we find S = T = R = I from the relations

$$R^2 = R^m = I, \ S^3 = S^m = (SR)^2 = (SR)^m = I = I, \ T^2 = T^m = I.$$

1	Λ	7
T	4	1

Thus $\overline{\Gamma}/\overline{\Gamma}^m$ is trivial and hence $\overline{\Gamma}^m = \overline{\Gamma}$.

ii) If 2 | m but 6 \nmid m then (m,3)=1. By (4), we obtain $S=T^2=R^2=I$ from the relations

$$R^2 = R^m = I, \ S^3 = S^m = I, \ T^2 = T^m = I$$

as $2 \mid m$ but $6 \nmid m$. These show that

$$\overline{\Gamma}/\overline{\Gamma}^m \cong$$

and

$$\left|\overline{\Gamma}:\overline{\Gamma}^m\right| = 4.$$

Since $\overline{\Gamma}^2$ is the only normal subgroup of index 4 we have $\overline{\Gamma}^m = \overline{\Gamma}^2$.

Therefore the only case left is that when m is divisible by 6. In this case, the above techniques do not say much about $\overline{\Gamma}^m$. To do this we use the second commutator subgroup $\overline{\Gamma}''$ of $\overline{\Gamma}$.

Theorem 2.4 Let *m* be a positive integer. The groups $\overline{\Gamma}^{6m}$ are the subgroups of the second commutator subgroup $\overline{\Gamma}''$.

Proof. i) Since $\overline{\Gamma}^6 \subset (\overline{\Gamma}^2)^3 \subset \overline{\Gamma}^2$ and $\overline{\Gamma}' = \overline{\Gamma}^2$ implies that $\overline{\Gamma}^6 \subset (\overline{\Gamma}')^3 \subset \overline{\Gamma}'$ and $\overline{\Gamma}^{6m} \subset \overline{\Gamma}^6 \subset \overline{\Gamma}''$. Since $\overline{\Gamma}'$ does not contain any reflection, $\overline{\Gamma}^{6m}$ does not contain any reflection. Also we know that $\Gamma^{6m} \subset \overline{\Gamma}^{6m}$. Thus we get

$$\overline{\Gamma}^{6m} = \Gamma^{6m} \subset \overline{\Gamma}''.$$

Then because $\overline{\Gamma}''$ is a free group and $\overline{\Gamma}^{6m} \subset \overline{\Gamma}''$, we have by Schreier's theorem the following theorem

Theorem 2.5 The groups $\overline{\Gamma}^{6m}$ are free groups.

Therefore

$$\begin{aligned} \left| \overline{\Gamma} : \overline{\Gamma}^{6m} \right| &= \left| \overline{\Gamma} : \Gamma^{6m} \right| \\ &= \left| \overline{\Gamma} : \Gamma \right| . \left| \Gamma : \Gamma^{6m} \right| \\ &= 2 \left| \Gamma : \Gamma^{6m} \right| \end{aligned}$$

since $|\overline{\Gamma}:\Gamma|=2$. In [4], the index $|\Gamma:\Gamma^6|$ was computed as 216. Therefore

$$\left|\overline{\Gamma}:\overline{\Gamma}^6\right| = 432.$$

Also, the index $\left|\overline{\Gamma}:\overline{\Gamma}^{6m}\right|$ is unknown since $\left|\Gamma:\Gamma^{6m}\right|$, $2 \leq m \leq 71$, is unknown.

Corollary 2.6 $\overline{\Gamma}^6$ is a free group of rank 37.

3. Free Normal Subgroups of the Extended Modular Group

As $\overline{\Gamma}$ is isomorphic to the free product of dihedral groups D_2 and D_3 with amalgamation \mathbb{Z}_2 , it has two kinds of normal subgroups : Free ones and free products of some infinite cyclic groups, some cyclic groups of order 2 and order 3, some dihedral groups D_2 and D_3 with some dihedral groups D_2 and D_3 with amalgamation \mathbb{Z}_2 . Therefore the study of free normal subgroups and their group theoretical structures will be important to us. Here we discuss them for extended modular group $\overline{\Gamma}$. This has been done for modular group by Newman in [3]. His results can be generalized to the extended modular group.

Before giving the main theorem we need the following lemmas.

Lemma 3.1 Let N be a non-trivial normal subgroup of finite index in $\overline{\Gamma}$. Then N is free if and only if it contains no elements of finite order.

Proof. By (1), $\overline{\Gamma}$ is isomorphic to a free product of $D_2 = C_2 \times C_2$ and $D_3 = C_2 \times C_3$ each amalgamated over \mathbb{Z}_2 . A subgroup of finite index in $\overline{\Gamma}$ is isomorphic to a free product of the groups F, C_r , and $D_{m_1} *_{\mathbb{Z}_2} D_{m_2}$, where r and each m_i divide 2 or 3. Thus if N is a subgroup of finite index in $\overline{\Gamma}$, it follows that

$$N = F * \prod_{*} C_r * \prod_{*} (D_{m_1} *_{\mathbb{Z}_2} D_{m_2}), \tag{5}$$

1	4	9
-	-	~

where F is either free or $\{I\}$ and each C_r is conjugate to $\{T\}$ or to $\{S\}$ or to $\{R\}$ and each D_{m_i} is conjugate to $\{T, R\}$ or to $\{S, R\}$. As N contains no elements of finite order the free product $\prod_* C_r * \prod_* (D_{m_1} *_{\mathbb{Z}_2} D_{m_2})$ is vacuous; and also as N is non-trivial, Nmust be free.

Conversely, if N is free, then by definition, it contains no elements of finite order. \Box

Lemma 3.2 The only normal subgroups of finite index in $\overline{\Gamma}$ containing elements of finite order are

$$\overline{\Gamma}, \Gamma, \Gamma^2 \text{ and } \Gamma^3.$$

Proof. Let N be a normal subgroup of finite index in $\overline{\Gamma}$ containing an element of finite order. Then N contains an element of order 2 or an element of order 3 or two elements of order 2 or two elements of order 2 and 3 or three elements so that two elements of order 2 and an element of order 3. An element of order 2 in $\overline{\Gamma}$ is conjugate to T or to R and an element of order 3 in $\overline{\Gamma}$ is conjugate to a power of S. Therefore if a normal subgroup N contains an element of finite order, then it contains T or R or S. Therefore there are seven cases:

(i) N contains T, R and S. Then $N = \overline{\Gamma}$.

(ii) N contains T but not R and S. Then $N \neq \overline{\Gamma}$, Γ and $\Gamma^3 \subset N$, as N is normal. Since $|\overline{\Gamma}: \Gamma^3| = 6$ we have $N = \Gamma^3$.

(iii) N contains T, R but not S. Then $N \neq \overline{\Gamma}$ and $\Gamma^3 \subset N$, the fact that N is normal and by (ii). Since $|\overline{\Gamma} : \Gamma^3| = 6$, we have $N = \overline{\Gamma}$ or Γ or Γ^3 . But this is not possible since $S \in \overline{\Gamma}, S \in \Gamma$ and $R \notin \Gamma^3$.

(iv) N contains T and S, but not R. Then $N \neq \overline{\Gamma}$ and $\Gamma \subset N$, by (1) and the fact that N is normal. Since $|\overline{\Gamma}:\Gamma| = 2$ it follows that $N = \Gamma$.

(v) N contains S but not T and R. Then $N \neq \overline{\Gamma}$ and $\Gamma^2 \subset N$, by (2) and the fact that N is normal. Since $|\overline{\Gamma}:\Gamma^2| = 4$, it follows that $N = \Gamma^2$.

(vi) N contains S, R but not T. Then $N \neq \overline{\Gamma}$ and $\Gamma^2 \subset N$, as N is normal and by (v). Since $|\overline{\Gamma}:\Gamma^2| = 4$, we have $N = \overline{\Gamma}$ or Γ or Γ^2 . But this is not possible since $T \in \overline{\Gamma}$, $T \in \Gamma$ and $R \notin \Gamma^2$.

(vii) N contains R but not T and S. This is not possible by (iii) and by (vi). \Box

Theorem 3.3 Let N be a non-trivial normal subgroup of finite index in $\overline{\Gamma}$ different from $\overline{\Gamma}$, Γ , Γ^2 , Γ^3 . Then N is a free group.

Proof. It can be easily seen as an immediate consequence of the lemmas. \Box

Theorem 3.4 Let N be a normal subgroup of finite index in $\overline{\Gamma}$ different from $\overline{\Gamma}$, Γ , Γ^2 , Γ^3 such that $|\overline{\Gamma}: N| = \mu < \infty$. Then μ is divisible by 12.

Proof. The quotient group contains subgroups of orders 2, 4 and 6, so its order is divisible by 12. $\hfill \Box$

References

- G. A. JONES and J. S. THORNTON, Automorphisms and congruence subgroups of the extended modular group, J. London Math. Soc. 34 (2), (1986), 26-40.
- [2] W. MAGNUS, A. KARRAS, D. SOLITAR, Combinatorial group theory, Dover Publications, Inc., New York, 1976.
- [3] M. NEWMAN, Free subgroups and normal subgroups of the modular group, *Illinois J. Math.* 8 (1964), 262-265.
- [4] M. NEWMAN, The structure of some subgroups of the modular group, *Illinois J. Math.* 6 (1962), 480-487.

Recep ŞAHİN, Sebahattin İKİKARDEŞ, Özden KORUOĞLU Department of Mathematics, Faculty of Arts and Sciences, Balıkesir University, 10100 Balıkesir-TURKEY e-mail : rsahin@balikesir.edu.tr Received 10.01.2003