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Abstract

Let G be a group in which every non-subnormal subgroup has finite rank. This

paper considers the question as to which extra conditions on such a group G ensure

that G has all subgroups subnormal. For example, if G is torsion-free and locally

soluble-by-finite then either G has finite 0-rank or G is nilpotent. Several results

are obtained on soluble (respectively, locally soluble-by-finite) groups satisfying the

stated hypothesis on subgroups.
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1. Introduction

Let G be a group in which every non-subnormal subgroup has finite rank. Throughout
this paper the term “finite rank” means “finite Prüfer (or Mal’cev, or special) rank”: a
group X has finite rank r if every finitely generated subgroup of X is r-generated. It
was shown in [5] that if G is soluble and of infinite rank then G is a Baer group, that is,
every finitely generated subgroup of G is subnormal, and in [6] it was established that a
locally soluble-by-finite group with this restriction on non-subnormal subgroups is soluble
(and hence a Baer group). The aim of this article is to present some results on groups in
which all non-subnormal subgroups have finiteness of rank of a different kind. We need
the following definitions. Let G be a group. (a) G has finite torsion-free rank, or finite
0-rank, denoted r0(G), if G has a finite subnormal series of subgroups the factors of which
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are either infinite cyclic or periodic. (b) For a given prime p, G has finite section p-rank
if every elementary abelian p-section of G is finite, and finite section rank if every abelian
section has both finite p-rank for every prime p and finite 0-rank. (c) G has finite section
total rank if, for each abelian section X of G, r0(X) + Σrp(X) is finite, where the sum
runs over all primes p (see [9;6.2]). (d) G is minimax if it has a finite subnormal series
the factors of which satisfy either max or min. Our main result is the following, which is
the “0-rank version” of Theorem 3 of [6].

Theorem 1.1 Let G be a torsion-free locally soluble-by-finite group in which every sub-
group of infinite 0-rank is subnormal. If G has infinite 0-rank then G is nilpotent.

There is a similar result for the p-rank case; however, in view of the fact that there
are non-nilpotent p-groups with all subgroups subnormal [2] the conclusion is necessarily
somewhat weaker.We also remark that the hypothesis on periodic subgroups that appears
in the following theorem cannot be omitted: an example is provided in [6] of a (soluble)
group G of infinite rank in which every non-subnormal subgroup has finite rank, the
torsion subgroup of G has finite rank, but not every subgroup of G is subnormal.

Theorem 1.2 Let p be a prime and let G be a locally soluble-by-finite group in which
every non-subnormal subgroup has finite section p-rank. If G contains a periodic subgroup
of infinite section p-rank, then G is soluble and every subgroup of G is subnormal.

We have also obtained the following results.

Theorem 1.3 Let G be a soluble group in which every non-subnormal subgroup has finite
0-rank. If G has infinite 0-rank but its maximal normal torsion subgroup P (G) has finite
section rank then G is a Baer group.

Theorem 1.4 Let p be a prime and let G be a soluble group in which every non-
subnormal subgroup has finite section p-rank. Suppose that G has infinite section p-rank
but all periodic subgroups have finite section p-rank. Then G/Op′(G) is nilpotent.

Theorem 1.5 Let G be a soluble group in which every non-subnormal subgroup has finite
section rank. If G has infinite section rank then G is a Baer group.
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Theorem 1.6 Let G be a locally soluble-by-finite group in which every non-subnormal
subgroup has finite section total rank. If G contains a periodic subgroup of infinite section
total rank then every subgroup of G is subnormal.

Theorem 1.7 Let G be a soluble group in which every non-subnormal subgroup has finite
section total rank. If G has infinite section total rank but all periodic subgroups of G have
finite section total rank then G is nilpotent.

Theorem 1.8 Let G be a soluble group and suppose that every non-minimax subgroup
of G is subnormal. If G is not minimax then every subgroup of G is subnormal.

2. The proof of Theorem 1.1

As might be expected, the proof here uses some ideas from [6], though there are a
few significant differences. We shall frequently use the well-known theorem of Mal’cev
[10; Theorem 6.36] that if G is a locally nilpotent group in which all abelian subgroups
have finite 0-rank then G modulo its torsion subgroup is nilpotent and of finite rank -
thus, for a torsion-free locally nilpotent group G, the properties finite rank and finite
0-rank are equivalent and imply nilpotency. Suppose next that G is a group with all
non-R subgroups subnormal, where R is any subgroup-closed class of groups, and let H
be a non-R subgroup of G. Every subgroup of G that contains H is subnormal in G, and
so there is a finite subnormal series from H to G each factor of which has all subgroups
subnormal. Each such factor is soluble, by the theorem of Möhres [8], and it follows
that some term of the derived series of G lies in H . This observation will be used quite
often and without further reference. We now present a result that will reduce the proof
of Theorem 1 to the establishing of the solubility of our group G. The maximal normal
torsion subgroup of G is here denoted P (G).

Proposition 2.1 Let G be a soluble group in which every non-subnormal subgroup has
finite 0-rank, and suppose that G has infinite 0-rank. Then G/P (G) is torsion-free
nilpotent.

The proof of this proposition requires the following result, which will be used again later
on.
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Lemma 2.2 Let G be a hyperabelian group, T the maximal normal torsion subgroup of
G, and suppose that every abelian subgroup of G/T has finite 0-rank. Then G has finite
0-rank, and G/T is soluble.

Proof. Assume the result false, and suppose first that G/T is soluble. By considering
an abelian normal series of G/T we see that there is a normal subgroup H/T of G/T such
that H has finite 0-rank, while L/H is torsion-free abelian and of infinite 0-rank for some
subgroup L of G. By [10;Lemma 9.34], H/T has a finite characteristic ascending series
the factors of which are abelian and either finite or torsion-free (of finite rank). Let K/T
denote the penultimate term of this series. If H/K is finite then it easy to see that there
is a torsion-free abelian subgroup U/K of L/K that has infinite 0-rank. Now suppose
that H/K is torsion-free of finite rank. If A/K is an abelian subgroup of L/K that
has finite 0-rank then AH/H is of finite rank and so A/K has finite rank. But if every
abelian subgroup of L/K has finite rank then L/K has finite rank [4], a contradiction.
It follows (in either case) that L/K has an abelian subgroup of infinite 0-rank and hence
a torsion-free such subgroup M/K, say. Repeating this argument as often as necessary
we arrive at an abelian subgroup of G/T that has infinite 0-rank, a contradiction that
establishes the result in the case where G/T is soluble. In the general case, let N/T
denote the locally nilpotent radical of G/T , and note that N/T is torsion-free nilpotent
of finite rank. If C denotes the centralizer in G of N/T then G/C is soluble [12]. But
C ≤ N [10;Lemma 2.17], and we have the contradiction that G/T is soluble. 2

Proof of Proposition 2.1 We may assume that P (G) = 1. Let B denote the Baer
radical of G; it suffices to prove that B = G, since B is locally nilpotent and torsion-free
and so Theorem 3 of [6] applies to give B nilpotent. By Lemma 2.2, G has an abelian
subgroup of infinite 0-rank, and since this is subnormal we see that B has infinite 0-rank.
Since B is nilpotent B < g > is soluble for all g ∈ G, so that B < g > has every subgroup
of infinite rank subnormal and is therefore a Baer group, by the main result of [5]. But
B < g > is subnormal in G (since it has infinite 0-rank), and we deduce that < g > is
subnormal in G, giving g ∈ B and hence G = B, as required. 2

Another general structure result that we shall need is the following.

Lemma 2.3 Let G be a locally (soluble-by-finite) group with finite 0-rank, and let T
denote the torsion radical of G. Then G/T has a normal subgroup L/T of finite index
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such that L/T has a finite G-invariant series the factors of which are torsion-free abelian
(and of finite rank).

Proof. We may assume that G is not periodic and that T = 1, so that every normal
subgroup of G has trivial torsion radical. Now G has a subnormal infinite cyclic subgroup
< x >, and the normal closure K of < x > in G is locally nilpotent and torsion-free of
finite rank, so it is nilpotent of class c, say, and K clearly has a G-invariant series of the
required kind. Let U/K denote the torsion radical of G/K; by induction on the 0-rank of
G we may assume that M/U has a G-invariant series with torsion-free abelian factors, for
some normal subgroup M of finite index in G. Let J denote an arbitrary upper central
factor of K, and let C be the centralizer of J in U ; then U/C embeds in GL(r, Q) for some
integer r and is therefore finite [13; Theorem 9.33], and we see that U has a G-invariant
subgroup V of finite index such that K ≤ V and V centralizes every upper central factor
of K. Clearly then F/Zc(F ) is finite for every finitely generated subgroup F of V , so that
γc+1F is also finite for all such F [10; Corollary 2 to Theorem 4.21], and γc+1V is locally
finite and therefore trivial. It follows that V too has a G-invariant series of the required
type, and we need only show that G/V has a normal subgroup L/V of finite index that
has a G-invariant series with torsion-free abelian factors. Since M/U has such a series
we may choose A/U normal in G/U with A/U torsion-free abelian (and non-trivial). If
D/V is the centralizer of U/V in A/V then we have A/D finite, D/V normal in G/V

and D/V nilpotent. It is easy to see that DnV/V is torsion-free abelian for some positive
integer n, and a further induction (on r0(G/V )) completes the proof. 2

The final part of of the proof of Theorem 2 of [6] deals with the case where G is
(countable and) locally polycyclic – it is shown that if G has infinite rank and every
subgroup of infinite rank is subnormal then G is soluble, and the same argument deals
with the locally polycylic case of our theorem, since what is used is the fact that the
torsion-free ranks of finitely generated subgroups of G are unbounded. Thus our aim is
to reduce to the locally polycyclic case. One important step in this reduction is provided
by the following result.

Lemma 2.4 Let G be an insoluble group with all non-subnormal subgroups of finite rank,
and suppose that G is the ascending union of finitely generated soluble minimax subgroups
F1 ≤ F2 ≤ ...... Suppose also that every periodic subgroup of G has finite section rank,
every proper image of G is soluble, periodic and locally nilpotent, and the intersection
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of all nontrivial normal subgroups of G is trivial. If G has infinite 0-rank, then Fn is
nilpotent-by-finite for each positive integer n.

Proof. Firstly we note that G is residually periodic and so every Fn is residually finite.
In particular, Fn contains no nontrivial quasicyclic subgroups. Let Ln denote the Fitting
radical of Fn for each n and let L be the subgroup generated by the Ln. Suppose that
r0(L) ≤ k for some integer k and that each Ln is torsion-free. By the well-known theo-
rem of Zassenhaus [10; Theorem 2.25], soluble subgroups of GL(r, Q) have derived length
bounded in terms of r only, so some bounded term of the derived series of Fn centralizes
every upper central factor of Ln and hence lies in Ln, giving the contradiction that the
derived lengths of the Fn are bounded. Thus, still under the assumption that r0(L) is
finite, we see that L must contain nontrivial elements of finite order and hence an element
x of prime order p, say. Let X =< x >G. If H is a nontrivial G-invariant subgroup of X
then X/H is locally nilpotent and hence a p-group, so X is residually a p-group, and every
periodic subgroup of X is therefore a p-group. Put Xn = Fn∩X, Vn = F itt(Xn), for each
n. Then Vn is normal in Fn and is therefore contained in Ln, while Ln ∩Xn is a normal
nilpotent subgroup of Xn, and so Ln ∩Xn = Vn for each n. Set V =< Vn|n ∈ N >; then
V is contained in L and so r0(V ) is finite. If Tn denotes the torsion radical of Vn and T

is the subgroup generated by all the Tn then T is a p-subgroup of finite section rank and
is therefore Chernikov. Let P be the divisible radical of T and let P1 be the subgroup of
P consisting of all elements of order at most p. There is a non-trivial normal subgroup
U of G such that P1 ∩ U = 1; then X ∩ U ∩ P = 1 and so X ∩ U ∩ T is finite. Again,
X ∩ U ∩ T ∩W = 1 for some nontrivial normal subgroup W of G, and Y := X ∩ U ∩W
is nontrivial, while Y ∩ T = 1. Let Yn = Fn ∩ Y, Rn = F itt(Yn). Clearly Rn = Ln ∩ Y ,
and so Rn is torsion-free (and of bounded 0-rank) for each n. Arguing as before, we
have that Y is soluble; but G/Y is soluble, and we have a contradiction. Thus r0(L)
is infinite, and it follows that some term K of the derived series of G is contained in
L. Now G/K is periodic, and so for each g ∈ G there is an integer t = t(g) such that
gt ∈ L. If g ∈ F1 then gt ∈ L∩F1, that is, gt ∈ (L1L2...Lk)∩F1 for some positive integer
k. But (L1L2...Lk) ∩ F1 = (L1L2...Lk) ∩ Fk−1 ∩ F1 = (L1L2...Lk−1)(Lk ∩ Fk−1) ∩ F1 =
(L1L2...Lk−1) ∩ F1 = ... = L1. Thus F1/L1 is periodic and hence finite. Now set
S =< Ln|n ≥ 2 >, a normal subgroup of L. Then r0(S) is infinite, and we can repeat
the previous argument and obtain that F2/L2 is finite. Using induction on n we obtain
that each Fn/Ln is finite, and the result follows. 2
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We are now ready to establish the solubility of G in the case where G is locally soluble.

Proposition 2.5 Let G be a torsion-free locally soluble group in which every subgroup of
infinite 0-rank is subnormal, and suppose that G has infinite 0-rank. Then G is soluble.

Proof. Let us assume for a contradiction that G is not soluble. Since G contains finitely
generated subgroups of arbitrarily high derived length and 0-rank we may assume that
G is countable. Let H be a subgroup of G that is an ascending union of G-invariant
subgroups with successive factors abelian and which is such that G/H has no nontrivial
normal abelian normal subgroups – note that such an H exists. If r0(H) is infinite then,
by Lemma 2.2, H contains an abelian subgroup U of infinite 0-rank, and this implies that
G is soluble, a contradiction that shows that r0(H) is finite. Again by Lemma 2.2, H is
soluble, so that Q := G/H is insoluble and has infinite 0-rank. Let P/H be an arbitrary
periodic subgroup of G/H; then r0(P ) is finite, and Lemma 2.3 implies that P has finite
rank. Thus every periodic subgroup of Q has finite rank. Also by Lemma 2.3, every
normal subgroup of Q that has finite 0-rank is soluble and therefore trivial. Now Q is
locally soluble and is therefore not simple, while for every nontrivial normal subgroup B
of Q, Q/B is soluble and locally nilpotent. The intersection of all such subgroups B must
be trivial. By our earlier remarks, Q can have no soluble subgroups of infinite 0-rank; in
particular every finitely generated subgroup of G is of finite 0-rank. Let L denote the in-
tersection of all nontrivial normal subgroups N of Q such that Q/N is torsion-free. Each
factor Q/N is locally nilpotent and hence nilpotent: by the remarks at the beginning
of this section if Q/N has finite rank, or by Theorem 3 of [6] if Q/N has infinite rank,
so if L = 1 then Q is residually torsion-free nilpotent and locally of finite 0-rank, hence
locally nilpotent, as in the proof of Lemma 2 of [6]. By this contradiction, L is nontrivial.
Suppose now that L has a nontrivial normal subgroup S such that L/S is not periodic.
If S has finite 0-rank and K is the pre-image of S in G (recall that S ≤ Q = G/H), then
K is soluble, by Lemma 2.3, and KG is hyperabelian and hence, by Lemma 2.2, soluble.
It follows from the definition of H that S is trivial, a contradiction. Thus S has infinite
0-rank, L/S is soluble and locally nilpotent and thus has a nontrivial torsion-free image
L/U (where S ≤ U). Now some term R of the derived series of Q lies in U , and it follows
that Q/R is locally nilpotent (since every nontrivial normal subgroup of L has infinite
0-rank, as was the case for S). But this easily leads to a contradiction to the definition
of L, and we conclude that every proper image of L is periodic, also soluble and locally
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nilpotent. The Fitting subgroup of L has finite 0-rank and is therefore trivial. Since L is
countable it is an ascending union of finitely generated subgroups Fn where, for each n, Fn
is soluble and, by Lemma 2.2, of finite rank (using the fact that every periodic subgroup of
Fn has finite rank). Thus Fn is minimax [10;Theorem 10.38], and Lemma 2.4 now implies
that Fn is nilpotent by-finite, so that L is locally polycyclic. By the remarks preceding
the statement of Lemma 2.4, L is therefore soluble, and we have our final contradiction. 2

Proof of Theorem 1.1 With G as stated, every locally soluble subgroup of G that has
finite 0-rank has finite rank, by Lemma 2.3, so if every locally soluble subgroup has finite
0-rank then G has finite rank, by [1], a contradiction. Thus G contains a locally soluble
subgroup L of infinite 0-rank, and L is soluble, by Proposition 2.5. Finally, L contains
some term of the derived series of G and the result follows. 2

3. Proofs

Proof of Theorem 1.2 Let G be as stated and let R be a periodic subgroup of G
that has infinite section p-rank. Then there exists a countably infinite elementary abelian
p-section V/U of R, and by Lemma 1.D.4 of [3] there is a p-subgroup Y of R such that
V = UY . Since Y has infinite rank it contains an elementary abelian subgroup A of
infinite rank, e.g. by Theorem 3.32 of [10]. Then some term of the derived series of G
is contained in A and G is soluble. Let g ∈ G and let K =< A, g >,W = AK . Since
A is subnormal in K we see that W is a p-group, and it follows that every subgroup of
K that has finite section p-rank has finite rank, so that every non-subnormal subgroup
of K has finite rank. By Theorem 2 of [5] K is therefore a Baer group. In particular we
have < g > subnormal in K, which in turn is subnormal in G. It follows that G is a Baer
group. Let P denote the p-component of the torsion subgroup T of G, and note that P
has infinite section p-rank. It suffices to prove that every subgroup of G that has finite
section p-rank is subnormal in G. If H denotes such a subgroup then certainly PH is
subnormal, so we may as well assume that G = PH . Furthermore, if Q is the p′-radical
of T then Q ∩H is normal in PH , so we may factor and hence assume that Q ∩ H is
trivial. But now G/P is torsion-free, locally nilpotent and of finite section p-rank, so
every abelian subgroup of G/P has finite 0-rank. It follows that G/P is (nilpotent and)
of finite rank, so every subgroup of infinite rank is subnormal in G. Since the torsion
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subgroup P of G has infinite rank, we may apply Theorem 5 of [6] to conclude that every
subgroup of G is subnormal. The result follows. 2

For the proof of Theorem 1.3 we need the following lemma.

Lemma 3.1 Let G be a group, g an element of G, and let A,B be < g >-invariant
subgroups of G satisfying the following: A ≤ Z(B), A has finite 0-rank, [B, g] ≤ A and
B/A is abelian and of infinite 0-rank. Then CG(g) contains an abelian subgroup of infinite
0-rank.

Proof. The mapping b → [b, g] for all b in B is a homomorphism whose kernel is
CB(g) and whose image has finite 0-rank. Thus CB(g) has infinite 0-rank and, since it is
nilpotent, it has an abelian subgroup of infinite 0-rank. 2

Proof of Theorem 1.3 Let T be the torsion radical of G. By Proposition 2.1, G/T
is nilpotent. Let g ∈ G - it suffices to prove that < g > is subnormal in G. Let K/T be
a maximal normal abelian subgroup of G/T ; then K/T is self-centralizing and so G/K
embeds in Aut(K/T ), and it follows that K/T has infinite 0-rank. Applying Lemma 3.1
we obtain a subgroup C/T of K/T that has infinite 0-rank and is such that [C, g] ≤ T .
Since < g > C is subnormal in G we may as well assume that G/T is free abelian and of
countably infinite rank, say with free generators g1, g2, ... modulo T . Suppose first that
T is abelian, and let F be an arbitrary finitely generated free abelian subgroup of G, g an
element of G. Then [F,< g >] is finitely generated as an < F, g >-group and therefore
finite, as the Sylow p-subgroups of T are Chernikov. So [F,< g >] is centralized by some
nontrivial element x of < g >, and < F, x > is nilpotent, and some nontrivial element y
of < x > (and hence of < g >) therefore centralizes F . Beginning with F =< g1 > and
iterating the above construction (with g = gi+1 at the ith step), we obtain a free abelian
subgroup A of G such that G/TA is periodic. Since A is of infinite 0-rank it is subnormal
in G, and it follows that the product TA is nilpotent and hence, by Lemma 3.1, contains
an abelian subgroup C that has infinite 0-rank and centralizes g. In the general case, we
may use the fact that T is soluble and repeat this argument sufficiently often to obtain
an abelian subgroup C of infinite 0-rank that centralizes g. Then C < g > is subnormal
in G and < g > is normal in C < g >, and the result follows. 2

Proof of Theorem 1.4 We may assume thatOp′(G) = 1. Every Sylow p-subgroup ofG
is Chernikov and so the maximal normal torsion subgroup T of G is Chernikov, by a result
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of Kargapolov [3;Theorem 3.17]. If r0(G) is finite then G/T has finite rank [7;Theorem
3] and so G has finite section p-rank, a contradiction; hence r0(G) is infinite. If H is
a subgroup of G that has infinite 0-rank then H has a free abelian section with infinite
0-rank and hence an abelian section with infinite p-rank. Thus every non-subnormal
subgroup of G has finite 0-rank, and so G/T is nilpotent, by Theorem 1.1. Furthermore
G is a Baer group, by Theorem 1.3. If D is the divisible component of T then T/D is
finite and so G/D is nilpotent, while if If D has rank r then it lies in Zr(G) - here we
may consider an arbitrary subgroup of the form DF , where F is finitely generated, and
use the fact that G is Baer. Thus G is nilpotent, and the result follows. 2

Proof of Theorem 1.5 If G contains a periodic subgroup of infinite p-rank for some
prime p then Theorem 1.2 applies. Otherwise, letting T denote the maximal normal
torsion subgroup of G, we see that every p-subgroup of T is Chernikov and so, as in the
proof of Theorem 1.4, G/T has infinite 0-rank and every non-subnormal subgroup of G
has finite 0-rank. Theorem 1.3 gives the result. 2

Proof of Theorem 1.6 Let R be a periodic subgroup of infinite section total rank.
Since R is not Chernikov it contains a non-Chernikov abelian subgroup [3; Theorem 5.8],
and so (as before) G is soluble. Thus every non-subnormal subgroup of G has finite rank,
and by the main result of [5] G is a Baer group. By Theorem 1.2 we may assume that
all periodic subgroups have finite section p-rank for all primes p, so that every Sylow
p-subgroup of the torsion subgroup T of G is Chernikov. Suppose for a contradiction
that there is a non-subnormal subgroup H of G. Then HT is subnormal in G and we
may as well assume that G = HT . Now H ∩ T is Chernikov and therefore contained in
a G-invariant subgroup S of T such that T = S×U × V for some G-invariant subgroups
U, V that have infinite section total rank. But HU and HV are subnormal in G, and
hence H = HU ∩HV is also subnormal, a contradiction that concludes the proof. 2

Proof of Theorem 1.7 Let T be the torsion radical of G. Then T is Chernikov and,
as in the proof of Theorem 1.4, r0(G) is infinite. Since every non-subnormal subgroup
has finite 0-rank we have G/T nilpotent, by Theorem 1.1, and G is a Baer group, by
Theorem 1.3. Again as in the proof of Theorem 1.4, G is nilpotent. 2

Proof of Theorem 1.8 If G has infinite (section) total rank then we may apply
Theorems 1.6 and 1.7, since every minimax subgroup of G has finite total rank. Suppose
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then that G has finite total rank. We claim that G is nilpotent, and in order to establish
this it suffices to show that G is Baer, for a (soluble) Baer group with finite total rank
is easily shown to be nilpotent (see p.38 of Volume II of [10]). Since G is not minimax
it has an abelian subgroup H that is not minimax, by a result of Baer and Zaičev [11;
15.2.8]. Since H is contained in the Baer radical of G its normal closure A = HG is
nilpotent and not minimax. Then A/A′ is non-minimax [10; Theorem 2.26], while if
G/A′ is nilpotent then so is G [10; Theorem 2.27]. Factoring, we may assume that A
is abelian. Let g ∈ G. It suffices to prove that < g > is subnormal in G, and since
A < g > is subnormal we may assume that G = A < g >. There is a finitely generated
subgroup F of A such that A/F is periodic; write D = F<g>, a normal subgroup of
G. Since < F, g > has finite rank it is minimax [10; Theorem 10.38], and < F, g > is
residually finite, by a result of P. Hall [10; Theorem 9.51]. The torsion subgroup of D is
therefore finite, and D has a G-invariant torsion-free subgroup B of finite index, which
in turn contains a finitely generated subgroup C such that B/C is the direct product of
finitely many quasicyclic groups. The set of primes occurring here is the spectrum Sp(B)
of B, and if p is any prime not contained in Sp(B) then B/Bp is nontrivial; indeed,
the intersection of all Bp is trivial. It is easy to see that, for each such prime p, A/Bp

has < g >-invariant non-minimax subgroups U/Bp, V/Bp such that U ∩ V ≤ Bp and
U < g > ∩V < g >= Bp < g >. Each of U < g >, V < g > is subnormal in G, as
therefore is Bp < g >. If r is the rank of B then we have [B,r< g >] ≤ Bp for all such
p and so [B,r< g >] = 1. Since B < g > is subnormal in G we deduce that < g > is
subnormal in G, as required. 2
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