Modules Supplemented Relative to A Torsion Theory

Tamer Koşan, Abdullah Harmancı

Abstract

This article introduces the concept of a τ -supplemented module as follows: Given a hereditary torsion theory in Mod R with associated torsion functor τ , we say that a module M is τ -supplemented when for every submodule N of M there exists a direct summand K of M such that $K \leq N$ and N/K is τ -torsion module. We present here some fundamental properties of this class of modules and study the decompositions of τ -supplemented modules under certain conditions on modules. The question of which direct sum of τ -supplemented R-modules are τ -supplemented is treated here.

Key Words: Torsion Theory, Supplemented Module.

1. Introduction

Let τ be a class of right modules over a ring. Motivated by the notion τ -complemented modules studied in [8] we introduce and study τ -supplemented modules. In what follows R will denote any ring with an identity and all modules will be unital right R-modules. τ will denote the torsion functor associated with an arbitrary torsion theory on the category Mod R of all right R-modules. A module M is lifting is a (or (D1)-module) if, for any given $A \leq M$, there exists a direct summand K of M such that $M = K \oplus L$ and $K \leq A$ with $A \cap L$ is small in L. This article introduces the concept of τ -supplemented modules as follows. Let $\tau = (\mathcal{T}, \mathcal{F})$ be a torsion theory. Then τ is uniquely determined by its associated class \mathcal{T} of τ -torsion modules $\mathcal{T} = \{M \in \text{Mod } R \mid \tau(M) = M\}$ where for a

¹⁹⁹¹ Mathematics Subject Classification: 16S90

module M, $\tau(M) = \sum \{N \mid N \leq M, N \in \mathcal{T}\}$ and \mathcal{F} is referred as a τ -torsion free class and $\mathcal{F} = \{M \in Mod - R \mid \tau(M) = 0\}$. A module in $\mathcal{T}(\text{or } \mathcal{F})$ is called a τ -torsion module (τ -torsionfree module). Every torsion class \mathcal{T} determines in every module M a unique maximal \mathcal{T} -submodule $\tau(M)$, the τ -torsion submodule of M, and $\tau(M/\tau(M)) = 0$, i.e., $M/\tau(M)$ is \mathcal{F} -module and τ -torsionfree. In what follows τ will represent a hereditary torsion theory, that is, if $\tau = (\mathcal{T}, \mathcal{F})$ then the class \mathcal{T} is closed under taking submodules, direct sums, images and extensions by short exact sequences, equivalently the class \mathcal{F} is closed under submodules, direct products, injective hulls and isomorphic copies. We refer the reader to [3] and [9] as torsion theoretic sources sufficient for our purposes and [1] and [10] for the other notations in this paper.

Given a hereditary torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ in Mod R we say that a module M is τ -supplemented if every submodule A of M contains a direct summand B of M such that A/B is τ -torsion. We say that a submodule A of M satisfies the τ -supplemented condition if A contains a direct summand B such that A/B is τ -torsion. M is τ -supplemented if and only if every submodule of M satisfies τ -supplemented condition. For the torsion class Mod R, we denote the corresponding torsion functor by χ , and if the torsion class is the class of zero modules we denote the corresponding torsion functor by ξ . In this notation $\xi = (0, \text{ Mod } R)$ and $\chi = (\text{Mod } R, 0)$ where 0 denotes the class of zero modules. The torsion functor for the dual Goldie torsion theory will be denoted by τ_* . Then the dual Goldie torsion theory $\tau_* = (\mathcal{T}_*, \mathcal{F}_*)$ is generated by the class of small R-modules. A module M is τ_* -torsion if and only if $M = Z^*(M)$, where $Z^*(M) = \{n \in M : nR \text{ is small}\}$ (see [4] and [6]).

Examples 1.1. Let R be any ring. Then

- (i) Every R-module is χ -supplemented.
- (ii) An R-module M is ξ -supplemented if and only if M is semisimple.
- (iii) Every lifting R-module is τ_* -supplemented.

Proof. (i) and (iii) Clear. (ii) By [1, Theorem 9.6].

Example 1.2. Let R be any domain which is not right primitive. Then every R-module is τ_* -supplemented.

Proof. By [7, Corollary 2.5].

Example 1.3. Let I be an idempotent ideal of an arbitrary ring R. Let τ_I denote the hereditary torsion theory defined by I with torsion class $\mathcal{T}_I = \{N \in Mod \ R \mid NI = 0\}$.

178

Then an R-module M is τ_I -supplemented if and only if NI is a direct summand of M for each submodule N of M.

Proof. The sufficiency is clear. Conversely, let N be any submodule of M. There exists a direct summand K of M such that K is contained in NI and NI/K is τ_I -torsion. Then NI = (NI)I contained in K contained in NI, and hence NI = K.

Corollary 1.4. Let I be an idempotent ideal of a ring R such that the R-module R is τ_I -supplemented. Then I = eR for some idempotent element e of R.

Proof. By Example 1.3.

2. Properties of τ -Supplemented Modules

Lemma 2.1. Let M be a module. Then

(i) M is τ -supplemented module if and only if every submodule A of M can be written as $A = B \bigoplus C$ with B is direct summand of M and C is τ -torsion submodule of M.

(ii) Every submodule of a τ -supplemented module is τ -supplemented.

Proof. Clear from definitions.

We do not know if there is a torsion theory τ and a τ -supplemented module M such that some homomorphic image of M is not τ -supplemented nor do we know, in general, when a finite direct sum of τ -supplemented modules is τ -supplemented.

Proposition 2.2 Let $M = M' \oplus M''$ be a direct sum of a τ -supplemented module M'and a τ -torsion module M''. Then M is τ -supplemented.

Proof. Let N be a submodule of the module M. Then $N \cap M'$ is a submodule of M'. There exists a direct summand K of M'(hence also of M) such that $(N \cap M')/K$ is τ -torsion. But $N/(N \cap M')$ is isomorphic to (N + M')/M', so is τ -torsion. Thus N/K is τ -torsion. It follows that M is τ -supplemented.

Corollary 2.3. Let $M = M' \oplus M''$ be a direct sum of a semisimple module M' and a τ -torsion module M''. Then M is τ -supplemented.

Proof. By Proposition 2.2.

Corollary 2.4. Let I be an idempotent ideal of a ring R such that I = Re for some

idempotent element e of R. Then an R-module M is τ_I -supplemented if and only if $M = M' \oplus M''$ is a direct sum of a semisimple submodule M' and a τ_I -torsion submodule M''.

Proof. The sufficiency is clear by Corollary 2.3. Conversely, suppose that M is τ_{I} supplemented. Note that eR is contained in I = Re. Therefore Me is a submodule of M. Let K be any submodule of Me. Then K = Ke = KRe = KI, so that K is a
direct summand of M and hence also of Me, by Example 1.3. Thus Me is semisimple.
Moreover Me is a direct summand of M, say $M = Me \oplus N$ for some submodule N of M. Because N is isomorphic to M/Me, we have NI = Ne = 0.

Lemma 2.5. Let M be a module. Assume that M is a τ -supplemented module. Then any τ -torsion free submodule is direct summand.

Proof. Let M be a τ -supplemented module and L a τ -torsion free submodule of M. There exist submodules K and K' of M such that $M = K \oplus K'$, K is contained in L and L/K is τ -torsion. Clearly $L = K \oplus (L \cap K')$. But $L \cap K'$ is contained in $L \cap \tau(M)$ so that $L \cap K' = 0$ and L = K.

Corollary 2.6. Let M be a τ -torsionfree module. Then the following statements are equivalent.

(i) M is a τ -supplemented module.

(ii) M is a semisimple module.

Proof. Let M be a τ -torsion free module. Every submodule of M is τ -torsion free. By Lemma 2.5 the proof is clear.

Lemma 2.7. Any τ -supplemented module M is a direct sum $M' \oplus M''$ of a semisimple submodule M' and a τ -supplemented module M'' such that $\tau(M'')$ is an essential submodule of M''.

Proof. Let K be complement of $\tau(M)$ in M. By Lemma 2.5, K is semisimple and $M = K \oplus K'$ for some submodule K' of M. Note that $\tau(M) \oplus K$ is an essential submodule of M and $\tau(M) = \tau(K) \oplus \tau(K') = \tau(K')$ so that $\tau(M) = (\tau(M) \oplus K) \cap K'$ is an essential submodule of K'.

A torsion theory τ is called *stable* if the class of τ -torsion right *R*-modules is closed under essential extensions; equivalently, it is closed under injective hulls. For example, Goldie torsion theory is stable [9, page 153 Proposition 7.3].

Theorem 2.8. Let τ be a stable torsion theory. Then the following statements are equivalent for a module M.

(i) M is τ -supplemented.

(ii) Every τ -torsionfree submodule is a direct summand of M.

(iii) $M = M' \oplus M''$ is a direct sum of a semisimple submodule M' and a τ -torsion submodule M''.

Proof. $(i) \Rightarrow (ii)$ By Lemma 2.5.

 $(ii) \Rightarrow (iii)$ Let K be a complement of $\tau(M)$ in M. By hypothesis, $M = K \oplus K'$ for some submodule K' of M and K is semisimple. Because $\tau(M) = \tau(K')$ is essential submodule of K' and τ is stable, we have K' is τ -torsion.

 $(iii) \Rightarrow (i)$ By Corollary 2.3.

Corollary 2.9. Let τ be a stable hereditary torsion theory. Then any finite direct sum of τ -supplemented modules is τ -supplemented.

Proof. By Theorem 2.8.

We shall show in Section 3 that Theorem 2.8 fails for non-stable torsion theories.

Lemma 2.10. An indecomposable module is τ -supplemented if and only if every proper submodule of M is τ -torsion.

Proof. Clear.

We shall say a module M is almost τ -torsion if every proper submodule of M is τ torsion. Note that τ -torsion modules are almost τ -torsion and almost τ -torsion modules are τ -supplemented. Let M be an almost τ -torsion module which is not τ -torsion. Let $T = \tau(M)$. Then T does not equal M. Let m be an element of M not in T. By hypothesis, M = mR and M is local module with unique maximal submodule T.

Theorem 2.11. Let M be a τ -supplemented module which satisfies dcc or acc on direct summands. Then M is a finite direct sum of almost τ -torsion submodules.

Proof. By hypothesis, $M = M_1 \oplus M_2 \oplus ... \oplus M_n$ is a finite direct sum of indecomposable submodules M_i $(1 \le i \le n)$. By Lemma 2.1 and 2.10, M_i is almost τ -torsion for each $1 \le i \le n$.

Corollary 2.12. Let R be a right Noetherian ring and let M be a τ -supplemented R-module. Then $M/\tau(M)$ is a semisimple module.

Proof. Let $T = \tau(M)$. Let *m* belong to *M*. By Lemma 2.1, *mR* is τ -supplemented and hence, by Theorem 2.11, $mR/(mR \cap T)$ is semisimple. Thus (mR + T)/T is semisimple for each *m* in *M*. Hence M/T is semisimple.

3. Examples

Theorem 2.8 fails for non-stable torsion theories.

Example 3.1. Let R denote the ring of all upper triangular 2×2 matrices with entries in the ring \mathbb{Z} of integers and let I denote the ideal of R which is generated as a right ideal by the idempotent where the (1, 1) entry 1 and all other entries 0. Let τ denote the hereditary torsion theory such that a module M is torsion provided MI = 0. Then the torsion submodule $\tau(R)$ of the right R-module R consists of all matrices in R with (1, 1) entry is 0. Clearly $\tau(R)$ is an essential submodule of R. But the right ideal N generated by the element a with (1, 1) entry 2 and all other entries are 0 does not contain a direct summand K of R such that N/K is τ -torsion. Thus every τ -torsion-free submodule of R is a direct summand of R but R is not τ -supplemented.

Example 3.2. Let F be any field and let S be any F-algebra. Let R denote the subring of the ring of all 2 by 2 matrices over S consisting of all 2 by 2 matrices with second column having entries from S, with (1,1) entry from F and with (2,1) entry 0. Let I denote the ideal generated as a right ideal by the idempotent e in R with (1,1) entry 1 and all other entries 0. Let τ denote the torsion theory where a module M is τ -torsion if MI = 0. It can be shown that any submodule of the right R-module R is τ -torsion or contains e. It follows that R is a τ -supplemented R-module but $\tau(R)$ is not a direct summand of R.

There are modules M and torsion theories τ such that M is $\tau\text{-supplemented but not lifting.$

Example 3.3. Let M denote the \mathbb{Z} -module $\mathbb{Z}/8\mathbb{Z} \bigoplus \mathbb{Z}/2\mathbb{Z}$. Let $V = (\overline{4}, \overline{0})\mathbb{Z}$, $U = (\overline{2}, \overline{1})\mathbb{Z}$, $V_1 = (\overline{4}, \overline{1})\mathbb{Z}$, $U_1 = (\overline{1}, \overline{1})\mathbb{Z}$, $U_2 = (\overline{2}, \overline{0})\mathbb{Z}$, $N = (\overline{1}, \overline{0})\mathbb{Z}$, $K = (\overline{0}, \overline{1})\mathbb{Z}$. They are all proper submodules of M. N, K and U_1 are direct summands and $V \cong V_1$ and $U \cong U_2$. Since $M = U + U_1$ and $U \cap U_1 = V$ and V is small in U, U is a supplement of U_1 . But U is not a direct summand. By [5, page 58, Proposition 4.8] M is not a lifting module. Let $\tau = \xi(U)$ denote the smallest hereditary torsion theory relative to which U is torsion. The direct summands N, K, U_1 satisfy the τ -supplemented condition, and as U, V, U_2 and V_1 are τ -torsion, they also satisfy the τ -supplemented condition. It follows that M is τ -supplemented.

There are modules M and torsion theories τ such that M is not τ -supplemented, but lifting.

Example 3.4. Let F be a field and R the upper triangular matrix ring $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$. Let M denote the right R-module R, e_{ij} the matrix units in R. Let $I = e_{12}R + e_{22}R$. Then I is an idempotent ideal and so defines a hereditary torsion theory τ_I with torsion class $\mathcal{T}_I = \{N \in \text{Mod } R \mid NI = 0\}$. By [5, page 71, Theorem 4.41] M is a lifting module. Let $K = e_{12}R$. Then K is not a direct summand since K is essential in the direct summand $e_{11}R$. K is not τ_I -torsion since $KI = e_{12}R$. K is simple module. Hence K can not contain any submodule A such that A is direct summand and K/A is τ_I -torsion. Thus M is not τ_I -supplemented.

Acknowledgement

We would like to express our gratefulness to the referee for his/her valuable suggestions and contributions.

References

- F.W.Anderson and K.R.Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York. 1992.
- G.F.Birkenmeir and R.Wiegandt, Pseudocomplements in the Lattice of Torsion Classes, Comm. Alg. 26(1) (1998), 197-220

- [3] J.Golan, Torsion Theories, Pitman Mon. and Surveys in Pure and Appl.Math. 29, 1986.
- [4] C.Lomp, Dual Continous Modules, Master's thesis, Glasgow Univ., 1996.
- [5] S.H.Mohammed and B.J.Müller, Continous and Discrete Modules, London Math.Soc., LN 147, Cambridge Univ.Press, 1990.
- [6] A.C.Özcan and A.Harmanci, Characterizations of Some Rings by Functor Z*(.), Turkish J.Math. 21 (1997) 325-331.
- [7] A.C.Özcan and P.F.Smith, The Z* functor for rings whose primitive images are artinian, Comm. in Algebra, 30 (2002) 4915-4930.
- [8] P.F.Smith, A.M.Viola-Prioli and J.Viola-Prioli, Modules complemented with respect to a torsion theory, Comm.Alg. 25 (1997), 1307-1326.
- [9] B.Strenström, Rings of Quotients, Springer-Verlag, Berlin, 1975.
- [10] R.Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991.

Tamer KOŞAN, Abdullah HARMANCI Hacettepe University, Department of Mathematics, Beytepe, Ankara-TURKEY. e-mail: tkosan@hacettepe.edu.tr, e-mail: harmanci@hacettepe.edu.tr Received 11.03.2003