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The Trace Formula for a Differential Operator of
Fourth Order With Bounded Operator Coefficients
and Two Terms
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Abstract
We investigate the spectrum of a differential operator of fourth order with
bounded operator coefficients and find a formula for the trace of this operator.
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1. Introduction

Let H be a separable Hilbert space of infinite dimension. Consider the operators Lg

and L in the space Hy = Lo(H;[0.7]) which are formed by differential expressions

(y) =y"(x), Iy) =y"(z)+Qzx)y(z)

with the same boundary conditions y'(0) = ¢/(7) = 0 and y"/(0) = y"'(7) = 0, re-
spectively. Suppose that the operator function Q(x) in the expression [(y) satisfies the

following conditions:

1. For every x € [0,7], Q(x) : H — H is a self adjoint kernel operator. Moreover,
Q(x) has weak derivative of second order in this interval and for = € [0, 7], Q) () :

H — H are self-adjoint operators (i = 1, 2).

1
||Q||H1 < 5

3. There is an orthonormal basis {¢,}72; of the space H such that

n=1

ST IQ@)enlln, < oo.
n=1
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4. The functions ||Q)(z)||,,(m) are bounded and measurable functions in [0, 7], (i =
0,1,2).

Here o1(H) is the space of kernel operators from H to H as in [16]. Moreover, we
denote the norms by || - || and || - ||z, and the inner products by (-,-) and (-, ) g, in H

and Hy, respectively and also denote the sum of eigenvalues of a kernel operator A by
trA = traceA.

The spectrum of operator Lo is the set {m*}2°_,. Every point of this set is an eigen-
value of Lowhich has infinite multiplicity. The orthonormal eigenfunctions corresponding

4

to eigenvalue m* are in the form

0 (x) =dmcosmz -, (n=1,2,..) (1)

where
1 =0
NG m
"= V2 | .

In this work , we will firstly investigate the spectrum of operator L and find a formula
for the sum of the series

o

[Z (Amn — m*) — %/W trQ(x)dx] , (3)

0

where {Amn }?:1 are the eigenvalues of operator L which belong to the interval
[m* = 1@, m* +11Qm,] (m=0,1,2,...)

Trace formulas for the scalar differential operators have been found by Gelfand and
Levitan [1], Dikiy [2], Halberg and Kramer [3], Levitan [4], Lidskiy and Sadovnigiy [5],
Guseynov and Levitan [6] and many others. A list of the works on this subject is presented
by Levitan and Sargsyan [7] and Fulton and Pruess [8]. On the other hand, trace formulas
for differential operators with operator coefficients has been investigated by Adigézelov
[9], Chalilova [10], Maksudov, Bayramoglu and Adigézelov [11], Adigiizelov, Avci and Giil
[12], Albayrak, Baykal and Giil [13] and Maksudov, Bairamoglu and Adigezalov [17]. A
trace formula for higher order, including fourth order, differential operators with operator
coefficients has been given in [17]. Tt is this latter problem we study in the present work,

but with differential operators and boundary conditions different from those in [17].

232



GUL

2. The Spectrum of Operator L
Let R?\ and R) be resolvents of the operators Ly and L, respectively.

Lemma 1 If the operator function Q(x) satisfies condition 3, and A ¢ {m*}°_, = o(Lo),
then QR?\ : Hy — Hi is a kernel operator, i.e. QR?\ € o1(Hy).

Proof. System (1) of the eigenfunctions of Ly is an orthonormal basis of space Hj.
As known in [16], to show that QR?\ is a kernel operator, it is enough to see that the
series

o

LS
0n=1

m=

is convergent. From (1) and (2), we find

oo o0

Do mt = AT QU

m=0n=1 m=0n=1
= St N @@ cosma -
m=0n=1 0

Q(z)dy, cosma - @n)]%

- St

m=0n=1

. [/ dfn cos? mx||Q(x)<pn||2dx]
0

S St A [ I ||Q<x>son||2dx]2

m=0n=1

= Y Imt = AT Y 1@l - (4)
m=0 n=1

IN

In view of (4) and condition 3 we conclude that

oo o0

SN QRS < oo

m=0n=1
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This proves the lemma o

Theorem 2 If Q(z) satisfies conditions 2, and 3, then the spectrum of operator L is
a subset of the union of pairwise disjoint intervals Fr, = [m* —||Q||m,, m* + ||Q|| ]

(m=0,1,2,...); and the following conditions are satisfied:

1. Each point of spectrum of L which is different from m*

eigenvalue which has finite multiplicity.

i F,, is an isolated

2. m* can be an eigenvalue of L which has finite or infinite multiplicity.
3. nlgr()lo Amn = m* such that {\mn }2, are the eigenvalues of L in Fy,.
Proof. If
X e R\Upe_o [m* —[|Ql|r,, m* +1|Ql| ],
then we get
IAN—m? > |Q|lg, (m=0,1,2,..). (5)

For the self adjoint operator R = (Lo — A\)~!, since || RY||n, = max A —m*| 71, then

from (5) we can write
1S, < 117
Because of this, we have
QR a, < QU - ||BYm, < 1.
By considering this inequality, we conclude that
A(B) = R} — BQR},

is a contraction operator from L(Hy, Hy) to L(Hy, Hy), where B € L(Hy, Hy). In this
case, it is known that there exists an unique solution B = By which belongs to the space
L(Hy, Hy) of the equation Rg\ — BQRY = B. Moreover, since Rg\ — R\QR) = R, we
have Ry = By € L(Hy, Hy) and so A € p(L) (resolvent set of L). Hence, the spectrum of

L is a subset of the union of the pairwise disjoint intervals [m* — ||Q||m,, m* + ||Q|| 1] ,
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(m=0,1,2,...) ,ie. o(L) C UX_g[m* —||Q||z,, m* + ||Q||m,]- From Lemma 1 and the
equation R) = Rg\ — RAQRQ\, for every X\ € p(Lo) N p(L) we see that Ry — Rg\ is a kernel
operator from Hito H;. This means that, as known from [14], the essential spectra of
L and Ly coincide. According to this, and since Ly has only the essential spectrum, the
essential spectrum of L will be the set {m*}>°_, and this shows that conditions 1, 2, 3,

in the hypothesis of theorem 2 are satisfied. O

3. A Formula for the Trace of L

In this section, we obtain a formula for the sum of series (3). The sum of this series

is called the regularized trace of operator L.

Lemma 3 If Q(x) satisfies conditions 2, and 3,, then operator function Ry — Rg\ 18

analytic in the region p(L) with respect to the norm in o1(Hy).
Proof. Since R) — Rg\ = —RAQRQ\, to prove this lemma we need to show that the

operator function R)yQRY is analytic in the region p(L). First, from Theorem 2, it follows
that p(L) C p(Lo). Moreover, by using the relation Ry — R, = (A — u)R\R,, we have

R>\+A>\QR9\+A)\ - RAQRg

DA\, AN) = — R3QRS — R\Q(RY)?

AN
1
= A_)\[(RA+A>\QR9\+A>\ — Rayan@RY) + (Ra+an @R}
—RAQRY)] — RXQR} — R\Q(RY)?
_ R RY RY 1 R R)\)QRS
= A A+ QR an — A)+A_)\( a+ax — Ra)QR}

—R3QRS — RA\Q(RY)?
= RararQRIR3 an + Rasan RAQRS — RRQRS — RAQ(RY)’
= [Ra+arQRSRY ax — RasanQ(RY)?] 4 [Ratan(RY)?
—RAQ(RY)?] + (Ray+arRAQRSY — RZQRY)
= RaiarQR3(RY1ax — RY) + (Rapax — RAQ(RY)?
+(Ratax — Ry)RAQRS. (6)
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From this, we obtain

DO AN o) < [[BA+2xQRY oy 1) [ R  ax — B3 4
HIRxraxn = Ballm [[|Q(RR) 1o, (111
HIRAQRS oy (111)]
< R anllm QR oy iy 1R 1 ax — BAllm,

+H|Rarar = Bl || QR oy ) [|| B 11,
+[| B[, - (7)
Since

Jm[Bapax = Ballay = lim ||R3 a5 = B3|, =0,

and from (6) and (7), we find

. R)\+A)\QR9\+A)\ - RAQRQ\
lim ||
AX— o0 AN

— RRQRY — RAQ(RR)?|lo (1) = 0.

This shows that the operator function Ry — R} = —R,QRY, is analytic in the region p(L)

with respect to the norm in o (Hy), as desired. O

Let {tmn(2)}55 ,=1 be orthonormal eigenfunctions corresponding to eigenvalues

{Amn toen=1 of L and let

1
= A —p4| = 5} ) Bgm = ("wS’m)legm; Brn = (, Ymn) By Ymns

and

o0 o0
Loy =" m' B, LY =3 N B, (r=-1,1).
n=1 n=1

The spectra of operators L and Ly only consist of eigenvalues and its limit points.

Hence, from [15], we know that

RO:ooooBg@n.R:oooo& .
A sz4_)\’ A ZZ)\mn_)\ ()

m=0n=1 m=0n=1
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Theorem 4 If Q(z) satisfies conditions 2 and 3, then the series

o

(Apn — p*) (p=0,1,...)
n=1
are absolutely convergent.

Proof.  Since {Ann}2; C [m* —|Q||m,,m* +||Q||x,], and from the assumption

QI 1, < %, for m < p, we have

1 1 1
A <t 4 |Qlay <m'+ S <(mA D) -5 <pl-5 (n=1,2,.)
Thus we find
4 1 4 1
Amn < D —5 or |)\mn—p|>§ (m<p;n=12..) (9)
For p < m,
4, 1 4 1 4 1 4
and so we obtain
4, 1 4 1
Amn > P +5 or |)\mn—p|>§ (m>p;n=12..). (10)

By using (8), (9) and (10), we have

o MRy — RY)dA = 2m'/r A[ZZ)\

Ty

m=0n=1
mZ::o r; 210 Jp Amn — A
0 A d]
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= A 1 A
———d\— By, —
Z PP o A —pt P omi /F,, A= Apn aA

n=1 Ty

3

= Z (p4B;zOm - )‘;lmB;zm) = Léi,) — L;S,I) p=0,1,...
n=1
From this last relation and Lemma 3 we obtain
1
Loy — LY € o1 (Hi) (p=0,1,2,...). (11)

This time, let us show that Lé_l) - Lé;l) € o1(Hy). Again if we use (8), (9) and (10)
we find

) ) . o X 1 dA
271, ry g (R)\ R)\)d)\ Tnz=0n=1[ 2m /Fp )\()\mn h )\)

1 dA
_BY -~ -
P omi /F,, A(m?* — )\)]
B i / dA
& "9 AN —p?)
L
Promi Jr, M= Apn)

(p~*BY, —A;,}B,m)

3
—

I
Mz

3
Il
-

I
h
2

S
L
\o

—LiY (p=1,2,..). (12)

According to Lemma 3, the operator function A\™! (R — RY) is analytic in the region p(L)

with respect to the norm in o1 (Hy). Hence, from (12)
LSV -6V eoi(Hy) (p=1,2,..). a3)

Now, we can show that the series >°7  (Apn — p*) (p = 0,1, ...) are convergent. The

spectrum of the operator L( ") only consist of the points 0 and p?”. In this case, from [15],

we write

p ( (T)%m%n) (p: 1a2a---)-
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On the other hand,
)‘;n = (L;S;T)wpna w;zm)Hl

By using last two relation, we find

P O ISR Z (LS = L§) Yopns Ypn) i,

n

> S| = 26 s Yonn ),
m=0n=1

(14)

From (11) and (13) we have Lér) - Lé;) € o01(Hy) (r=1,-1; p=1,2,...). Hence, from

[16] we write

(o) (o)
S5 S — 1 st | < 1 20
m=0n=1 1(Hy)
From (14) and (15) we find
D e S LR
n
Z()\pn _p4))\pn>p4 < (p > 1)

n

and

IN

Z (p4 - )‘pn)Apn <p*

n

const - Z(p4 = Apn)Apn <p4p_4)‘;n1 p=>1)

= const- Z()\;nl —p_4))\;#>p74 <oo (p=1).

From (16) and (17) we have

Z|)\pn—p4| < 0o (p>1).

(15)

(17)
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Moreover, by considering Lélo) =0 and (11) we obtain

o0

Z |)\On| < 0.

n=1

This proves Theorem 4 O

For every A € p(L), since Ry — RS € 01(H;) and from (8) and Theorem 4 we find

tr(Ry — RY) = —~ :
I'( A )\) Orgl()\mn_)\ m4_)\>

m=

Let us multiply this equation by 2%” and integrate on the circle |\ = b, = pt + 2p3,
(p>1):

1 1
— )\ -tr R)\ — RO) = — )\
2 Jix|=b, ( ’ 2 Jix|=b,
p [ee]
1 1 >
> )
m=0n=1 (Amn —A mt = A

1
+—./ A
27 Jx=b,

. i i (Am:_A _ m41_ A) dx. (18)

m=p+1n=1

On the other hand, for m < p and p > 1 we have
4 4 4 4 3 _
m” = ||Q[m, < Amn <m0 + Q|| < p" + Q| <p™ +2p" =by

and so

Amn| <bp,  m<p;p>1;n=12,.. (19)

and for m > p we have
4 4 4 3 _
Amn = m” = ||Q[, = (p+1)" = [|Ql|m, > p" +2p" = by
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or

[Amn| > bp, m>p;, p>1; n=12, ..
Hence, from (18), (19) and (20) we obtain

1

2 Jix|=b,

By using the formula Ry = RS — R\QRY, we find

2
Ry— R =) (-1 R)(QR3)’ — RA(QRY)”.

Jj=1

If we put this expression in equation (21), we have

S = (1) »
>t A = =[x iR QRSN
m=0n=1 j=1 2mi [A|=bp
1
5 Ml:bp)\-tr[RA(QRg)?’]d)\.
Now, let
(_1)j+1

Mp; = 211

[ aulrgQmylar (=1.2)
IAI=b,

14 ot 1
R . . = 9
X-tr(Ry — Ry)dA Z Z[Qﬂ-i /I/\|=bp A —mi dX

(20)

(22)

(23)
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and

My= = [ A ulRA(QR)AA (24)
270 J|x|=b,

Then we can write equation (22) in the form
p e e]
Z Z()‘mn —m') = Mpy + Mpz + My (25)
m=0n=1

In a similar way to the proof of Lemma 3, we can prove that the operator function QR?\
is analytic with respect to the norm in o1(H;) at every point A # m*(m = 0,1,2,...);

and so we can show that the formulas

ey L[(OR%Y P
My =2 /m=bpt QRSN (j=1,2) (26)

are satisfied.

Lemma 5 If Q(x) satisfies condition 3 and the function ||Q(x)||s,(m,) is integrable in

the interval [0, 7], then the formula

2p+1/ trQ(x liicﬁ /F(Q(x) ) cos 2madx
- 2 — m o Pny Pn

holds.
Proof. Since the system (1) of eigenfunctions ¢9,, (m = 0,1,2,..;n = 1,2,...)
corresponding to eigenvalue m* of operator Ly is an orthonormal basis of space Hi,
and by using the formula (26), we have

1

M, = —— tr(QRY)dA
pl o b, r(QRY)

2mi /AI - Z Z QRS2 V8 Vg, d. @)

P m=0n=1
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Taking advantage of (1) we can estimate the expression [(QR3¢2,,. %% )i, |:

|(QR mn’ mn)Hll

I
:ﬁ‘
—
O
ny]
SIS
—
=
8

. / (Q(x)dy, cosmz - ¢, di, COSMI - @n)dx‘
0

< |m* = AIT? / (Q(@)pn, on)dx
0
< |m4—)\|_1/0 1Q(z)pn||dx
< At A ([ Q)

= Vam* = N 7YQ®)enl -

Since Q(z) satisfies condition (3), and from this last estimation we conclude that the

series

Z mn’ mn)H1(m:0,1,2,--.); Zam()\)
m=0

n=1

are absolutely and uniformly convergent with respect to A on the circle |\| = b,. And so,
from (27) we find

1

M,
pl 27m

Z Z QR wmnawmn)fhd)‘

(A= =bp ;=0 n=1

2 = 1 d\
Z Z me”’wmn H 27m/| b, A—mt’

m=0n=1 (A=
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By using (1), (19), (20) and this last relation we obtain

(ngmn ) wgmn)Hl

NE

M, =

3
Il
-

/ (Q(x)dy, cosm - o, dpy, cOSME - Py dx
0

0n=1

I
M= it 10
NERINE

d?n/ (Q(x)n, n) cos® madzx
0

m=0n=1
1 p o] T
) Z Z d, / T)@n, 0n)(1 + cos 2ma)dx. (28)
m=0n=1 0

Moreover, since

q
Z T)Pn;s Pn)

(o)
Z 2)n o) < 11Q@lonary (4= 1,2,..2),
and by assumption since

/0 Q@) loncary < o0,

and also by applying the Lebesgue theorem, we find

Z / Deninds = [ IS (@ )l = | re@ar @)

n=1

From (2), (28) and (29) we obtain

2 1 ™ ™
M, = p2jr_ /O trQ(z)de + = Z Z dz, / )P, Pn) €OS 2made.
m 0n=1
This proves lemma. g
Now, we want to show that
lim Mps = 0. (30)
p—00
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From (26), we find

_ 1 0
M = g alQRRPIN

= 4L7TZ ZZ QRO mn’ mn)H1]d)‘

M=bp =0 n=1

Moreover, we have

0
QRYYS,, = L

(@R Y = (m* = N)T'QRIQU,

(m4 - IQRO {ZZ menaqu Hﬂprq}

{ZZr - men,qu>ngqu}.

r=0 q=1

If we put this expression in (31), we obtain

1 o o menawr )H1(Qwr awmn)
o=k [ [S ST (it )] 1

m=0n=1r=0qg=1

On the other hand

/ dA =0; mr<p
IN=b, (A =m*)(A—714) T

In fact, if m = r then

1 A

— — =0.
27 [A|=b, ()\ - m4)

If m # r then there exists a small number € > 0 such that

(31)

(32)

(33)
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i DL i\
270 J)z|=b, A—mHA—7r%) 27 |A—md|=e A=m*) (A —r?)
iy i\
27 Jir—pijme (A —mA)(A —14)
1 1
T A4 +7°4—m4 =0.

So, for m,r > p since

d\
/|A|=bp (A =m*) (A —r) =0

and from (32) and (33), we find

|-
M@
NE
NE
NE

(ngfma %O«q)Hl (ngqa wS’m)Hl

NE
NE
NE
)
=
5
=
=
)
=
=
S
=

1 1 1 1
o [()\—m4) _()\—7“4) dX

[o oBENe O lNe o)

TSN St - Qb v |

m=0n=1r=p+1 g=1

And from here we obtain
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y4 o0 o0
(Mpa| = D> 3 > > = m®) T QU W) P

IA
N
7

ﬁ%

<

L
hE
hE
3
=

=

I

I

r=p+1 q=1 m=0n=1
0o 0o
= > =) Y QU I, (34)
r=p+1 q=1

Since Q(x) satisfies condition (3), and by taking advantage of (1) and (34), we can give

an estimation for the sum Y27, [|QY, ||, as

SlQutll, = > [ @, cosre s
q=1 q=1"0

IN

o0 m 2

; / 1Q(@) gl 2

= D _Q@)edlH, < (35)
q=1

where ¢ is a positive constant. From (34) and (35) we find

o

|Mpo| =c- Y (r*=p*) L.
r=p+1

Here we can show that

s 5

S (- pt)t<p (36)

r=p+1
Hence, we obtain
|Mpz| < ¢ -p_%
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and so
lim Mpg =0.
p—oo

This time, let us show that
plggo M, = 0.

To do this, we will first estimate ||QRS||5,(z,) on the circle |A] = by. As known from [16],

||QR)\||U1(H1) < Z Z ||QR wmnllHl

m=0n=1

From (4) and since Q(x) satisfies condition 3, we find

(o)
QR o rry) < ¢ ) Im* = A"

m=0

Moreover,

St -AT = Y it -A Y - A
m=0 m=0

m=p+1

IN

DA =mH)T Y (mt = AT
m=0

m=p+1

14 o3}
= > 0+ -m) T+ D (mt —pt—2p%)!
m=0

m=p+1

< Zp_lJr Z mt —pt —2p®)7!

m=p+1

p+1 1 _
= + Z (m* — p* +§(m4—p4)—2p3] !
m= p+1

(oo}
1 4 4 1 4 4 31—1
< 2+ ) {5m" =) +5lp+1)" = pT - 27}
m=p+1

<2+Z:m4

m=p+1
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From (36) we have

o

Z Im* — \|7! < 4,

m=0

and by using this together with (37) we find

||QR§\||01(H1) <e s A =0 =p* + 203, ¢ > 0. (38)

Now, let us estimate ||R?||z, on the circle |A| = b,. For m < p we have
A 1 p

Im* — Al > [A| = m* = p* +2p® —m* > 2p3 > p?,

and for m > p + 1 we have
|m4_)\| Zm4—|)\|=m4—p4—2p32(p+1)4—p4—2p3>2p3>p3-
On the other hand, since
1831, = max{|m® — Al},
we obtain
1B |rr, <p~°. (39)

From Theorem 2 we know that {Amn}52, C [m* —||Q||m,, m* + 1|Q||m,], (m =

0,1,2,...). Considering this and the assumption ||Q||z, < 1, we write

2
4 1
[Amn — m*| < 5 (m=0,1,2,..;n=1,2,3,...).
In a similar way to the proof of (39), by using this inequality we can prove that

[| Rl <ecs-p2ies>0 (40)
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on the circle |A| = b, for the big value of p. From (24), (38), (39) and (40), we find

1
M| = — / A- [ Ra(QRS)PJdA

27 | Jx=b,

< / AL [t Ra(QRS)?| - [
[A|=bp

< b [ RAQR,, gy N

|AI=bp
<

& /m—b 1RAl s, QR o,y - 14

< et [ QI QR N
< aabpp”?||QPpCer27by < cap”

and so we obtain

lim M, = 0. (41)

p—0o0

Theorem 6 If Q(x) satisfies conditions 1—4, then for the reqularized trace of the operator
L, the formula

Z [Z (Amn —m*) — %/W trQ(z)dx] = i[trQ(O) + tr@Q(m)] —

1 ™
“3 trQ(z)dx

is satisfied.

Proof. From relations (25) and (41) and Lemma 5 we write

lim Zp: i (Amn —m*) — 2p+1 /WtrQ(x)dx =
pmee m=0n=1 " 2m 0
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—_ 2 i
) pli,”;o Z Z iy / Z)Pn, Pn) cOS 2madz

m=0n=1

or
p o0 p -
lim lz Z ()\mn —m4) - Z —/ trQ(x)dxl -
p—00 m=0n=1 o 0
= %;gd% /OW(Q( )‘pn,@n) cos 2mxdx — _/ tI‘Q )
or

I= % Z den /OF(Q(x)gon,gon)cos 2madz

in the right side of last equality. Since Q(x) satisfies the conditions (1)-(4), we have

>y

m=0n=1

s
/ Z)Pn, Pn) cos 2mrdr| < 0o
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and so we write

Mz 10¢

Considering d,, as in (2), the sums with respect to m in this last relation are the values at

the points 0 and 7 respectively of Fourier series with respect to the functions {cosmz}5°_,

in the interval [0, 7] of the function (Q(x)¢n, @, ) which has the derivative of second order.

For this reason, we write

1 2 1QO)en p0) + (@(m)en )]

i[u@(o) +trQ(m).

And hence we obtain

SIS (e =ity — 2

m=0 n=1

/F trQ(z)dx)

0

This completes the proof of Theorem 6.
If Q(x) satisfies the condition

/W trQ(z)dz =0
0

252
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™
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in addition to conditions (1)—(4), then the formula in the above takes the form

(1]

2l

(10]

(11]

(12]

o

S5 Qi —mt) = i[trQ(O) + 0 Q()].
m=0n=1
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