Turk J Math 28 (2004) , 205 – 215. © TÜBİTAK

A Quasi–Linear Manifolds and Quasi–Linear Mapping Between Them

Akif Abbasov

Abstract

In this article a special class of Banach manifolds (called QL-manifolds) and mapping between them (QL-mappings) are introduced and some examples are given.

0. Introduction

We further develop in this article the theory of QL- mappings, which was started by A. I. Shnirelman ([5]), continued by M.A.Ephendiev ([3]) and also by myself ([1]). As was proved in [1], the classes FQL and FSQL-mappings coincide; however the latter class is more adapted to expansion on affine bundles, which are used in definition of the QL-manifold. As an example, we introduce a QL-manifold structure on the Banach manifold $H_s(S^1, S^2)$. This example shows that QL-manifold structures can be introduced on various classes of mappings. As an example of a QL-mapping, we can take F_f : $H_s(S^1, S^2) \to H_s(S^1, S^2)$, where $f: S^2 \to S^2$ is diffeomorphism. We provide definitions of FQL and FSQL-mappings in the appendix.

1. Definitions

Let X be a real infinite-dimensional Banach manifold, and $\{X_j\}, X_{j-1} \subset X_j, j = 1, 2, ...$ is a system of open sets, exhausting X, i.e. $X = \bigcup X_j$. Let us suppose $\xi_j = (Y_j, \psi_j, B_{n_j})$ is an affine bundle, where Y_j is a total space, B_{n_j} is a basis which is a finitedimensional manifold with boundary, and $\psi_j : Y_y \to B_{n_j}$ is the continuous epimorphism. Let Ω_j be a bounded domain in $Y_j, \varphi_j : X_j \to \Omega_j$ be a homeomorphism. (φ_j, X_j) will

be called a chart on X. After carrying out the conditions given above we say that on X_j a linear (L-) structure is introduced. If a L-structure is defined on X_{j+1} , then obviously, it has been defined on X_j , too (as an induced structure). If $\varphi_{j'}: X_{j'} \to \Omega_{j'}$, $\varphi_{j'/}: X_{j'/} \to \Omega_{j'/}, j', j', j'/ \geq j$, are two L-structures on X_j , then the mappings of transition $\varphi_{j'/} \circ \varphi_{j'}^{-1}: \Omega_{j'} \to \Omega_{j'/}$ and $\varphi_{j'} \circ \varphi_{j'/}^{-1}: \Omega_{j'/} \to \Omega_{j'}$ will arise. Let us consider them in charts of affine bundles $\xi_{j'} = (Y_{j'}, \psi_{j'}, B_{n_{j'}})$ and $\xi_{j'/} = (Y_{j'/}, \psi_{j'/}, B_{n_{j'/}})$. Let us suppose that they are FQL-mappings (see [5]). In that case, we say that two L-structures on X_j are equivalent.

Definition 1 A class of equivalent L-structures on X_j is called a FQL- structure on X_j .

Obviously, the FQL- structure on X_{j+1} an induces FQL- structure on X_j , as well. The FQL- structure on X_j is coordinated with the FQL- structure on X_{j+1} , if it coincides with the induced structure.

Definition 2 A collection of FQL- structures on X_j , j = 1, 2, 3, ..., coordinated between each other is called a FQL- structure on X.

The Banach manifold X with the FQL- structure is called a FQL-manifold.

Now let us define a FSQL-mapping between FQL- manifolds.

Let X, Y be FQL-manifolds, $X = \bigcup X_i, X_i \subset X_{i+1}$ $\forall i, Y = \bigcup Y_j, Y_j \subset Y_{j+1}$ $\forall j, (\varphi_i, X_i), (\psi_j, Y_j)$ be L-charts on X, Y, $\varphi_i(X_i) = \Omega_i$, and $\psi_j(Y_j) = \Theta_j$ be bounded domains of affine bundles ξ_i, η_j , respectively.

Definition 3 A continuous mapping $f : X \to Y$ between FQL-manifolds X and Y is called a FSQL-mapping, if a) $\forall i \quad \exists j(i), f(X_i) \subset Y_{j(i)};$ and b) $\psi_i \circ f \circ \varphi_i^{-1} : \Omega_i \to \Theta_i$ is FSQL-mapping (see [1]).

2. Example of FQL-Manifold

Let S^1 be circle, x be coordinate on S^1 , $0 \le x < 2\pi$; S^2 be 2-dimensional sphere, embedded in R^3 , $i: S^2 \to R^3$ be embedding mapping. Let a set X consist of mappings $u: S^1 \to S^2$ of class H_s , i.e. $\partial_x^k (i \circ u) \in L^2 (S^1, R^3), 0 \le k \le s$,

$$\|u\|_{s}^{2} = \sum_{0}^{s} \int_{0}^{2\pi} \left\|\partial_{x}^{k}\left(i\circ u\right)\left(x\right)\right\|_{R^{3}}^{2} dx \quad , \tag{1}$$

where s is some natural number. Obviously, one can introduce in X the structure of infinite-dimensional smooth manifold (see [4]). Its model space is the real Hilbert space $H_s(S^1, R^2)$.

Now let us introduce a FQL- structure on X. Suppose that X is naturally embedded in $H_s(S^1, R^3)$ with norm (1), $X_j = \{u \in X \mid ||u||_s < j\}$, j be some natural number. For the solution of this problem we will: construct an affine bundle (Y_j, P_j, B_j) with finitedimensional base B_j ; pick out in Y_j a bounded domain D_j ; construct homeomorphisms $\Phi_j : D_j \to X_j$ (linear charts), j = 1, 2, 3, ...; and prove that homeomorphisms $\Phi_i^{-1} \circ \Phi_j :$ $D_j \to D_i$ are FQL-mappings.

It is easy to prove the following lemma.

 $\textbf{Lemma 4} \ \exists \delta \left(j,s \right) > 0, \ \forall u \in X_{j} \quad \exists y \left(u \right) \in S^{2}, \ \|y-u\left(x \right)\|_{R^{3}} > \delta \quad \forall x \in S^{1}.$

Let N be some natural number, and $x_1, ..., x_N$ be N equidistant points on S^1 . Let us put in a correspondence to each mapping $u \in X_j$ in point $p_N(u) = (u(x_1), ..., u(x_N)) \in [S^2]^N$.

Let $B_N = \{ \bar{y} = (y_1, ..., y_N) \in [S^2]^N | \exists u \in X_j, u(x_1) = y_1, u(x_2) = y_2, ..., u(x_N) = y_N \}.$

Obviously, B_N is a domain in $[S^2]^N$; therefore it will be a manifold of dimension 2N.

Lemma 5 At fixed j and sufficiently large N for each point $\overline{y} \in B_N$, there exists a mapping $U_{\overline{y}} \in H_s(S^1, S^2)$, satisfying conditions $U_{\overline{y}}(x_i) = y_i$, $i = \overline{1, N}$.

Proof. Let $\bar{U}_{\bar{y}}: S^1 \to R^3$ be a mapping such that $\bar{U}_{\bar{y}}(x_i) = y_i, i = \overline{1, N}$ and $\|\bar{U}_{\bar{y}}\|_s$ has a minimum among all these mappings. That such a mapping $\bar{U}_{\bar{y}}(x)$ exists, is unique and continuously depends on \bar{y} , follows from the convexity of functional $u \mapsto \|u\|_s^2$ (see [6]). In this case, for $\|\bar{U}_{\bar{y}}\|_s < j$, as according to the construction, there exists such mapping $u \in X_j$, such that $p_N(u) = \bar{y}$, and for all this $u(x), \|\bar{U}_{\bar{y}}\|_s \leq \|u\|_s$.

As known, S^2 has some tubular neighborhood in \mathbb{R}^3 . Let us denote its radius by $\varepsilon > 0$. In this neighborhood for each point y exists the nearest point $\psi(y) \in S^2$ to it;

moreover the mapping $y \mapsto \psi(y)$ is smooth, surjective and nondegenerative in it. As $\|u\|_{C^1} \leq K \cdot \|u\|_s$ at $s \geq 3$, then from $\|u\|_s < j$ it follows that $\|u\|_{C^1} \leq K \cdot j$; that is $\forall u \in H_s(S^1, R^3), \|u\|_s < j, \|u'(x)\|_{R^3} < K \cdot j.$ Then

 $\forall x_1, x_2 \in S^1, \quad \forall u \in H_s(S^1, R^3), \quad \|u\|_s < j, \text{ and } \|u(x_1) - u(x_2)\|_{R^3} < K \cdot j$ $|x_1 - x_2|$.

Let us suppose that $|x_1 - x_2| < \varepsilon/(K \cdot j)$. Then $K \cdot j \cdot |x_1 - x_2| < \varepsilon$. Therefore, $\forall u \in H_s\left(S^1, R^3\right), \quad \|u\|_s < j, \text{ and } \|u\left(x_1\right) - u\left(x_2\right)\|_{R^3} < \varepsilon \text{ at } |x_1 - x_2| < \varepsilon/(K \cdot j).$

Let N be such that the distance between neighbor points $x_1, ..., x_N \in S^1$ is less than $\varepsilon/(K \cdot j)$. Then

$$\forall u \in H_s\left(S^1, R^3\right), \quad \|u\|_s < j, \quad \forall i = \overline{1, N} \quad \|u\left(x_i\right) - u\left(x_{i+1}\right)\| < \varepsilon.$$

Let $x \in S^1$. Obviously, $\exists i, |x - x_i| < \varepsilon/(K \cdot j)$. Therefore

$$\forall u \in H_s\left(S^1, R^3\right), \quad \left\|u\right\|_s < j, \quad \left\|u\left(x\right) - u\left(x_i\right)\right\|_{R^3} < \varepsilon$$

From all this follows that the curve u(x) belongs to the ε - tubular neighborhood of S^2 in \mathbb{R}^3 , if $\|u\|_s < j$ and $u(x_i) \in S^2$, $i = \overline{1, N}$. Therefore it can be smoothly projected on S^2 . As $\|\bar{U}_{\bar{y}}\| < j$, then all of this is right for $\bar{U}_{\bar{y}}$. Let us denote $U_{\bar{y}}(x) = \psi \circ \bar{U}_{\bar{y}}(x)$. According to the construction, this mapping also belongs to $p_N^{-1}(\bar{y})$, that is $U_{\bar{y}}(x_i) = y_i, i = \overline{1, N}$.

By this the proof of the lemma 5 is finished.

From smoothness of ψ follows

$$\left\| U_{\bar{y}} \right\|_{s} \le C \cdot \left\| \bar{U}_{\bar{y}} \right\|_{s} < C \cdot j.$$

So, generally, $U_{\bar{y}} \notin X_j$, but also $U_{\bar{y}} \in X_{C \cdot j}$.

Now let $\exp_y: T_yS^2 \to S^2$ be an exponential mapping. As it is known, $\exp_y(\vec{g})$ is diffeomorphism from some $\delta_1(y)$ -neighborhood of zero in $T_y S^2$ on some $\varepsilon_1(y)$ -neighborhood of point $y \in S^2$. We can suppose that $\varepsilon_1(y)$ and $\delta_1(y)$ are independent on $y \in S^1$, because $\exp_{y}(\vec{g})$ is smooth and S^{2} is compact.

Let us prove that the ε_1 -neighborhood of the curve $u(x), u \in X_{C,i}$, includes all the curves from $p_N^{-1}(p_N(u)) \cap X_{C,j}$ for a large enough N. Analogous to what was proved earlier, it can be shown that

 $\exists K_1 \geq K, \quad \forall u \in X_{C \cdot j}, \quad \forall x_1, x_2 \in S^1 \quad \left\| u\left(x_1\right) - u\left(x_2\right) \right\|_{R^3} < K_1 \cdot |x_1 - x_2|.$

Then $\forall u_1 \in p_N^{-1}(p_N(u)) \cap X_{C \cdot j} \quad \|u_1(x) - u(x)\|_{R^3} \le \|u_1(x) - u_1(x_i)\|_{R^3} + \|u_1(x_i) - u(x_i)\|_{R^3} + \|u(x_i) - u(x)\|_{R^3} < 2K_1|x_{i+1} - x_i|.$

Let N be such a natural number that $\forall i \quad |x_i - x_{i+1}| < \varepsilon_1/(2 \cdot K_1)$. Then

$$\forall u \in X_{C \cdot j}, \quad \forall u_1 \in p_N^{-1} \left(p_N \left(u \right) \right) \cap X_{C \cdot j} \quad \left\| u_1 \left(x \right) - u \left(x \right) \right\|_{R^3} < \varepsilon,$$

as was confirmed above. Because of the arbitrary $u \in X_{C,j}$ this statement is also right for the element $U_{\bar{u}}$.

Let $\bar{y}_0 \in B_N$. Let us construct in the neighborhood of curve $U_{\bar{y}_0}(x)$ two vector fields tangent to S^2 , orthogonal to each other and having the unit length. Let us denote them by $\bar{g}_1(y)$ and $\bar{g}_2(y) : (\bar{g}_1(y), \bar{g}_2(y)) \equiv \delta_{1,2}$, where $\delta_{1,2}$ is the Kronecker symbol. At first, such fields can be constructed on R^2 , then transferred on S^2 , by lemma 4 and stereographic projection. According to the construction, such vector fields will be defined on each curve $U_{\bar{y}}(x)$, where $\bar{y} \in \theta_{\bar{y}_0}, \theta_{\bar{y}_0}$ is δ -neighborhood of point \bar{y}_0 in B_N . B_N can be covered by finite number of such δ -neighborhoods $\theta_{\bar{y}_1}, ..., \theta_{\bar{y}_l}$, where $\bar{y}_1,...,$ \bar{y}_l are some points from B_N , as B_N is relatively compact and finite-dimensional. Let $F^N = \{\vec{v} \in S^1 \to R^2 | \vec{v} \in H_s, v(x_1) = \cdots = v(x_N) = 0\}$, which a linear subspace of $H_s(S^1, R^2)$, with finite-co-dimension 2N. Let $Y(\theta_{\bar{y}_p}) = \theta_{\bar{y}_p} \times F^N$ $p = \overline{1,l}, \{\vec{e}_1, \vec{e}_2\}$ be on orthonormed base in R^2 . Obviously, each function $\vec{v} \in F^N$ has the following form in this base: $\vec{v}(x) = v_1(x) \cdot \vec{e}_1 + v_2(x) \cdot \vec{e}_2$, where $v_k(x), k = 1, 2$, is scalar function, $v_k \in H_s(S^1, R^1), v_k(x_i) = 0, k = 1, 2, i = \overline{1, N}$. Let us consider the mapping

$$\Phi_p: \theta_{\bar{y}_p} \times F^N \to p_N^{-1}\left(\theta_{\bar{y}_p}\right), \quad \Phi_p\left(\bar{y}, \vec{v}\right) = \exp_{U_{\bar{y}(x)}} \bar{g}\left(x\right), \quad p = \overline{1, l},$$

where $\vec{v}(x) = v_1(x) \cdot \vec{e}_1 + v_2(x) \cdot \vec{e}_2$, $\vec{g}(x) = v_1(x) \cdot \vec{g}_1(U_{\bar{y}}(x)) + v_2(x) \cdot \vec{g}_2(U_{\bar{y}}(x))$. Obviously,

1) at $\bar{y}' \neq \bar{y}'', \bar{y}', \bar{y}'' \in \theta_{\bar{y}_p}, \Phi_p(\bar{y}', \vec{v}) \neq \Phi_p(\bar{y}'', \vec{w}) \quad \forall \vec{v}, \vec{w} \in F^N$, as (according to the construction) $\Phi_p(\bar{y}', \vec{v}) \in p_N^{-1}(\bar{y}')$, and $\Phi_p(\bar{y}'', \vec{w}) \in p_N^{-1}(\bar{y}'')$,

2) at $\|\vec{v}\|_C < \delta_1$, $\|\vec{w}\|_C < \delta_1$, $\vec{v} \neq \vec{w}$, $\Phi_p(\bar{y}, \vec{v}) \neq \Phi_p(\bar{y}, \vec{w}) \quad \forall \bar{y} \in \theta_{\bar{y}_p}, \forall p = \overline{1, l}$, as $\exp_y \vec{g}$ is diffeomorphism in δ_1 - neighborhood of $0_y \in T_y S^2$.

From these reasons, it follows, that the mapping Φ_p , $p = \overline{1, l}$, is a diffeomorphism between $\theta_{\overline{y}_p} \times \{ \vec{v} \in F^N | ||\vec{v}||_C < \delta_1 \}$ and neighborhood $\{ u(x) | ||U_{\overline{y}}(x) - u(x)||_C < \varepsilon_1 \}$, where $\overline{y} \in \theta_{\overline{y}_p}$, $p_N(u(x_i)) = p_N(U_{\overline{y}}(x_i)), i = \overline{1, N}$. According to the construction, this neighborhood contains the set $p_N^{-1}(\theta_{\overline{y}_p}) \cap X_j$.

Obviously, $D_p = \Phi_p^{-1} \left(p_N^{-1} \left(\theta_{\bar{y}_p} \right) \cap X_j \right)$ is a bounded domain from $Y \left(\theta_{\bar{y}_p} \right)$. Let us paste together domains D_p , $D_{p'}$, $p, p' = \overline{1, l}$, by diffeomorphisms $\Phi_p^{-1} \circ \Phi_{p'}$. As a result we get some set D_j . Now let us construct an affine bundle, in which D_j will be a bounded domain. Let $(\vec{g}_{1,p}(y), \vec{g}_{2,p}(y)), (\vec{g}_{1,p'}(y), \vec{g}_{2,p'}(y))$ be vector fields, defined in neighborhoods of the curves $U_{\bar{y}_p}(x)$ and $U_{\bar{y}_{p'}}(x), \bar{y} \in \theta_{\bar{y}_p} \cap \theta_{\bar{y}_{p'}}$, respectively.

Let $\lambda_{p,p',\bar{y}}(x)$ be an orthogonal matrix, transferring the first base to the second in point $y = U_{\bar{y}}(x)$. Let us put in correspondence to the element $(\bar{y}, \vec{v}) \in \theta_{\bar{y}_p} \times F^N$ the element $(\bar{y}, \vec{w}) \in \theta_{\bar{y}'} \times F^N$, where

$$\vec{w}(x) = \lambda_{p,p',\bar{y}}(x) \cdot \vec{v}(x).$$
⁽²⁾

This mapping is a linear isomorphism, depending smoothly on $\bar{y} \in \theta_{\bar{y}_p} \cap \theta_{\bar{y}_{p'}}$. Pasting together all simple bundles $\theta_{\bar{y}_p} \times F^N$, $p = \overline{1, l}$, by these diffeomorphisms, we get an affine bundle. Let us denote it by (Y_j, P_j, B_j) . It can be shown, that $\Phi_p^{-1} \circ \Phi_{p'} : (\bar{y}, \vec{v}) \mapsto (\bar{y}, \vec{w})$, where $\vec{w}(x) = \lambda_{p,p',\bar{y}}(x) \cdot \vec{v}(x)$.

Hence it follows that D_j is the bounded domain in Y_j .

Now let us paste together diffeomorphisms $\Phi_1, ..., \Phi_l$ by transition functions. As a consequence we get one diffeomorphism from D_j on X_j . Let us denote it by Φ_j . With it is completed construction of the linear chart (Φ_j^{-1}, X_j) on X_j .

Now let us show that the linear structures on X_j and X_i are coordinated at different j and i, that is the mapping of transition $\Phi_j^{-1} \circ \Phi_i$ is a *FSQL*- mapping between domains of affine bundles.

Let $(x_1, ..., x_N)$, $(x'_1, ..., x'_L)$ be points on S^1 , used as a definition of L-structure on X_j and X_i , $\bar{y} = (y_1, ..., y_N)$, $\bar{y}' = (y'_1, ..., y'_L)$ be points from B_j , B_i , respectively, $U_{\bar{y}}(x)$, $U_{\bar{y}'}(x)$ be corresponding mappings constructed by the method mentioned above. Let

$$F^{N} = \{ \vec{v} \in H_{s}(S^{1}, R^{2}) | v(x_{1}) = \dots = v(x_{N}) = 0 \}, F^{L} = \{ \vec{v} \in H_{s}(S^{1}, R^{2}) | v(x_{1}') = \dots = v(x_{L}') = 0 \}$$

be vector subspaces $H_s(S^1, R^2)$ (co-dimensions 2N and 2L), which are isomorphic to layers from (Y_j, P_j, B_j) , (Y_i, P_i, B_i) , respectively. Without loss of generality, it can be supposed that $x_m \neq x'_n$, $m = \overline{1, N}, n = \overline{1, L}$. Obviously,

$$F^{N+L} = \left\{ \vec{v} \in H^s\left(S^1, R^2\right) \middle| v\left(x_m\right) = v\left(x'_n\right) = 0, m = \overline{1, N}, n = \overline{1, L} \right\}, \quad F^N = F^{N+L} + F_L$$

where F_L is orthogonal complement to F^{N+L} in F^N . And

$$\begin{aligned} \theta_{\bar{y}_p} \times F^N &= \left(\theta_{\bar{y}_p} \times F_L\right) \times F^{N+L} = \bigcup_{\bar{y}_{\alpha}} F^{N+L}_{\bar{y},\alpha}, \quad \bar{y} \in \theta_{\bar{y}_p}, \quad \alpha \in F_L, \text{ where } F^{N+L}_{\bar{y},\alpha} = \\ (\bar{y},\alpha) \times F^{N+L}, p &= \overline{1,l}. \text{ Moreover, } \theta_{\bar{y}_p} \times F_L = \bigcup_{\bar{y}} F_{L,\bar{y}}, \text{ where } F_{L,\bar{y}} = \bar{y} \times F_L, \bar{y} \in \theta_{\bar{y}_p}, p = \overline{1,l}. \end{aligned}$$
Pasting together simple bundles $\left(\theta_{\bar{y}_y} \times F_L\right) \times F^{N+L}, p = \overline{1,l}, \text{ by diffeomorphisms (2)},$
we get an affine bundle, which is subbundle of (Y_j, P_j, B_j) , in this case each layer of the last bundle "divided" into parallel planes by layers of subbundle. Let us denote this subbundle by $(Y_j, P_{j,i}, B_{j,i})$. Let us paste together simple bundles $\theta_{\bar{y}_p} \times F_L, p = \overline{1,l}, \text{ by these diffeomorphisms. As a consequence we get a finite-dimensional (namely, $2 \cdot (N+L)$ -dimension) affine bundle. Without restriction of generality, it can be supposed that $B_{j,i}$ is a total space of last. Let $(\bar{y}, z) \in \theta_{\bar{y}_p} \times F_L$. Let us consider the function$

$$u(x) = \exp_{U_{\bar{y}(x)}} \left(\sum_{k=1}^{2} (z_k(x) + v_k(x)) \vec{g}_k(U_{\bar{y}}(x)) \right),$$

where $v_k(x_m) = v_k(x'_n) = 0$, that is $\vec{v} = (v_1, v_2) \in F^{N+L}$. For all such u(x), $u(x_m) = y_m$, $u(x'_n) = y'_n$, $m = \overline{1, N}$, $n = \overline{1, L}$. Therefore

$$\exp_{U_{\bar{y}'(x)}}^{-1} u(x) = (\bar{y}', w(x)), \quad \bar{y}' = (y'_1, ..., y'_L),$$

for all these u(x). Otherwise, $\Phi_i^{-1} \circ \Phi_j$ will transfer the layer $P_{j,i}^{-1}(\bar{y}, \bar{z})$ over point (\bar{y}, \bar{z}) into layer $P_i^{-1}(\bar{y}')$ over point \bar{y}' , where $\bar{y}' = (u(x_1'), ..., u(x_L'))$. Therefore it transfers

 $P_{j,i}^{-1}(\theta_{\bar{y},\bar{z}})$ into $P_i^{-1}(\theta_{\bar{y}'_q})$, where $\bar{y'} \in \theta_{\bar{y}'_q}, \theta_{\bar{y}'_q}$ is some chart from a fixed atlas on B_i , and $\theta_{\bar{y},\bar{z}}$ is some neighborhood of (\bar{y},\bar{z}) in $B_{j,i}$. This function of transition has the following form:

$$(\bar{y}, \vec{z}, \vec{v}) \mapsto (\bar{y'}, (w_1, w_2)) = (\bar{y'}, \vec{w}),$$

where $u(x) = \Phi_j(\bar{y}, \vec{z} + \vec{v}), \ \bar{y'} = (u(x'_1), ..., u(x'_L))$ and $w_k(x) = \left(\vec{g}_k\left(U_{\bar{y'}}(x)\right), h(x)\right), (h(x) = \exp_{U_{\bar{y'}}(x)}^{-1} u(x), h(x) \in T_{U_{\bar{y'}}(x)}S^2), \ k = 1, 2,$

is scalar multiples of vectors, tangent to S^2 at point $U_{\bar{y'}}(x)$. From mentioned formulas follow that the function of transition $\Phi_i^{-1} \circ \Phi_j$ between linear charts on X_j and X_i is given by operators of composition with smooth functions in charts of the corresponding bundles. According to [5] such an operator defines a *QL*-mapping. $\Phi_i^{-1} \circ \Phi_j$ will be *FQL* and therefore a *FSQL*-mapping in charts of affine bundles, as all used functions have different from zero gradients at all points. So, all conditions of the definition of *FSQL*mapping are satisfied ([1]). That is why $\Phi_i^{-1} \circ \Phi_j$ will be a *FSQL*-mapping between domains of affine bundles.

From all of this follows that the structure introduced in X is Fredholm Quasi-Linear.

3. Example of FSQL-Mapping

Let $f: S^2 \to S^2$ be diffeomorphism, X, X' be FQL-manifolds, $X = X' = H_s(S^1, S^2)$. Thus we have the mapping $F_f: X \to X', F_f: u \mapsto f(u)$, which, incidentally is a diffeomorphism (inverse mapping is $F_{f^{-1}}$). Let us show that F_f is FSQL-mapping between FQL-manifolds. Let us denote that F_f is a bounded mapping, as $||f \circ u||_s \leq C \cdot ||u||_s$. On the other hand, let $X_1, ..., X_j, ..., X_1 \subset X_2 \subset \cdots \subset X_j \subset \cdots, \bigcup_j X_j = X$ and $X'_1, ..., X'_i, ..., X'_1 \subset X'_2 \subset \cdots \subset X'_i \subset \cdots, \bigcup_j X'_j = X'$ be domains, taken as in the definition of QL-manifold. From the boundedness F_f it follows that $\forall j \quad \exists i, F_f(X_j) \subset X'_i$. Let $(Y_j, P_j, B_j), (Y'_i, P'_i, B'_i)$ be affine bundles, according to X_j, X'_i , and defined as in the example of FQL-manifold. Let $(x_1, ..., x_N), (x'_1, ..., x'_L)$ be points on S^1 , used as a definition of L-structure on X_j and X'_i , and $\bar{y} = (y_1, ..., y_N), \ \bar{y}' = (y'_1, ..., y'_L)$ be points from B_j and B'_i , respectively. As in the first example, let us take "dividing"¹</sup>

¹An (affine) bundle (Y_1, p_1, B_1) is called a "dividing" of a (affine) bundle (Y_2, p_2, B_2) , if $Y_1 = Y_2$ and $\forall \alpha \in B_1 \exists \beta \in B_2, p_1^{-1}(\alpha) \subset p_2^{-1}(\beta)$.

 $(Y_j, P_{j,i}, B_{j,i})$ and some layer on $(\bar{y}, \vec{z})^2$, $(\bar{y}, \vec{z}) \in \theta_{\bar{y}_p} \times F_L$. As we have noticed in the first example, the function

$$u(x) = \exp_{U_{\bar{y}}(x)} \left(\sum_{1}^{2} (z_{k}(x) + v_{k}(x)) \cdot \vec{g}_{k}(U_{\bar{y}}(x)) \right),$$

where $v_k(x_m) = v_k(x'_n) = 0$, $m = \overline{1, N}$, $n = \overline{1, L}$, translates the points x_m, x'_n to points $y_m = u(x_m), y'_n = u(x'_n)$. Then the mapping $\overline{u}(x) = f(u(x))$ will translate the points x_m, x'_n to points $t_m, t'_n \in S^2$, where $t_m = \overline{u}(x_m), t'_n = \overline{u}(x'_n), m = \overline{1, N}, n = \overline{1, L}$. Hence the layer on point $(\overline{y}, \overline{z})$ will be mapped (by operator F_f) in layer on point $\overline{t'}, \overline{t'} = (t'_1, ..., t'_L)$. That is why for some neighborhood $\theta_{\overline{y}, \overline{z}}$ of point $(\overline{y}, \overline{z})$ the set $P_{j,i}^{-1}(\theta_{\overline{y}, \overline{z}})$ will be translated in $(P'_i)^{-1}(\theta_{\overline{t'}_q})$, where $\overline{t'} \in \theta_{\overline{t'}_q}$ and $\theta_{\overline{t'}_q}$ is a chart from fixed atlas on B'_i . In charts of aforesaid bundles, F_f appears as follows: $(\overline{y}, \overline{z}, \overline{v}) \mapsto (\overline{t'}, w_1, w_2) = (\overline{t'}, \overline{w}), u(x) = \exp_{U_{\overline{y}}(x)}\left(\sum_{1}^2 (z_k(x) + v_k(x)) \cdot \overline{g}_k(U_{\overline{y}}(x))\right), \quad \overline{t'} = (f(u(x'_1)), ..., f(u(x'_L))); \quad \overline{h'}(x) = \exp_{U_{\overline{y}'}(x)} f(u(x)) \quad (\overline{h'}(x) \in T_{U_{\overline{t'}}(x)}S^2), \quad w_k(x) = \left(\overline{g'_k}(U_{\overline{t'}}(x)), \quad \overline{h'}(x)\right), \quad k = 1, 2$, is scalar multiple of vectors, tangent to S^2 at point $U_{\overline{t'}}(x)$.

scalar multiple of vectors, tangent to S^2 at point $U_{i'}(x)$. The above formulas show that F_f is defined by operators of composition with smooth functions in charts of bundles of X_j and X'_i . According to [5], such an operator defines a QL-mapping between local charts of affine bundles. As f is a diffeomorphism and all used functions have different from zero gradients at all points, then according to [5], F_f will be FQL and hence, FSQL-mapping (see [1]) in charts of affine bundles. Therefore F_f will be FQL-mapping between linear charts of FQL-manifolds X and X', hence FSQL-mapping between X and X'.

4. Appendixes³

A) FQL-mapping. Let X, Y be real Banach spaces, Ω be a bound domain in X, X_n be a *n*-dimensional space. Let $X_{\alpha}^n = \pi^{-1}(\alpha), \alpha \in X_n$.

Definition 6 A continuous mapping $f^n : \Omega \to Y$ is called a Fredholm Linear (FL), if

²For all $\gamma \in B$, the set $p^{-1}(\gamma)$ is called a layer of (affine) bundle (Y, p, B) on point $\gamma \in B$.

 $^{^{3}\}mathrm{Appendix}$ (A) is taken from article [5] and appendix (B) from article [1].

²¹³

a) some linear mapping $\pi_n : X \to X_n$ is fixed;

b) on each plane $X_{\alpha}^{n} = \pi^{-1}(\alpha)$, $\alpha \in X_{n}$, passing through Ω , $f_{\alpha}^{n} \equiv f^{n}|_{X_{\alpha}^{n}}$ is an affine invertible mapping from X_{α}^{n} on to its image $Y_{\alpha}^{n} = f(X_{\alpha}^{n})$, that is, closed in Y and has co-dimension n;

 $c)f_{\alpha}^{n}$ depends continuously on α .

Definition 7 A continuous mapping $f : X \to Y$ is said to be Fredholm Quasi-Linear (FQL), if there exists a sequence FL-mgappings $\{f^{n_k}\}$, uniformly approximating f on each bounded domain $\Omega \subset X$, such that

$$||f_{\alpha}^{n_k}|| < C(\Omega), ||(f_{\alpha}^{n_k})^{-1}|| < C(\Omega),$$

with $k > k_0(\Omega)$, if $\alpha \in \pi_{n_k}(\Omega)$ and $C(\Omega)$ does not depend onk, and if $k > k_0(\Omega)$.

B) FSQL- mapping. Let H_1 and H_2 be real Hilbert spaces, $\|\|\|_1$, $\|\|\|_2$ be the corresponding norms in them. Let $\{X_{\alpha}^n\}$, $\alpha \in M_n$, be a family of pairs of disjoint closed planes in H_1 of codimension n, continuously depending on α , M_n is manifold of dimension n. Suppose that $\{Y_{\beta}^n\}$, $\beta \in N_n$, is an analogous family in H_2 . Let $\tilde{M}_n = \bigcup_{\alpha} X_{\alpha}^n$, $\tilde{N}_n = \bigcup_{\beta} X_{\beta}^n$. Let us determine the projections $\pi_n : \tilde{M}_n \to M_n$, $p_n : \tilde{N}_n \to N_n$ in the following way $\pi_n : x \mapsto \alpha$, if $x \in X_{\alpha}^n$; $p_n : y \mapsto \beta$, if $y \in Y_{\beta}^n$. It is obvious that the triples $\xi = (\pi_n, \tilde{M}_n, M_n)$ and $\eta = (p_n, \tilde{N}_n, N_n)$ are affine bundles.

Definition 8 A continuous mapping $f : \tilde{M}_n \to \tilde{N}_n$ is called Fredholm Special Linear (FSL), if $\forall \alpha \in M_n$, $f_{\alpha}^n \equiv f|_{X_{\alpha}^n}$ is an affine invertible mapping from X_{α}^n on some Y_{β}^n , $f_{\alpha}^n \in Aff(X_{\alpha}^n, Y_{\beta}^n)$ and f_{α}^n depends continuously on α .

The restriction of FSL-mapping on any domain Ω , $\overline{\Omega} \subset M_n$, is also called FSL-mapping.

It is obvious that FSL-mapping induces bimorphism between affine bundles ξ and η . Let Ω , $\overline{\Omega} \subset \tilde{M}_n$, be a bounded domain in H_1 , $f: \Omega \to H_2$ be an FSL-mapping and

 $\begin{aligned} |||f|||_{\Omega} &= \sup_{\substack{x_{\alpha}^{n} \cap \Omega \neq \phi}} \inf\{C \mid \|f_{\alpha}^{n}(x)\|_{2} \leq C(1+\|x\|_{1}), \|x\|_{1} \leq C(1+\|f_{\alpha}^{n}(x)\|_{2}), x \in X_{\alpha}^{n} \}. \end{aligned}$

Definition 9 A continuous mapping $f: \Omega \to H_2$ is called Fredholm Special Quasi-Linear (FSQL), if there exists a sequence of FSL-mappings $f^{n_i}: \Omega \to H_2$, i = 1, 2, ..., uniformly approximating f on Ω and

$$|||f|||_{\Omega} \le C(\Omega), \quad \forall i > i(\Omega);$$

moreover, $C(\Omega)$ does not depend on i for $i > i(\Omega)$.

Definition 10 A continuous mapping $f : H_1 \to H_2$ is called FSQL-mapping, if in any bounded domain $\Omega \subset H_1$ it is the FSQL-mapping.

References

- A.H. Abbasov, A special quasi-linear mapping and its degree, Turkish Journal of Mathematics, 24, 1(2000), 1–14
- [2] J. Eells, Fredholm structures, Proc. Symp. Pure Math. 18, Amer. Math. Soc., Pr., R. I. (1970), 62–85
- M.A. Ephendiev, The degree of FQL-mapping in quasi-linear domain and Hilbert nonlinear problem, DAN SSSR, 270,1 (1983), 58–61 (in Russian)
- [4] S. Lang, Introduction to differentiable Manifold, Columbia University, New York, 1962
- [5] A.I. Shnirelman, The degree of quasi-linear mapping and Hilbert nonlinear problem, Mat. Sb., (1972), 89, (131), 3, 366–389 (in Russian)
- [6] M.M. Wynberg, Functional analysis, M., 1979 (in Russian)

Akif ABBASOV

Received 25.12.2002

Faculty of Economics and Management University of Kocaeli Atatürk Bulvarı, 41300, İzmit-TURKEY