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A Quasi–Linear Manifolds and Quasi–Linear Mapping

Between Them
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Abstract

In this article a special class of Banach manifolds (called QL-manifolds) and

mapping between them (QL-mappings) are introduced and some examples are given.

0. Introduction

We further develop in this article the theory of QL- mappings, which was started
by A. I. Shnirelman ([5]), continued by M.A.Ephendiev ([3]) and also by myself ([1]).
As was proved in [1], the classes FQL and FSQL-mappings coincide; however the latter
class is more adapted to expansion on affine bundles, which are used in definition of
the QL-manifold. As an example, we introduce a QL-manifold structure on the Banach
manifoldHs(S1, S2). This example shows that QL-manifold structures can be introduced
on various classes of mappings. As an example of a QL-mapping, we can take Ff :
Hs(S1, S2) → Hs(S1, S2), where f : S2 → S2 is diffeomorphism. We provide definitions
of FQL and FSQL-mappings in the appendix.

1. Definitions

Let X be a real infinite-dimensional Banach manifold, and {Xj}, Xj−1 ⊂ Xj , j =
1, 2, ... is a system of open sets, exhausting X, i.e. X = ∪Xj. Let us suppose ξj =(
Yj, ψj, Bnj

)
is an affine bundle, where Yj is a total space, Bnj is a basis which is a finite-

dimensional manifold with boundary, and ψj : Yy → Bnj is the continuous epimorphism.
Let Ωj be a bounded domain in Yj , ϕj : Xj → Ωj be a homeomorphism. (ϕj , Xj) will
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be called a chart on X. After carrying out the conditions given above we say that on
Xj a linear (L−) structure is introduced. If a L−structure is defined on Xj+1, then
obviously, it has been defined on Xj , too (as an induced structure). If ϕj/ : Xj/ → Ωj/ ,

ϕj// : Xj// → Ωj// , j/, j// ≥ j, are two L−structures on Xj , then the mappings of

transition ϕj// ◦ϕ−1
j/

: Ωj/ → Ωj// and ϕj/ ◦ϕ−1
j//

: Ωj// → Ωj/ will arise. Let us consider

them in charts of affine bundles ξj/ =
(
Yj/, ψj/ , Bnj/

)
and ξj// =

(
Yj// , ψj// , Bnj//

)
.

Let us suppose that they are FQL-mappings (see [5]). In that case, we say that two
L−structures on Xj are equivalent.

Definition 1 A class of equivalent L−structures on Xj is called a FQL- structure on
Xj .

Obviously, the FQL- structure on Xj+1 an induces FQL- structure on Xj , as well.
The FQL- structure on Xj is coordinated with the FQL- structure on Xj+1, if it coincides
with the induced structure.

Definition 2 A collection of FQL- structures on Xj , j = 1,2,3,..., coordinated between
each other is called a FQL- structure on X.

The Banach manifold X with the FQL- structure is called a FQL-manifold.

Now let us define a FSQL-mapping between FQL- manifolds.

Let X, Y be FQL-manifolds, X = ∪Xi, Xi ⊂ Xi+1 ∀i, Y = ∪Yj, Yj ⊂ Yj+1 ∀j,
(ϕi, Xi) , (ψj, Yj) be L−charts on X, Y , ϕi (Xi) = Ωi, and ψj (Yj) = Θj be bounded
domains of affine bundles ξi, ηj, respectively.

Definition 3 A continuous mapping f : X → Y between FQL-manifolds X and Y is
called a FSQL-mapping, if

a) ∀i ∃j (i), f (Xi) ⊂ Yj(i); and

b) ψj ◦ f ◦ ϕ−1
i : Ωi → Θj is FSQL-mapping (see [1]).

2. Example of FQL-Manifold

Let S1 be circle, x be coordinate on S1, 0 ≤ x < 2π; S2 be 2-dimensional sphere,
embedded in R3, i : S2 → R3 be embedding mapping. Let a set X consist of mappings
u : S1 → S2 of class Hs, i.e. ∂kx (i ◦ u) ∈ L2

(
S1, R3

)
, 0 ≤ k ≤ s,
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‖u‖2s =
s∑
0

2π∫
0

∥∥∂kx (i ◦ u) (x)
∥∥2

R3

dx , (1)

where s is some natural number. Obviously, one can introduce in X the structure of
infinite-dimensional smooth manifold (see [4]). Its model space is the real Hilbert space
Hs

(
S1, R2

)
.

Now let us introduce a FQL- structure on X. Suppose that X is naturally embedded
in Hs(S1 , R3) with norm (1), Xj = {u ∈ X | ‖u‖s < j}, j be some natural number. For
the solution of this problem we will: construct an affine bundle (Yj , Pj, Bj) with finite-
dimensional base Bj ; pick out in Yj a bounded domain Dj ; construct homeomorphisms
Φj : Dj → Xj (linear charts), j = 1, 2, 3, ...; and prove that homeomorphisms Φ−1

i ◦ Φj :
Dj → Di are FQL-mappings.

It is easy to prove the following lemma.

Lemma 4 ∃δ (j, s) > 0, ∀u ∈ Xj ∃y (u) ∈ S2, ‖y − u (x)‖R3 > δ ∀x ∈ S1.
Let N be some natural number, and x1, ..., xN be N equidistant points on S1. Let us

put in a correspondence to each mapping u ∈ Xj in point pN (u) = (u (x1) , ..., u (xN )) ∈[
S2
]N .

Let BN = { ȳ = (y1, ..., yN) ∈
[
S2
]N |∃u ∈ Xj , u (x1) = y1, u (x2) = y2, ..., u (xN ) =

yN }.

Obviously, BN is a domain in
[
S2
]N ; therefore it will be a manifold of dimension 2N .

Lemma 5 At fixed j and sufficiently large N for each point ȳ ∈ BN , there exists a
mapping Uȳ ∈ Hs(S1 , S2), satisfying conditions Uȳ (xi) = yi, i = 1, N.

Proof. Let Ūȳ : S1 → R3 be a mapping such that Ūȳ (xi) = yi, i = 1, N and
∥∥Ūȳ∥∥s has

a minimum among all these mappings. That such a mapping Ūȳ (x) exists, is unique and

continuously depends on ȳ, follows from the convexity of functional u 7→ ‖u‖2s (see [6]).
In this case, for ‖ Ūȳ ‖s < j, as according to the construction, there exists such mapping
u ∈ Xj , such that pN (u) = ȳ, and for all this u(x),

∥∥Ūȳ∥∥s ≤ ‖u‖s.
As known, S2 has some tubular neighborhood in R3. Let us denote its radius by

ε > 0. In this neighborhood for each point y exists the nearest point ψ (y) ∈ S2 to it;
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moreover the mapping y 7→ ψ (y) is smooth, surjective and nondegenerative in it. As
‖u‖C1 ≤ K · ‖u‖s at s ≥ 3, then from ‖u‖s < j it follows that ‖u‖

C1 ≤ K · j; that is

∀u ∈ Hs

(
S1 , R3

)
, ‖u‖s < j, ‖u′ (x)‖R3 < K · j. Then

∀x1, x2 ∈ S1 , ∀u ∈ Hs

(
S1 , R3

)
, ‖u‖s < j, and ‖u (x1) − u (x2)‖R3 < K · j ·

|x1 − x2|.
Let us suppose that |x1 − x2| < ε/(K · j). Then K · j · |x1 − x2| < ε. Therefore,
∀u ∈ Hs

(
S1, R3

)
, ‖u‖s < j, and ‖u (x1) − u (x2)‖R3 < ε at |x1 − x2| < ε/(K · j).

Let N be such that the distance between neighbor points x1, ..., xN ∈ S1 is less than
ε/(K · j). Then

∀u ∈ Hs

(
S1, R3

)
, ‖u‖s < j, ∀i = 1, N ‖u (xi)− u (xi+1)‖ < ε.

Let x ∈ S1. Obviously, ∃i, |x− xi| < ε/(K · j). Therefore

∀u ∈ Hs

(
S1, R3

)
, ‖u‖s < j, ‖u (x)− u (xi)‖R3 < ε .

From all this follows that the curve u (x) belongs to the ε- tubular neighborhood of S2

in R3, if ‖u‖s < j and u(xi) ∈ S2 , i = 1, N . Therefore it can be smoothly projected on S2.

As
∥∥Ūȳ∥∥ < j, then all of this is right for Ūȳ. Let us denote Uȳ (x) = ψ◦ Ūȳ (x). According

to the construction, this mapping also belongs to p−1
N

(ȳ), that is Uȳ (xi) = yi,i = 1, N .
By this the proof of the lemma 5 is finished. 2

From smoothness of ψ follows

‖Uȳ‖s ≤ C ·
∥∥Ūȳ∥∥s < C · j.

So, generally, Uȳ /∈ Xj, but also Uȳ ∈ XC·j .
Now let expy : TyS2 → S2 be an exponential mapping. As it is known, expy (~g) is dif-

feomorphism from some δ1 (y)-neighborhood of zero in TyS2on some ε1 (y)-neighborhood
of point y ∈ S2. We can suppose that ε1 (y) and δ1 (y) are independent on y ∈ S1,
because expy (~g) is smooth and S2 is compact.

Let us prove that the ε1-neighborhood of the curve u (x), u ∈ XC·j, includes all the
curves from p−1

N
(pN (u)) ∩ XC·j for a large enough N . Analogous to what was proved

earlier, it can be shown that

208



ABBASOV

∃K1 ≥ K, ∀u ∈ XC·j, ∀x1, x2 ∈ S1 ‖u (x1)− u (x2)‖R3 < K1 · |x1 − x2|.

Then ∀u1 ∈ p−1
N

(pN (u))∩XC·j ‖u1 (x)− u (x)‖R3 ≤ ‖u1 (x)− u1 (xi)‖R3+‖u1 (xi) −
u (xi)‖R3+‖u (xi)− u (x)‖R3 < 2K1|xi+1 − xi|.

Let N be such a natural number that ∀i |xi − xi+1| < ε1/(2 ·K1). Then

∀u ∈ XC·j , ∀u1 ∈ p−1
N

(pN (u)) ∩XC·j ‖u1 (x)− u (x)‖R3 < ε,

as was confirmed above. Because of the arbitrary u ∈ XC·j this statement is also right
for the element Uȳ.

Let ȳ0 ∈ BN . Let us construct in the neighborhood of curve Uȳ0
(x) two vector

fields tangent to S2 , orthogonal to each other and having the unit length. Let us denote
them by ~g1 (y) and ~g2 (y) : (~g1 (y) , ~g2 (y)) ≡ δ1,2, where δ1,2 is the Kronecker symbol.
At first, such fields can be constructed on R2, then transferred on S2, by lemma 4
and stereographic projection. According to the construction, such vector fields will be
defined on each curve Uȳ (x), where ȳ ∈ θȳ0

, θȳ0
is δ-neighborhood of point ȳ0 in BN .

BN can be covered by finite number of such δ-neighborhoods θȳ1
, ..., θȳl , where ȳ1,...,

ȳl are some points from BN , as BN is relatively compact and finite-dimensional. Let
FN =

{
~v ∈ S1 → R2|~v ∈ Hs , v (x1) = · · · = v (xN) = 0}, which a linear subspace of

Hs

(
S1, R2

)
, with finite-co-dimension 2N . Let Y

(
θȳp

)
= θȳp × FN p = 1, l, {~e1, ~e2}

be on orthonormed base in R2. Obviously, each function ~v ∈ FN has the following form
in this base: ~v (x) = v1 (x) · ~e1 + v2 (x) · ~e2, where vk (x), k = 1, 2, is scalar function,
vk ∈ Hs

(
S1, R1

)
, vk (xi) = 0, k = 1, 2, i = 1, N . Let us consider the mapping

Φp : θȳp × F
N → p−1

N

(
θȳp

)
, Φp (ȳ, ~v) = expUȳ(x)

ḡ (x) , p = 1, l,

where ~v (x) = v1 (x) · ~e1 + v2 (x) · ~e2, ⇀
g (x) = v1 (x) · ~g1 (Uȳ (x)) + v2 (x) · ⇀g 2 (Uȳ (x)).

Obviously,
1) at ȳ′ 6= ȳ′′, ȳ′, ȳ′′ ∈ θȳp , Φp (ȳ′, ~v) 6= Φp (ȳ′′, ~w) ∀~v, ~w ∈ FN , as (according to the

construction) Φp (ȳ′, ~v) ∈ p−1
N

(ȳ′), and Φp (ȳ′′, ~w) ∈ p−1
N

(ȳ′′),

2) at ‖~v‖C < δ1, ‖~w‖C < δ1, ~v 6= ~w, Φp (ȳ, ~v) 6= Φp (ȳ, ~w) ∀ȳ ∈ θȳp ,∀p = 1, l, as

expy ~g is diffeomorphism in δ1 - neighborhood of 0y ∈ TyS2 .
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From these reasons, it follows, that the mapping Φp, p = 1, l, is a diffeomorphism
between θȳp ×

{
~v ∈ FN |‖~v‖C < δ1 } and neighborhood

{
u (x)

∣∣‖Uȳ (x)− u (x)‖C < ε1

}
,

where ȳ ∈ θȳp , pN (u (xi)) = pN (Uȳ (xi)),i = 1, N . According to the construction, this

neighborhood contains the set p−1
N

(
θȳp

)
∩Xj .

Obviously, Dp = Φ−1
p

(
p−1
N

(
θȳp

)
∩Xj

)
is a bounded domain from Y

(
θȳp

)
. Let

us paste together domains Dp, Dp′ , p, p′ = 1, l, by diffeomorphisms Φ−1
p ◦ Φp′ . As a

result we get some set Dj . Now let us construct an affine bundle, in which Dj will be
a bounded domain. Let (~g1,p (y) , ~g2,p (y)), (~g1,p′ (y) , ~g2,p′ (y)) be vector fields, defined in
neighborhoods of the curves Uȳp (x) and Uȳp′ (x), ȳ ∈ θȳp ∩ θȳp′ , respectively.

Let λp,p′,ȳ (x) be an orthogonal matrix, transferring the first base to the second in
point y = Uȳ (x). Let us put in correspondence to the element (ȳ, ~v) ∈ θȳp × FN the

element (ȳ, ~w) ∈ θȳ′ × FN , where

~w (x) = λp,p′,ȳ (x) · ~v (x) . (2)

This mapping is a linear isomorphism, depending smoothly on ȳ ∈ θȳp ∩ θȳp′ . Pasting

together all simple bundles θȳp ×FN , p = 1, l, by these diffeomorphisms, we get an affine

bundle. Let us denote it by (Yj, Pj, Bj). It can be shown, that Φ−1
p ◦Φp′ : (ȳ, ~v) 7→ (ȳ, ~w),

where ~w (x) = λp,p′,ȳ (x) · ~v (x).

Hence it follows that Dj is the bounded domain in Yj .

Now let us paste together diffeomorphisms Φ1, ...,Φl by transition functions. As a
consequence we get one diffeomorphism from Dj on Xj . Let us denote it by Φj . With it
is completed construction of the linear chart

(
Φ−1
j , Xj

)
on Xj .

Now let us show that the linear structures on Xj and Xi are coordinated at different
j and i, that is the mapping of transition Φ−1

j ◦Φi is a FSQL- mapping between domains
of affine bundles.

Let (x1, ..., xN), (x′1, ..., x
′
L) be points on S1, used as a definition of L−structure on

Xj and Xi, ȳ = (y1, ..., yN), ȳ′ = (y′1, ..., y′L) be points from Bj , Bi, respectively, Uȳ (x),
Uȳ′ (x) be corresponding mappings constructed by the method mentioned above. Let
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FN = {~v ∈ Hs(S1 , R2)|v(x1) = · · · = v(xN ) = 0}, FL = {~v ∈ Hs(S1, R2)|v(x′1) = · · ·

= v(x′L) = 0}

be vector subspaces Hs

(
S1 , R2

)
(co-dimensions 2N and 2L), which are isomorphic to

layers from (Yj , Pj, Bj), (Yi, Pi, Bi), respectively. Without loss of generality, it can be
supposed that xm 6= x′n, m = 1, N ,n = 1, L. Obviously,

FN+L =
{
~v ∈ Hs

(
S1 , R2

) ∣∣v (xm) = v (x′n) = 0, m = 1, N, n = 1, L
}
, FN = FN+L + FL,

where FL is orthogonal complement to FN+L in FN . And

θȳp × FN =
(
θȳp × FL

)
× FN+L = ∪̄

y
∪
α
FN+L
ȳ,α , ȳ ∈ θȳp , α ∈ FL, where FN+L

ȳ,α =

(ȳ, α)×FN+L, p = 1, l. Moreover, θȳp×FL = ∪̄
y
FL,ȳ, where FL,ȳ = ȳ×FL, ȳ ∈ θȳp ,p = 1, l.

Pasting together simple bundles
(
θȳy × FL

)
× FN+L, p = 1, l, by diffeomorphisms (2),

we get an affine bundle, which is subbundle of (Yj, Pj, Bj), in this case each layer of
the last bundle “divided” into parallel planes by layers of subbundle. Let us denote this
subbundle by (Yj , Pj,i, Bj,i). Let us paste together simple bundles θȳp × FL,p = 1, l, by
these diffeomorphisms. As a consequence we get a finite-dimensional (namely, 2 · (N+L)-
dimension) affine bundle. Without restriction of generality, it can be supposed that Bj,i
is a total space of last. Let (ȳ, z) ∈ θȳp × FL. Let us consider the function

u (x) = expUȳ(x)

(
2∑

k=1

(zk (x) + vk (x))~gk (Uȳ (x))

)
,

where vk (xm) = vk (x′n) = 0, that is ~v = (v1, v2) ∈ FN+L. For all such u (x), u (xm) =
ym, u (x′n) = y′n, m = 1, N , n = 1, L. Therefore

exp−1
Uȳ′(x)

u (x) = (ȳ′, w (x)) , ȳ′ = (y′1, ..., y
′
L) ,

for all these u (x). Otherwise, Φ−1
i ◦Φj will transfer the layer P−1

j,i (ȳ, ~z) over point (ȳ, ~z)

into layer P−1
i (ȳ′) over point ȳ′, where ȳ′ = (u (x′1) , ..., u (x′L)). Therefore it transfers
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P−1
j,i (θȳ,~z) into P−1

i

(
θȳ′q

)
, where ȳ′ ∈ θȳ′q , θȳ′q is some chart from a fixed atlas on Bi, and

θȳ,~z is some neighborhood of (ȳ, ~z) in Bj,i. This function of transition has the following
form:

(ȳ, ~z, ~v) 7→
(
ȳ′, (w1, w2)

)
=
(
ȳ′, ~w

)
,

where u (x) = Φj (ȳ, ~z + ~v), ȳ′ = (u (x′1) , ..., u (x′L))

and wk (x) =
(
~gk

(
U
ȳ′ (x)

)
, h (x)

)
, ( h (x) = exp−1

U
ȳ′

(x) u (x), h (x) ∈ TU
ȳ′

(x)S
2 ), k = 1, 2,

is scalar multiples of vectors, tangent to S2 at point U
ȳ′

(x). From mentioned formulas

follow that the function of transition Φ−1
i ◦ Φj between linear charts on Xj and Xi is

given by operators of composition with smooth functions in charts of the corresponding
bundles. According to [5] such an operator defines a QL-mapping. Φ−1

i ◦Φj will be FQL
and therefore a FSQL-mapping in charts of affine bundles, as all used functions have
different from zero gradients at all points. So, all conditions of the definition of FSQL-
mapping are satisfied ([1]). That is why Φ−1

i ◦ Φj will be a FSQL-mapping between
domains of affine bundles.

From all of this follows that the structure introduced in X is Fredholm Quasi-Linear.

3. Example of FSQL-Mapping

Let f : S2 → S2 be diffeomorphism, X,X′ be FQL-manifolds, X = X′ = Hs

(
S1, S2

)
.

Thus we have the mapping Ff : X → X′, Ff : u 7→ f (u), which, incidentally is
a diffeomorphism (inverse mapping is Ff−1 ). Let us show that Ff is FSQL-mapping
between FQL-manifolds. Let us denote that Ff is a bounded mapping, as ‖f ◦ u‖s ≤
C · ‖u‖s. On the other hand, let X1, ..., Xj, ..., X1 ⊂ X2 ⊂ ·· ⊂ Xj ⊂ · · ·, ∪

j
Xj = X

and X′1, ..., X
′
i, ..., X′1 ⊂ X′2 ⊂ · · · ⊂ X′i ⊂ · · ·, ∪

j
X′j = X′ be domains, taken as in the

definition of QL-manifold. From the boundedness Ff it follows that ∀j ∃i, Ff (Xj) ⊂ X′i.
Let (Yj, Pj, Bj), (Y ′i , P

′
i , B

′
i) be affine bundles, according to Xj , X′i , and defined as in

the example of FQL-manifold. Let (x1, ..., xN), (x′1, ..., x
′
L) be points on S1 , used as a

definition of L-structure on Xj and X′i , and ȳ = (y1, ..., yN), ȳ′ = (y′1, ..., y
′
L) be points

from Bj and B′i, respectively. As in the first example, let us take “dividing”1

1An (affine) bundle (Y1, p1,B1) is called a “dividing” of a (affine) bundle (Y2, p2,B2), if Y1 = Y2 and

∀α ∈ B1∃β ∈ B2, p−1
1 (α) ⊂ p−1

2 (β).
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(Yj, Pj,i, Bj,i) and some layer on (ȳ, ~z)2 , (ȳ, ~z) ∈ θȳp ×FL. As we have noticed in the
first example, the function

u (x) = exp
U
ȳ

(x)

(
2∑
1

(zk (x) + vk (x)) · ~gk
(
U
ȳ

(x)
))

,

where vk (xm) = vk (x′n) = 0, m = 1, N , n = 1, L, translates the points xm, x′n to points
ym = u (xm), y′n = u (x′n). Then the mapping ū (x) = f (u (x)) will translate the points
xm, x′n to points tm, t′n ∈ S2 , where tm = ū (xm), t′n = ū (x′n), m = 1, N , n = 1, L.
Hence the layer on point (ȳ, ~z) will be mapped (by operator Ff) in layer on point t̄′, t̄′ =
(t′1, ..., t′L). That is why for some neighborhood θ¯̇y,~z

of point (ȳ, ~z) the set P−1
j,i

(
θ
ȳ,~z

)
will

be translated in (P ′i )
−1

(
θ
t̄′
q

)
, where t̄′ ∈ θ

t̄′
q

and θ
t̄′
q

is a chart from fixed atlas on B′i. In

charts of aforesaid bundles, Ff appears as follows: (ȳ, ~z, ~v) 7→ (t̄′, w1, w2) = (t̄′, ~w), u (x) =

exp
U
ȳ

(x)

(
2∑
1

(zk (x) + vk (x)) · ~gk (Uȳ (x))
)
, t̄′ = (f (u (x′1)) , ..., f (u (x′L))) ; ~h′ (x) =

exp−1

U
t̄′

(x)
f (u (x)) (~h′ (x) ∈ T

U
t̄′

(x)
S2), wk (x) =

(
~g′k
(
U
t̄′ (x)

)
,~h′ (x)

)
, k = 1, 2, is

scalar multiple of vectors, tangent to S2 at point U
t̄′ (x). The above formulas show that

Ff is defined by operators of composition with smooth functions in charts of bundles of
Xj and X′i. According to [5], such an operator defines a QL-mapping between local charts
of affine bundles. As f is a diffeomorphism and all used functions have different from zero
gradients at all points, then according to [5], Ff will be FQL and hence, FSQL-mapping
(see [1]) in charts of affine bundles. Therefore Ff will be FQL-mapping between linear
charts of FQL-manifolds X and X′, hence FSQL- mapping between X and X′.

4. Appendixes3

A) FQL-mapping. Let X, Y be real Banach spaces, Ω be a bound domain in X,
Xn be a n-dimensional space. Let Xn

α = π−1(α), α ∈ Xn.

Definition 6 A continuous mapping fn : Ω→ Y is called a Fredholm Linear (FL), if
2For all γ ∈ B, the set p−1 (γ) is called a layer of (affine) bundle (Y, p,B) on point γ ∈ B.
3Appendix (A) is taken from article [5] and appendix (B) from article [1].
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a) some linear mapping πn : X → Xn is fixed;

b) on each plane Xn
α = π−1(α), α ∈ Xn, passing through Ω, fnα ≡ fn|Xnα is an affine

invertible mapping from Xn
α on to its image Y nα = f(Xn

α ), that is, closed in Y and has
co-dimension n;

c)fnα depends continuously on α.

Definition 7 A continuous mapping f : X → Y is said to be Fredholm Quasi-Linear
(FQL), if there exists a sequence FL-mgappings {fnk}, uniformly approximating f on
each bounded domain Ω ⊂ X, such that

‖fnkα ‖ < C(Ω),
∥∥(fnkα )−1

∥∥ < C(Ω),

with k > k0(Ω), if α ∈ πnk(Ω) and C(Ω) does not depend onk, and if k > k0(Ω).

B) FSQL- mapping. Let H1 and H2 be real Hilbert spaces, ‖‖1, ‖‖2 be the cor-
responding norms in them. Let {Xn

α }, α ∈ Mn, be a family of pairs of disjoint closed
planes in H1 of codimension n, continuously depending on α, Mn is manifold of dimen-

sion n. Suppose that
{
Y nβ } , β ∈ Nn, is an analogous family in H2. Let M̃n =

⋃
α
Xn
α ,

Ñn =
⋃
β

Xn
β . Let us determine the projections πn : M̃n → Mn, pn : Ñn → Nn in the

following way πn : x 7→ α, if x ∈ Xn
α ; pn : y 7→ β, if y ∈ Y nβ . It is obvious that the triples

ξ = (πn, M̃n,Mn) and η = (pn, Ñn, Nn) are affine bundles.

Definition 8 A continuous mapping f : M̃n → Ñn is called Fredholm Special Linear
(FSL), if ∀α ∈ Mn, fnα ≡ f |Xnα is an affine invertible mapping from Xn

α on some Y nβ ,
fnα ∈ Aff(Xn

α , Y
n
β ) and fnα depends continuously on α.

The restriction of FSL-mapping on any domain Ω, Ω̄ ⊂ M̃n, is also called FSL-
mapping.

It is obvious that FSL-mapping induces bimorphism between affine bundles ξ and η.

Let Ω, Ω̄ ⊂ M̃n, be a bounded domain in H1, f : Ω→ H2 be an FSL-mapping and

|||f |||Ω = sup
xnα ∩ Ω 6= φ

inf{C | ‖fnα (x)‖2 ≤ C(1 + ‖x‖1), ‖x‖1 ≤ C(1 + ‖fnα (x)‖2), x ∈ Xn
α }.
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Definition 9 A continuous mapping f : Ω→ H2 is called Fredholm Special Quasi-Linear
(FSQL), if there exists a sequence of FSL-mappings fni : Ω→ H2, i = 1, 2,..., uniformly
approximating f on Ω and

|||f |||Ω ≤ C(Ω), ∀i > i(Ω);

moreover, C(Ω) does not depend on i for i > i(Ω).

Definition 10 A continuous mapping f : H1 → H2 is called FSQL-mapping, if in any
bounded domain Ω ⊂ H1 it is the FSQL-mapping.
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Received 25.12.2002

215


