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Radical Submodules and Uniform Dimension of
Modules

P. F. Smith

Abstract

We investigate the relations between a radical submodule N of a module M
being a finite intersection of prime submodules of M and the factor module M /N
having finite uniform dimension. It is proved that if N is a radical submodule of
a module M over a ring R such that M/N has finite uniform dimension, then N
is a finite intersection of prime submodules. The converse is false in general but
is true if the ring R is fully left bounded left Goldie and the module M is finitely
generated. It is further proved that, in general, if a submodule N of a module M is a
finite intersection of prime submodules, then the module M/N can have an infinite

number of minimal prime submodules.

1. Introduction

Throughout this note all rings are associative with identity and all modules are unital
left modules. Let R be a ring and let M be an R-module. A submodule K of M is called
prime if K # M and whenever » € R and L is a submodule of M such that rL C K
then rM C K or L C K. In this case, the ideal P = {r € R : rM C K} is a prime
ideal of R and we call K a P-prime submodule of M. For more information about prime
submodules of M see, for example, [3]-[8] and [10]. A submodule N of a module M is
called a radical submodule if N is an intersection of prime submodules of M. Note that
radical submodules are proper submodules of M.

Given a submodule N of a module M, a decomposition N = Ky N---N K,, in terms

of submodules K;(1 < i < n) of M, where n is a positive integer, is called irredundant
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fNAKiNn---NK,_1NKiy1N---NK, foralll <i < n. In[11], a submodule
N of a module M is said to have a prime decomposition if N is the intersection of a
finite collection of prime submodules of M. Let N be a submodule of an R—module M
such that N has a prime decomposition. Then N will be said to have a normal prime
decomposition if there exists a positive integer n, distinct prime ideals P;(1 < i < n) of
R and P;-prime submodules K; (1 < ¢ < n) of M such that N = K; N---N K, is an

irredundant decomposition.

Lemma 1.1 (See [11, Corollary 2, Theorem 8 and Lemma 14].) Let R be any ring
and let N be a submodule of an R-module M such that N has a prime decomposition.
Then N has a normal prime decomposition. Moreover, if N = Ky N ---N K, and
N = LiN---N Lg are normal prime decompositions of N where K; is P;-prime for
some prime ideal P;(1 <i<mn) and L; is Q;-prime for some prime ideal Q;(1 < j <k),
thenn=Fk and {P;:1<i<n}={Q,;:1<j<k}.

In Lemma 1.1, the prime ideals P; (1 < i < n) are called the associated prime ideals
of N. Given submodules G, H of an R-module M we set (G : H) ={r € R:rH C G}.
Note that (G : H) is an ideal of R. Moreover, (G : H) = R if and only if H C G.

Lemma 1.2 (See [11, Theorem 6].) Let R be any ring and let N be a submodule of an
R-module M such that N has a prime decomposition. Then a prime ideal P of R is an
associated prime ideal of N if and only if P = (N : L) for some submodule L of M.

A module M has finite uniform dimension if M does not contain a direct sum of

an infinite number of non-zero submodules. Also, a non-zero module M is uniform if
X NY # 0 for all non-zero submodules X and Y of M.

Lemma 1.3 (See [9, 2.2.7, 2.2.8, 2.2.9].) A non-zero R-module M has finite uniform
dimension if and only if there exist a positive integer n and independent uniform sub-
modules U; (1 < i < n) of M such that Uy @ --- @ U, is an essential submodule of
M. Moreover, if V;(1 < i < k) are independent uniform submodules of M such that
Vi®---dVy is essential in M then n = k.

In Lemma 1.3, the positive integer n is called the uniform (or Goldie) dimension of M
and is denoted by u(M). Let N be a submodule of a module M. By Zorn’s Lemma the

collection of submodules L of M such that L N N = 0 has a maximal member and any
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such is called a complement of N (in M). A submodule K of M is called a complement
(in M) if there exists a submodule N of M such that K is a complement of N.

Lemma 1.4 (See [2, 1.10 and 5.10].) Let L,N be submodules of a module M with
L NN =0. Then there exists a complement K of N such that L C K. Moreover, if M
has finite uniform dimension then u(M) = uw(N) + u(K) = u(M/K) + u(K).

We shall require the following result later. Its proof is included for completeness.

Lemma 1.5 Given a positive integer n, a module M has uniform dimension n if and
only if there exist submodules L; (1 <4 < n) such that

(a) M/L; is a uniform module for all 1 < i <mn,
(b)) 0=LiN---N Ly, and

(c)O#Llﬁ---Li_lﬂLHlﬂ---ﬂLnforalllSign.

Note that in Lemma 1.5, (b) and (c¢) can be restated thus: 0 = Ly N ---N L,, is an

irredundant decomposition.

Proof.  Suppose first that M has uniform dimension n. By Lemma 1.3, there exist
independent uniform submodules U;(1 < ¢ < n) of M such that Uy @ --- @ U, is an
essential submodule of M. For each 1 < i < n, let K; be a complement of U; in M
such that Uy @ -+ - @ U;—1 @ U;11 @ --- @& U, C K; (Lemma 1.4). By Lemma 1.4, M/K;
is a uniform module for each 1 < i < n. Suppose that K1 N---N K, # 0. Then
(Kin---NK,)NU1&---@®U,) #0. Let 0 £z =Uy +---4+ U, wherex € K1N---NK,
and u; € U; (1 < i <n). Then uy = x—ug — -+ —u, € K1NU; = 0, so that
u; = 0. Similarly, u; = 0(2 < ¢ < n), and hence x = 0, a contradiction. Therefore
0=KiNn---NK,. Moreover, foreach 1 <i<n,0#U; CK;N---NK;_1NK;11N---K,.

Conversely, suppose that M contains submodules L; (1 <4 < n) satisfying (a), (b) and
(c). Define a mapping ¢ : M — (M/L1)®---®(M/Ly,) by ¢(m) = (m+Ly, - ,m+Ly)
for all m € M. By (b), ¢ is a monomorphism. Let 1 < ¢ < n. By (c) there exists
0#m; € LinNn---NLi_yNLiy;N---NL, and hence m; ¢ L; by (b). It follows
that 0 #£ (0,---,0,m; + L;,0,---,0) = ¢(m;) € ¢(M). Hence g(M)N (0B --- 0P
(M/L;) 0@ ---®0) # 0 for all 1 < i < n. Hence ¢(M) is an essential submodule of
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(M/L1)®---® (M/L,) and hence u(M) = u(¢(M)) =n by Lemma 1.3 and (a). O

Before proceeding we make two comments about Lemma 1.5. Firstly, note that a
non-zero module M has finite uniform dimension if and only if the zero submodule is the
intersection of a finite collection of irreducible submodules. Recall that a submodule N
of M is called irreducible if the factor module M/N is uniform. The second comment is
that condition (a) in Lemma 1.5 is crucial because if K and L are non-zero submodules
of a module M such that K N L = 0 and M/K and M/L both have finite uniform
dimension then u(M) < w(M/K) + uw(M/L) but it is not necessarily the case that
u(M) =u(M/K) +u(M/L). A simple example can be given to illustrate this fact. Let
Z denote the ring of rational integers and Q the field of rational numbers. Let M denote
the Z-module Q® Q so that u(M) = 2. Let K = {(¢,q9) : ¢ € Q}. Then M = K& (Q®0)
so that u(M/K) = 1. Let n be any positive integer and let 7 be any collection of n

(o)
distinct primes in Z. Let X denote the submodule Z ZZ(l/pk) of Q. Note that X
pgm k=1
consists of all s/t in Q such that s,t € Z,t # 0 and ¢ is not divisible by any prime p in
7. Note that Q/X = (Q/Z)/(X/Z) so that u(Q/X) = n. Let L denote the submodule
0@ X of M. Then K and L, are non-zero submodules of M such that K "L = 0,
u(M/K) =1,u(M/L) =n+1 and u(M) = 2, so that uw(M) # u(M/K) + u(M/L).

We complete this section with two results about prime submodules.

Lemma 1.6 (See [8, Proposition 1.4(ii)].) Let N be a P-prime submodule of an R-
module M , for some prime ideal P of R, and let K be a proper submodule of M containing
N such that K/N is a complement in M/N. Then K is a P-prime submodule of M.

In what follows we shall be particularly interested in irreducible prime submodules of
a module M, i.e. prime submodules K of M such that M/K is a uniform module. For
example, in the Z-module Q, the zero submodule of Q is an irreducible prime submodule.

Lemma 1.6 has the following consequence.

Corollary 1.7 Let N be a P-prime submodule of an R-module M, for some prime ideal
P of R, and let L be a non-zero submodule of M such that NN L = 0. Let K be a
complement of L in M such that N C K. Then K is a P-prime submodule of M.

Moreover, if L is a uniform module then K is an irreducible P-prime submodule of M.
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Proof. Notethat KNL =0 and L # 0 together imply K # M. It is easy to check that
K/N is a complement of (L+ N)/N in M/N. By Lemma 1.6, K is a P-prime submodule
of M. Now suppose that L is uniform. By Lemma 1.4, u(M/K) = u(L) =1, i.e. K is

an irreducible prime submodule of M. O

2. Modules with finite uniform dimension

In this section we shall prove that any radical submodule N of a module M such that
the factor module M/N has finite uniform dimension has a prime decomposition and we
shall investigate the associated prime ideals of V.

Let U be a uniform R-module. Let P = {r € R : rV = 0 for some non-zero submodule
V of U}. Then P is an ideal of R. Following [1] we shall call P the assassinator of U. Tt
can easily be checked that if PW = 0 for some non-zero submodule W of U then P is a
prime ideal of R.

Lemma 2.1 Let U be a uniform submodule of an R-module M and let P be the
assassinator of U. Suppose that PM NU = 0. Then there exists an irreducible P-prime
submodule K of M such that K NU = 0.

Proof. Note that PU = 0 so that P is a prime ideal of R. Let K be a complement
of U in M such that PM C K (Lemma 1.4). Let » € R and let L be a submodule of
M containing K such that rL C K. Then r(LNU) C KNU = 0. Either LNU =0 in
which case L = K or LN U # 0 in which case r € P because P is the assassinator of
U. Tt follows that K is a P-prime submodule of M. By Lemma 1.4, M/K is a uniform

module and hence K is an irreducible P-prime submodule of M. O

Lemma 2.2 Let M be an R-module such that the zero submodule of M is a radical
submodule. Let U be a uniform submodule of M with assassinator P. Then PMNU = 0.

Proof. Let A be a finitely generated left ideal of R such that A C P. There exists a
non-zero submodule V' of U such that AV = 0. There exist prime submodules K (A € A)
of M such that 0 = NyxeaKx. Let A € A. If V ¢ K then AV =0 C K gives AM C K.
Hence AM NV C K. Thus AMNV C NyeaKx = 0. Next (AMNU)NV = AMNV =0,
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so that AM NU = 0 because U is uniform. Clearly it follows that PM NU = 0. O

Theorem 2.3 Let R be any ring and let M be a non-zero R-module such that the zero

submodule of M is a radical submodule. Then the following statements are equivalent.

(i) The zero submodule of M is a finite intersection of irreducible prime submodules
of M.

(i1) M has finite uniform dimension.

Moreover, in this case if 0 = K1 N --- N K, is any irredundant decomposition, where K;
is an irreducible prime submodule of M for each 1 < i < n, then n = u(M).
Proof. (i) = (ii) and last part By Lemma 1.5.

(ii) = (i) Suppose that M has finite uniform dimension. Let U; be any uniform
submodule of M and let P; be the assassinator of U;. By Lemma 2.2, PM NU; =0
and by Lemma 2.1 there exists an irreducible P;-prime submodule K; of M such that
KyNU; =0. If u(M) =1 then K; = 0 and the result is proved.

Suppose that u(M) > 2. Let U; be any uniform submodule of M such that U;NUz = 0.
If K1 N (U & Usz) =0 then set Ko = M. Suppose that K7 N (U @ Us) # 0. Note that
K, N (U; @ Usz) embeds in Uy (because K1 NU; = 0) and hence K1 N (U & Us) is a
uniform submodule of M. Let P, be the assassinator of K7 N (U & Uz). As above, by
Lemmas 2.2 and 2.1 there exists an irreducible P>-prime submodule K5 of M such that
Kon{KyN (U & Usz)} =0 and hence (K1 N K2) N (U; @ Uz) = 0. If u(M) = 2 then
Uy & Us is essential in M and hence K; N Ko = 0 so that again the result is true because
Ky = M or Ks is an irreducible prime submodule.

Suppose that u(M) > 3. Let Us be any uniform submodule of M such that
(Uy ®Uz)NUs = 0. By the above argument there exists a submodule K3 of M such that
(KiNKyNKs3)N (U @ Uz @ Usz) = 0 and either K5 = M or K3 is an irreducible prime
submodule of M. Repeat this process to obtain a sequence U;(i > 1) of independent uni-
form submodules and a sequence K;(i > 1) of submodules such that K7 is an irreducible
prime submodule and for each i > 2 the submodule K; = M or K; is irreducible prime
satisfying

(Kin-—--nNnK)NUh@---aUs) =0
for each positive integer s. Let n = u(M) > 1. Then U; @ --- & U, is an essential
submodule of M and hence K1 N---N K, =0. O
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Corollary 2.4 Let N be a radical submodule of an R-module M. Then N is a finite
intersection of irreducible prime submodules of M if and only if M/N has finite uniform

dimension. In this case, N has a prime decomposition.

Proof. By Theorem 2.3. O

In certain circumstances, every radical submodule of a module M is an intersection of

irreducible prime submodules. In order to prove this we begin with the following lemma.

Lemma 2.5 Let P be a prime ideal of a ring R and let M be an R-module such that 0 is
a P-prime submodule of M and every non-zero submodule contains a uniform submodule
of M. Then the zero submodule is an intersection of irreducible P-prime submodules of
M.

Proof. By Zorn’s Lemma M contains a maximal independent collection of uniform
submodules Uy (A € A) and by hypothesis @xea Uy is an essential submodule of M. Let
€ A andlet L, = ©xx, Ux. Note that L, is a submodule of M such that L, NU, = 0.
By Lemma 1.4 there exists a complement K,, of U, in M such that L, C K,. Now
Lemma 1.6 gives that K, is P-prime. It is easy to check that (NxeaKx) N (BrealUx) =0
and hence Nycp Ky = 0 where K is a P-prime submodule of M for each A € A. O

We shall say that a (non-zero) R-module M has many uniforms if for every prime
submodule K of M and for each element m € M\ K, the submodule (Rm+K)/K contains

a uniform submodule.

Theorem 2.6 Let M be an R-module with many uniforms. Then, for any prime ideal P
of R, every P-prime submodule of M is an intersection of irreducible P-prime submodules
of M. Moreover, every radical submodule of M is an intersection of irreducible prime
submodules of M.

Proof. Let P be a prime ideal of R and let K be a P-prime submodule of M. Applying
Lemma 2.5 to the module M/K we see that 0 = NxeaK /K where K) is a submodule
containing K such that K,/K is an irreducible P-prime submodule of M/K for each
A € A. Clearly K = Nxea K where K, is an irreducible P-prime submodule of M for
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each A € A. The last part is clear. O

Note that if R is a left Noetherian ring then every non-zero left R-module has many
uniforms. More generally, if a ring R has left Krull dimension then every non-zero left
R-module has many uniforms by [9, 6.2.4 and 6.2.6]. A ring R is called left semi-artinian
if every non-zero cyclic left R-module contains a simple submodule. For example, right
perfect rings are left semi-artinian. Clearly if R is a left semi-artinian ring then every
non-zero left R-module has many uniforms. (For more information on left semi-artinian
rings see [2, pp26-28].) In the next section we shall show that if R is any commutative
ring, or more generally any ring satisfying a polynomial identity, then every non-zero
R-module has many uniforms.

Next we give a characterization of the associated prime ideals of a radical submodule

N in case M/N has finite uniform dimension (compare Lemma 1.2).

Theorem 2.7 Let N be a radical submodule of an R-module M such that M/N has finite
uniform dimension. Then P is an associated prime ideal of N if and only if P is the

assassinator of a uniform submodule of the module M/N.

Proof.  Suppose first that L is a submodule of M containing N such that L/N is a
uniform module. Let P be the assassinator of L/N. By Lemma 2.2, P = (N : L) and by
Lemma 1.2, P is an associated prime ideal of N.

Conversely, suppose that P is an associated prime ideal of N. Let N = K1 N---NK,
be a normal prime decomposition of N where K; is a P;-prime submodule of M for some
prime ideal P; for each 1 < i <n and n is a positive integer. Without loss of generality,
we can suppose that P = P; (Lemma 1.1). If n = 1 then N = K; and so N is a P-prime
submodule of M. Let H be a submodule of M properly containing N such that H/N is
a uniform module. Clearly P is the assassinator of H/N.

Now suppose that n > 2. Since Ko N---N K, # N it follows that there exists a
submodule G of Ky N---N K, properly containing N such that G/N is a uniform mod-
ule. Note that PG C K;N---N K, = N. On the other hand, let r € R and let J be
a submodule of G such that »J C N. Then rJ C K;. Either J C Kji—in which case
JCKin---NK, = N-or r € P. It follows that P is the assassinator of the uniform
submodule G/N of M/N. O
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Corollary 2.8 Let N be a radical submodule of an R-module M such that M/N has
finite uniform dimension. Then a prime ideal P of R is the assassinator of a uniform
submodule of the module M /N if and only if P = (N : L) for some submodule L of M.

Proof. By Lemma 1.2 and Theorem 2.5. O

3. Modules over fully bounded rings

We now consider when it is the case that every submodule N of a module M with N
having a prime decomposition has the property that the factor module M/N has finite
uniform dimension. Note that if F' is a field and V' an infinite dimensional vector space
over F' then the zero subspace of V is a prime submodule, but the F-module V' does
not have finite uniform dimension. Because of this example we shall consider finitely
generated modules. But even for finitely generated modules there are problems. In [1,
Example 1.22] an example is given of a right Noetherian domain such that the left R-
module R does not have finite uniform dimension. Thus we shall also restrict the choice
of the ring R.

A prime ring R is left bounded if every essential left ideal contains a non-zero two-sided
ideal. A general ring R is a fully left bounded left Goldie ring (left FBG-ring for short)
if, for each prime ideal P of R, the prime ring R/P is a left bounded left Goldie ring.
Clearly commutative rings are (left) F BG-rings, as are rings with polynomial identity by
[9, 13.6.6].

Let R be a prime left Goldie ring. An element ¢ of R is regular if cr % 0 and rc # 0
for every non-zero element r of R. An R-module M is called torsion-free if cm # 0 for
every regular element ¢ of R and non-zero element m of M. On the other hand, M is a

torsion module if for each m € M there exists a regular element ¢ of R such that cm = 0.

Lemma 3.1 (See [8, Lemma 2.6].) Let P be a prime ideal of a ring R such that R/P is
a left bounded left Goldie ring and let K be a submodule of an R-module M. Then K is
a P-prime submodule of M if and only if P = (K : M) and the (R/P)-module M/K is

torsion-free.

Let P be a prime ideal of a ring R. By a mazimal P-prime submodule of an R-

module M we mean a P-prime submodule K of M such that K is not properly contained
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in any P-prime submodule of M. By a maximal prime submodule of M we shall mean
a submodule which is a maximal Q-prime submodule of M for some prime ideal @ of R.
In [7], given a prime ideal P of R, a submodule L of a module M is called P-mazimal if
L is maximal in the collection of submodules H of M such that P = (H : M).

Lemma 3.2 Let P be a prime ideal of a ring R. Consider the following statements about
a submodule K of an R-module M.

(i) K is P-mazimal;
(ii) K is mazimal P-prime;
(iti) K is irreducible P-prime.

Then (i) = (ii) = (iii). Moreover, if R/P is a left bounded left Goldie ring then
(iti) = (it). If in addition M is finitely generated, then (ii) = (i).

Proof. (i) = (ii) Let K be a P-maximal submodule of M. Note that P = (K : M).
Let » € R such that rL C K for some submodule L of M properly containing K. Let
A = (L:M). Then P C A because K is P-maximal. Now rAM C rL C K, so that
rA C P and hence r € P. It follows that K is P-prime. Clearly K is a maximal P-prime
submodule of M.

(ii) = (iii) Let K be a maximal P-prime submodule of M. Let L be any submodule
of M properly containing K. Let H be a submodule of M containing K such that H/K
is a complement of L/K in M/K. Since L/K # 0 it follows that H/K # M/K. By
Lemma 1.6, H is a P-prime submodule of M. Then H = K. It follows that L/K
is an essential submodule of M/K. Therefore M/K is a uniform module and K is an
irreducible P-prime submodule of M.

Now suppose that R/P is a left bounded left Goldie ring. Let K be an irreducible
P-prime submodule of M. Let G be any submodule of M properly containing K. Let
m € M. Since G/K is an essential submodule of the (R/P)-module M/K it follows that
E(m + G) = 0 for some essential left ideal E of the ring R/P. By [9, 2.3.5.] there exists
a regular element ¢ of R/P such that ¢(m + G) = 0. It follows that M/G is a torsion
(R/P)-module for every submodule G properly containing K. By Lemma 3.1, N is a

maximal P-prime submodule of M.
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Finally, suppose that M is a finitely generated module (and R/P is left bounded
left Goldie). Let K be an irreducible P-prime submodule of M and let G be any sub-
module of M properly containing N. As before, M/G is a torsion (R/P)-module. By
hypothesis, there exists an ideal A of R properly containing P such that AM C G. Thus
P C (G:M). It follows that K is P-maximal. O

Let M be a finitely generated R-module. Then g(M) will denote the least number of

elements in a smallest generating set of M.

Lemma 3.3 Let R be a prime left Goldie ring and let M be a finitely generated torsion-
free R-module. Then M has finite uniform dimension and u(M) < g(M)u(R).

Proof. Suppose that M # 0 and g(M) = k, for some positive integer k. There exists
an epimorphism ¢ : R%*) — M. Let K = ker ¢. Then R(k)/K is torsion-free so that K is
a complement submodule of R**) by [2, 1.10]. By Lemma 1.4,

ku(R) = w(R®) = u(K) + w(R®/K) > uw(R™ /K) = u(M).

Corollary 3.4 Let P be a prime ideal of a ring R such that the ring R/ P is left bounded
left Goldie and let K be a P-prime submodule of a finitely generated R-module M. Then
the R-module M /K has finite uniform dimension and u(M/K) < g(M/K)u(R/P).

Proof. By Lemmas 3.1 and 3.3 g

Theorem 3.5 Let R be a left FBG-ring. Then the following statements are equivalent
for a submodule N of a finitely generated R-module M .

(i) N is a radical submodule of M and M/N has finite uniform dimension.
(i) N is a finite intersection of mazimal prime submodules of M.
(iti) N has a prime decomposition.
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Proof. (i) = (ii) By Corollary 2.4 and Lemma 3.2.

(ii) = (iii) Clear.

(iii) = (i) Suppose that N has a prime decomposition. Then N is a radical submodule
of M. Let N = K1N---NK, be a prime decomposition where K; is a P;-prime submodule
of M for some prime ideal P; of R for each 1 < i < n. For each 1 < i < n, the prime
ring R/P; is left bounded left Goldie. By Corollary 3.4, the R-module M/K; has finite
uniform dimension. Since M/N embeds in (M/K;) ®---® (M/K,) it follows that M/N

has finite uniform dimension. O

Theorem 3.6 Let R be a left FBG-ring and let M be a non-zero R-module. Then, for
any prime ideal P of R, every P-prime submodule of M is an intersection of mazimal
P-prime submodules of M. Moreover, every radical submodule of M is an intersection of

mazimal prime submodules of M.

Proof. We shall prove that M has many uniforms. Let @ be a prime ideal of R and
let K be a Q-prime submodule of M. Let m € M\K. Note that the ring R/Q is a left
bounded left Goldie ring and the (R/Q)-module M/K is torsion-free (see Lemma 3.1).
Hence (Rm + K)/K is a torsion-free cyclic (R/Q)-module. There exists a non-essential
left ideal L of R = R/Q such that (Rm+ K)/K = R/L. Next there exists a uniform left
ideal U of R such that L NU = 0, and hence U embeds in (Rm + K)/K. It follows that
M has many uniforms. By Theorem 2.6 and Lemma 3.2, every P-prime submodule is an
intersection of maximal P-prime submodules of M, for each prime ideal P of R. The last
part is clear.

Next we shall examine the fully left bounded condition further. We begin with the

following result. O

Lemma 3.7 Let R be a prime ring such that every ideal is finitely generated as a left ideal
and let M be a finitely generated R-module such that the zero submodule 0 = K1N---NK,
where n s a positive integer and K; is a mazimal 0-prime submodule of M for each
1 <i<n. Let L be a submodule of M such that LNK1N---NK;_1NK;11N---NK, g K;
for each 1 < i <n. Then there exists a non-zero ideal A of R such that AM C L.

Proof. The result is proved by induction on n. Suppose that n = 1. Then 0

is a maximal O-prime submodule of M and L is a non-zero submodule of M. Let
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={m € M : Bm C L for some non-zero ideal B of R}. It is easy to check that
is a submodule of M. Let x € M such that Cx C H for some non-zero ideal C'
of R. There exist a positive integer k£ and elements ¢; € C(1 < i < k) such that
C = Rey + -+ + Reg. For each 1 < ¢ < k there exists a non-zero ideal D; of R
such that D;,c;c € L. Let D = Dy---DyC. Then D is a non-zero ideal of R such
that Dx = Dy ---DCx = Zle Dy ---Dicpx C L, and hence x € H. It follows that if
H # M then H is a 0-prime submodule of M. Because 0 is a maximal 0-prime submodule
of M, we deduce that H = M. Now M is finitely generated and it easily follows that
AM C L for some non-zero ideal A of R.

Now suppose that n > 2. Let K = K1N---NK,_1. Note that {[(LN K,) + K]/K}N
(Ki/K)N---N(Ki—1/K)N(Kip1/K)N N (K1 /K)] € K;/K for all 1 < 4 <
n — 1. By induction on n there exists a non-zero ideal A; of R such that A;(M/K) C
(LNK,)+ K] /K, ie. AAM C (LNK,)+ K. On the other hand, LN K ¢ K,, so
that, by the case n = 1, there exists a non-zero ideal Az of R such that Ax(M/K,) C
(LNK)+ K,]|/Kp, ie. AsM C (LNK)+ K,. Let A = A;A;. Then A is a non-zero
ideal of R and

H
H

AM C[(LNKy)+K|N[(LNK)+ K,]C (LNK)+ (LNK,)CL,

because K N K,, = 0. O

Corollary 3.8 Let R be a prime ring such that every ideal is finitely generated as a left
ideal and let M be a finitely generated left R-module such that the zero submodule is the
intersection of a finite collection of maximal 0-prime submodules. Let L be an essential
submodule of M. Then there exists a non-zero ideal A of R such that AM C L.

Proof. There exist a positive integer n and maximal 0-prime submodules K;(1 < i <
n)such that 0 = K1N---NK, and 0 £ K1N---NK;_1NK;11N---NK, forall 1 <i <n.
Clearly LNKiN---NK;—1 NK;41N---NK, g K; for all 1 < ¢ <n. The result follows
by Lemma 3.6. O

Theorem 3.9 The following statements are equivalent for a left Noetherian ring R.
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(i) R is fully left bounded.

(ii) Every radical submodule of every finitely generated R-module is a finite intersec-

tion of mazimal prime submodules of M.

(i4i) Every radical submodule of the R-module R is a finite intersection of maximal

prime submodules of the R-module R.

(iv) Every prime ideal P of R is a finite intersection of mazimal P-prime submodules
of the R-module R.

Proof. (i) = (ii) By Theorem 3.5.

(ii) = (iii) Clear.

(iii) = (iv) Let P be any prime ideal of R. By (iii) there exist a positive integer
n, prime ideals P;(1 < ¢ < n) and maximal P;-prime submodules K;(1 < i < n) of
R such that P = K1 N---NKy,and P# KyN---NK;_1NK;y1 N---NK, for all
1<i<mn. Foreachl <i<n, PRC K, sothat P C (K; : R) = P,. Suppose that
P # P, forsome 1 <i<mn. Then P,(KyN---NK,_1NK;y1N---NK,) C P, so that
Kin---NK,_1NK;y1N---NK, =P, a contradiction. Thus P = P;(1 <4 < n). This
proves (iv).

(iv) = (i) Let @ be any prime ideal of R. Let M denote the R-module R/Q. Then
the (R/Q)-module M satisfies the hypotheses of Corollary 3.8. Let E be any left ideal of
R containing @ such that F/Q is an essential left ideal of R/Q. By Corollary 3.8 there
exists an ideal A of R properly containing @ such that (4/Q)(R/Q) C E/Q, ie. ACE.
Hence R/Q is left bounded. O

Finally, note that if R is an arbitrary ring and N is a radical submodule of an R-module
M such that the module M/N has only a finite number of minimal prime submodules
then N has a prime decomposition (see [8, p.1059]). The converse is false. Consider the

following result.

Theorem 3.10 Let P and Q be prime ideals of a ring R such that P ¢ Q and Q ¢ P
and let N be the submodule P ® Q of the R-module R® R. Then N = K N L where K is
the P-prime submodule P ® R and L is the Q-prime submodule R @& Q of M. Moreover,

268



SMITH

the minimal prime submodules of M/N are K/N,L/N and BM/N where P+ @Q C B
and B/(P + Q) is a minimal prime ideal of the ring R/(P + Q).

Proof. The first part is clear. Let G be a submodule of M containing N such that
G/N is a minimal prime submodule of M/N. Note that G is a prime submodule of M.
Now P(R®0) C G gives R&0C Gor PMCG. If R0 C G then R®Q C G and
(R ® Q)/N is a prime submodule of M/N so that G/N = (R & Q)/N. Suppose that
PM C G. Next Q(0® R) C G gives that G/N = (P& R)/N or QM C G. Suppose that
QM C G. Then (P+ Q)M C G. Because P+ ( is contained in the prime ideal (G : M)
there exists a prime ideal B of R such that P+ Q C B C (G : M) and B/(P + Q) is a
minimal prime ideal of the ring R/(P + Q). Note that BM/N is a prime submodule of
M/N such that BM/N C G/N. Then G/N = BM/N. 0

Let S be a commutative domain such that there exists a proper ideal A of S such that
the ring S/ A has an infinite number of minimal prime ideals. Let R denote the polynomial
ring S[X] where X is the set of indeterminates {z, : a € A}. Let P =3 _, Rx, and let
Q = 4ca R(rq—a). Then P and Q are prime ideals of R because R/P = R/Q = S.
Moreover, P+Q = P+ A and R/(P+ Q) = S/A, so that the ring R/(P+ Q) contains an
infinite number of minimal prime ideals. If NV is the submodule P & @ of the R-module
M = R @ R then N has a prime decomposition but the R-module M/N contains an
infinite number of minimal prime submodules by Theorem 3.10.

To find a commutative domain S and an ideal A with the above properties we proceed
as follows. Let T be any commutative von Neumann regular ring which is not Artinian.
Then every prime ideal of T' is maximal and T contains an infinite number of (minimal)
prime ideals. Let S = Z[X] denote the polynomial ring in the set X = {z; : t € T} of
indeterminates. Then S is a commutative domain and there exists a ring epimorphism
¢ : S — T such that ¢(z;) =¢ (t € T). Let A denote the kernel of ¢. Then A is an ideal
of S such that S/A=T.
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