Radical Submodules and Uniform Dimension of Modules

P. F. Smith

Abstract

We investigate the relations between a radical submodule N of a module M being a finite intersection of prime submodules of M and the factor module M / N having finite uniform dimension. It is proved that if N is a radical submodule of a module M over a ring R such that M / N has finite uniform dimension, then N is a finite intersection of prime submodules. The converse is false in general but is true if the ring R is fully left bounded left Goldie and the module M is finitely generated. It is further proved that, in general, if a submodule N of a module M is a finite intersection of prime submodules, then the module M / N can have an infinite number of minimal prime submodules.

1. Introduction

Throughout this note all rings are associative with identity and all modules are unital left modules. Let R be a ring and let M be an R-module. A submodule K of M is called prime if $K \neq M$ and whenever $r \in R$ and L is a submodule of M such that $r L \subseteq K$ then $r M \subseteq K$ or $L \subseteq K$. In this case, the ideal $P=\{r \in R: r M \subseteq K\}$ is a prime ideal of R and we call K a P-prime submodule of M. For more information about prime submodules of M see, for example, [3]-[8] and [10]. A submodule N of a module M is called a radical submodule if N is an intersection of prime submodules of M. Note that radical submodules are proper submodules of M.

Given a submodule N of a module M, a decomposition $N=K_{1} \cap \cdots \cap K_{n}$ in terms of submodules $K_{i}(1 \leq i \leq n)$ of M, where n is a positive integer, is called irredundant

SMITH

if $N \neq K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n}$ for all $1 \leq i \leq n$. In [11], a submodule N of a module M is said to have a prime decomposition if N is the intersection of a finite collection of prime submodules of M. Let N be a submodule of an R-module M such that N has a prime decomposition. Then N will be said to have a normal prime decomposition if there exists a positive integer n, distinct prime ideals $P_{i}(1 \leq i \leq n)$ of R and P_{i}-prime submodules $K_{i}(1 \leq i \leq n)$ of M such that $N=K_{1} \cap \cdots \cap K_{n}$ is an irredundant decomposition.

Lemma 1.1 (See [11, Corollary 2, Theorem 3 and Lemma 14].) Let R be any ring and let N be a submodule of an R-module M such that N has a prime decomposition. Then N has a normal prime decomposition. Moreover, if $N=K_{1} \cap \cdots \cap K_{n}$ and $N=L_{1} \cap \cdots \cap L_{k}$ are normal prime decompositions of N where K_{i} is P_{i}-prime for some prime ideal $P_{i}(1 \leq i \leq n)$ and L_{j} is Q_{j}-prime for some prime ideal $Q_{j}(1 \leq j \leq k)$, then $n=k$ and $\left\{P_{i}: 1 \leq i \leq n\right\}=\left\{Q_{j}: 1 \leq j \leq k\right\}$.

In Lemma 1.1, the prime ideals $P_{i}(1 \leq i \leq n)$ are called the associated prime ideals of N. Given submodules G, H of an R-module M we set $(G: H)=\{r \in R: r H \subseteq G\}$. Note that $(G: H)$ is an ideal of R. Moreover, $(G: H)=R$ if and only if $H \subseteq G$.

Lemma 1.2 (See [11, Theorem 6].) Let R be any ring and let N be a submodule of an R-module M such that N has a prime decomposition. Then a prime ideal P of R is an associated prime ideal of N if and only if $P=(N: L)$ for some submodule L of M.

A module M has finite uniform dimension if M does not contain a direct sum of an infinite number of non-zero submodules. Also, a non-zero module M is uniform if $X \cap Y \neq 0$ for all non-zero submodules X and Y of M.

Lemma 1.3 (See [9, 2.2.7, 2.2.8, 2.2.9].) A non-zero R-module M has finite uniform dimension if and only if there exist a positive integer n and independent uniform submodules $U_{i}(1 \leq i \leq n)$ of M such that $U_{1} \oplus \cdots \oplus U_{n}$ is an essential submodule of M. Moreover, if $V_{i}(1 \leq i \leq k)$ are independent uniform submodules of M such that $V_{1} \oplus \cdots \oplus V_{k}$ is essential in M then $n=k$.

In Lemma 1.3, the positive integer n is called the uniform (or Goldie) dimension of M and is denoted by $u(M)$. Let N be a submodule of a module M. By Zorn's Lemma the collection of submodules L of M such that $L \cap N=0$ has a maximal member and any

SMITH

such is called a complement of $N($ in $M)$. A submodule K of M is called a complement (in M) if there exists a submodule N of M such that K is a complement of N.

Lemma 1.4 (See [2, 1.10 and 5.10].) Let L, N be submodules of a module M with $L \cap N=0$. Then there exists a complement K of N such that $L \subseteq K$. Moreover, if M has finite uniform dimension then $u(M)=u(N)+u(K)=u(M / K)+u(K)$.

We shall require the following result later. Its proof is included for completeness.

Lemma 1.5 Given a positive integer n, a module M has uniform dimension n if and only if there exist submodules $L_{i}(1 \leq i \leq n)$ such that
(a) M / L_{i} is a uniform module for all $1 \leq i \leq n$,
(b) $0=L_{1} \cap \cdots \cap L_{n}$, and
(c) $0 \neq L_{1} \cap \cdots L_{i-1} \cap L_{i+1} \cap \cdots \cap L_{n}$ for all $1 \leq i \leq n$.

Note that in Lemma 1.5, (b) and (c) can be restated thus: $0=L_{1} \cap \cdots \cap L_{n}$ is an irredundant decomposition.

Proof. Suppose first that M has uniform dimension n. By Lemma 1.3, there exist independent uniform submodules $U_{i}(1 \leq i \leq n)$ of M such that $U_{1} \oplus \cdots \oplus U_{n}$ is an essential submodule of M. For each $1 \leq i \leq n$, let K_{i} be a complement of U_{i} in M such that $U_{1} \oplus \cdots \oplus U_{i-1} \oplus U_{i+1} \oplus \cdots \oplus U_{n} \subseteq K_{i}$ (Lemma 1.4). By Lemma 1.4, M / K_{i} is a uniform module for each $1 \leq i \leq n$. Suppose that $K_{1} \cap \cdots \cap K_{n} \neq 0$. Then $\left(K_{1} \cap \cdots \cap K_{n}\right) \cap\left(U_{1} \oplus \cdots \oplus U_{n}\right) \neq 0$. Let $0 \neq x=U_{1}+\cdots+U_{n}$ where $x \in K_{1} \cap \cdots \cap K_{n}$ and $u_{i} \in U_{i}(1 \leq i \leq n)$. Then $u_{1}=x-u_{2}-\cdots-u_{n} \in K_{1} \cap U_{1}=0$, so that $u_{1}=0$. Similarly, $u_{i}=0(2 \leq i \leq n)$, and hence $x=0$, a contradiction. Therefore $0=K_{1} \cap \cdots \cap K_{n}$. Moreover, for each $1 \leq i \leq n, 0 \neq U_{i} \subseteq K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots K_{n}$.

Conversely, suppose that M contains submodules $L_{i}(1 \leq i \leq n)$ satisfying (a), (b) and (c). Define a mapping $\phi: M \rightarrow\left(M / L_{1}\right) \oplus \cdots \oplus\left(M / L_{n}\right)$ by $\phi(m)=\left(m+L_{1}, \cdots, m+L_{n}\right)$ for all $m \in M$. By (b), ϕ is a monomorphism. Let $1 \leq i \leq n$. By (c) there exists $0 \neq m_{i} \in L_{1} \cap \cdots \cap L_{i-1} \cap L_{i+1} \cap \cdots \cap L_{n}$ and hence $m_{i} \notin L_{i}$ by (b). It follows that $0 \neq\left(0, \cdots, 0, m_{i}+L_{i}, 0, \cdots, 0\right)=\phi\left(m_{i}\right) \in \phi(M)$. Hence $\phi(M) \cap(0 \oplus \cdots \oplus 0 \oplus$ $\left.\left(M / L_{i}\right) \oplus 0 \oplus \cdots \oplus 0\right) \neq 0$ for all $1 \leq i \leq n$. Hence $\phi(M)$ is an essential submodule of
$\left(M / L_{1}\right) \oplus \cdots \oplus\left(M / L_{n}\right)$ and hence $u(M)=u(\phi(M))=n$ by Lemma 1.3 and (a).

Before proceeding we make two comments about Lemma 1.5. Firstly, note that a non-zero module M has finite uniform dimension if and only if the zero submodule is the intersection of a finite collection of irreducible submodules. Recall that a submodule N of M is called irreducible if the factor module M / N is uniform. The second comment is that condition (a) in Lemma 1.5 is crucial because if K and L are non-zero submodules of a module M such that $K \cap L=0$ and M / K and M / L both have finite uniform dimension then $u(M) \leq u(M / K)+u(M / L)$ but it is not necessarily the case that $u(M)=u(M / K)+u(M / L)$. A simple example can be given to illustrate this fact. Let \mathbb{Z} denote the ring of rational integers and \mathbb{Q} the field of rational numbers. Let M denote the \mathbb{Z}-module $\mathbb{Q} \oplus \mathbb{Q}$ so that $u(M)=2$. Let $K=\{(q, q): q \in \mathbb{Q}\}$. Then $M=K \oplus(\mathbb{Q} \oplus 0)$ so that $u(M / K)=1$. Let n be any positive integer and let π be any collection of n distinct primes in \mathbb{Z}. Let X denote the submodule $\sum_{p \notin \pi} \sum_{k=1}^{\infty} \mathbb{Z}\left(1 / p^{k}\right)$ of \mathbb{Q}. Note that X consists of all s / t in \mathbb{Q} such that $s, t \in \mathbb{Z}, t \neq 0$ and t is not divisible by any prime p in π. Note that $\mathbb{Q} / X \cong(\mathbb{Q} / \mathbb{Z}) /(X / \mathbb{Z})$ so that $u(\mathbb{Q} / X)=n$. Let L denote the submodule $0 \oplus X$ of M. Then K and L, are non-zero submodules of M such that $K \cap L=0$, $u(M / K)=1, u(M / L)=n+1$ and $u(M)=2$, so that $u(M) \neq u(M / K)+u(M / L)$.

We complete this section with two results about prime submodules.

Lemma 1.6 (See [8, Proposition 1.4(ii)].) Let N be a P-prime submodule of an R module M, for some prime ideal P of R, and let K be a proper submodule of M containing N such that K / N is a complement in M / N. Then K is a P-prime submodule of M.

In what follows we shall be particularly interested in irreducible prime submodules of a module M, i.e. prime submodules K of M such that M / K is a uniform module. For example, in the \mathbb{Z}-module \mathbb{Q}, the zero submodule of \mathbb{Q} is an irreducible prime submodule. Lemma 1.6 has the following consequence.

Corollary 1.7 Let N be a P-prime submodule of an R-module M, for some prime ideal P of R, and let L be a non-zero submodule of M such that $N \cap L=0$. Let K be a complement of L in M such that $N \subseteq K$. Then K is a P-prime submodule of M. Moreover, if L is a uniform module then K is an irreducible P-prime submodule of M.

Proof. Note that $K \cap L=0$ and $L \neq 0$ together imply $K \neq M$. It is easy to check that K / N is a complement of $(L+N) / N$ in M / N. By Lemma $1.6, K$ is a P-prime submodule of M. Now suppose that L is uniform. By Lemma $1.4, u(M / K)=u(L)=1$, i.e. K is an irreducible prime submodule of M.

2. Modules with finite uniform dimension

In this section we shall prove that any radical submodule N of a module M such that the factor module M / N has finite uniform dimension has a prime decomposition and we shall investigate the associated prime ideals of N.

Let U be a uniform R-module. Let $P=\{r \in R: r V=0$ for some non-zero submodule V of $U\}$. Then P is an ideal of R. Following [1] we shall call P the assassinator of U. It can easily be checked that if $P W=0$ for some non-zero submodule W of U then P is a prime ideal of R.

Lemma 2.1 Let U be a uniform submodule of an R-module M and let P be the assassinator of U. Suppose that $P M \cap U=0$. Then there exists an irreducible P-prime submodule K of M such that $K \cap U=0$.
Proof. Note that $P U=0$ so that P is a prime ideal of R. Let K be a complement of U in M such that $P M \subseteq K$ (Lemma 1.4). Let $r \in R$ and let L be a submodule of M containing K such that $r L \subseteq K$. Then $r(L \cap U) \subseteq K \cap U=0$. Either $L \cap U=0$ in which case $L=K$ or $L \cap U \neq 0$ in which case $r \in P$ because P is the assassinator of U. It follows that K is a P-prime submodule of M. By Lemma $1.4, M / K$ is a uniform module and hence K is an irreducible P-prime submodule of M.

Lemma 2.2 Let M be an R-module such that the zero submodule of M is a radical submodule. Let U be a uniform submodule of M with assassinator P. Then $P M \cap U=0$.
Proof. Let A be a finitely generated left ideal of R such that $A \subseteq P$. There exists a non-zero submodule V of U such that $A V=0$. There exist prime submodules $K_{\lambda}(\lambda \in \Lambda)$ of M such that $0=\cap_{\lambda \in \Lambda} K_{\lambda}$. Let $\lambda \in \Lambda$. If $V \nsubseteq K_{\lambda}$ then $A V=0 \subseteq K_{\lambda}$ gives $A M \subseteq K_{\lambda}$. Hence $A M \cap V \subseteq K_{\lambda}$. Thus $A M \cap V \subseteq \cap_{\lambda \in \Lambda} K_{\lambda}=0$. Next $(A M \cap U) \cap V=A M \cap V=0$,

SMITH

so that $A M \cap U=0$ because U is uniform. Clearly it follows that $P M \cap U=0$.

Theorem 2.3 Let R be any ring and let M be a non-zero R-module such that the zero submodule of M is a radical submodule. Then the following statements are equivalent.
(i) The zero submodule of M is a finite intersection of irreducible prime submodules of M.
(ii) M has finite uniform dimension.

Moreover, in this case if $0=K_{1} \cap \cdots \cap K_{n}$ is any irredundant decomposition, where K_{i} is an irreducible prime submodule of M for each $1 \leq i \leq n$, then $n=u(M)$.

Proof. (i) \Rightarrow (ii) and last part By Lemma 1.5.
(ii) \Rightarrow (i) Suppose that M has finite uniform dimension. Let U_{1} be any uniform submodule of M and let P_{1} be the assassinator of U_{1}. By Lemma 2.2, $P_{1} M \cap U_{1}=0$ and by Lemma 2.1 there exists an irreducible P_{1}-prime submodule K_{1} of M such that $K_{1} \cap U_{1}=0$. If $u(M)=1$ then $K_{1}=0$ and the result is proved.

Suppose that $u(M) \geq 2$. Let U_{2} be any uniform submodule of M such that $U_{1} \cap U_{2}=0$. If $K_{1} \cap\left(U_{1} \oplus U_{2}\right)=0$ then set $K_{2}=M$. Suppose that $K_{1} \cap\left(U_{1} \oplus U_{2}\right) \neq 0$. Note that $K_{1} \cap\left(U_{1} \oplus U_{2}\right)$ embeds in U_{2} (because $K_{1} \cap U_{1}=0$) and hence $K_{1} \cap\left(U_{1} \oplus U_{2}\right)$ is a uniform submodule of M. Let P_{2} be the assassinator of $K_{1} \cap\left(U_{1} \oplus U_{2}\right)$. As above, by Lemmas 2.2 and 2.1 there exists an irreducible P_{2}-prime submodule K_{2} of M such that $K_{2} \cap\left\{K_{1} \cap\left(U_{1} \oplus U_{2}\right)\right\}=0$ and hence $\left(K_{1} \cap K_{2}\right) \cap\left(U_{1} \oplus U_{2}\right)=0$. If $u(M)=2$ then $U_{1} \oplus U_{2}$ is essential in M and hence $K_{1} \cap K_{2}=0$ so that again the result is true because $K_{2}=M$ or K_{2} is an irreducible prime submodule.

Suppose that $u(M) \geq 3$. Let U_{3} be any uniform submodule of M such that $\left(U_{1} \oplus U_{2}\right) \cap U_{3}=0$. By the above argument there exists a submodule K_{3} of M such that $\left(K_{1} \cap K_{2} \cap K_{3}\right) \cap\left(U_{1} \oplus U_{2} \oplus U_{3}\right)=0$ and either $K_{3}=M$ or K_{3} is an irreducible prime submodule of M. Repeat this process to obtain a sequence $U_{i}(i \geq 1)$ of independent uniform submodules and a sequence $K_{i}(i \geq 1)$ of submodules such that K_{1} is an irreducible prime submodule and for each $i \geq 2$ the submodule $K_{i}=M$ or K_{i} is irreducible prime satisfying

$$
\left(K_{1} \cap \cdots \cap K_{s}\right) \cap\left(U_{1} \oplus \cdots \oplus U_{s}\right)=0
$$

for each positive integer s. Let $n=u(M) \geq 1$. Then $U_{1} \oplus \cdots \oplus U_{n}$ is an essential submodule of M and hence $K_{1} \cap \cdots \cap K_{n}=0$.

Corollary 2.4 Let N be a radical submodule of an R-module M. Then N is a finite intersection of irreducible prime submodules of M if and only if M / N has finite uniform dimension. In this case, N has a prime decomposition.

Proof. By Theorem 2.3.

In certain circumstances, every radical submodule of a module M is an intersection of irreducible prime submodules. In order to prove this we begin with the following lemma.

Lemma 2.5 Let P be a prime ideal of a ring R and let M be an R-module such that 0 is a P-prime submodule of M and every non-zero submodule contains a uniform submodule of M. Then the zero submodule is an intersection of irreducible P-prime submodules of M.

Proof. By Zorn's Lemma M contains a maximal independent collection of uniform submodules $U_{\lambda}(\lambda \in \Lambda)$ and by hypothesis $\oplus_{\lambda \in \Lambda} U_{\lambda}$ is an essential submodule of M. Let $\mu \in \Lambda$ and let $L_{\mu}=\oplus_{\lambda \neq \mu} U_{\lambda}$. Note that L_{μ} is a submodule of M such that $L_{\mu} \cap U_{\mu}=0$. By Lemma 1.4 there exists a complement K_{μ} of U_{μ} in M such that $L_{\mu} \subseteq K_{\mu}$. Now Lemma 1.6 gives that K_{μ} is P-prime. It is easy to check that $\left(\cap_{\lambda \in \Lambda} K_{\lambda}\right) \cap\left(\oplus_{\lambda \in \Lambda} U_{\lambda}\right)=0$ and hence $\cap_{\lambda \in \Lambda} K_{\lambda}=0$ where K_{λ} is a P-prime submodule of M for each $\lambda \in \Lambda$.

We shall say that a (non-zero) R-module M has many uniforms if for every prime submodule K of M and for each element $m \in M \backslash K$, the submodule $(R m+K) / K$ contains a uniform submodule.

Theorem 2.6 Let M be an R-module with many uniforms. Then, for any prime ideal P of R, every P-prime submodule of M is an intersection of irreducible P-prime submodules of M. Moreover, every radical submodule of M is an intersection of irreducible prime submodules of M.

Proof. Let P be a prime ideal of R and let K be a P-prime submodule of M. Applying Lemma 2.5 to the module M / K we see that $0=\cap_{\lambda \in \Lambda} K_{\lambda} / K$ where K_{λ} is a submodule containing K such that K_{λ} / K is an irreducible P-prime submodule of M / K for each $\lambda \in \Lambda$. Clearly $K=\cap_{\lambda \in \Lambda} K_{\lambda}$ where K_{λ} is an irreducible P-prime submodule of M for
each $\lambda \in \Lambda$. The last part is clear.

Note that if R is a left Noetherian ring then every non-zero left R-module has many uniforms. More generally, if a ring R has left Krull dimension then every non-zero left R-module has many uniforms by [9, 6.2.4 and 6.2.6]. A ring R is called left semi-artinian if every non-zero cyclic left R-module contains a simple submodule. For example, right perfect rings are left semi-artinian. Clearly if R is a left semi-artinian ring then every non-zero left R-module has many uniforms. (For more information on left semi-artinian rings see $[2, \mathrm{pp} 26-28]$. .) In the next section we shall show that if R is any commutative ring, or more generally any ring satisfying a polynomial identity, then every non-zero R-module has many uniforms.

Next we give a characterization of the associated prime ideals of a radical submodule N in case M / N has finite uniform dimension (compare Lemma 1.2).

Theorem 2.7 Let N be a radical submodule of an R-module M such that M / N has finite uniform dimension. Then P is an associated prime ideal of N if and only if P is the assassinator of a uniform submodule of the module M / N.

Proof. \quad Suppose first that L is a submodule of M containing N such that L / N is a uniform module. Let P be the assassinator of L / N. By Lemma 2.2, $P=(N: L)$ and by Lemma 1.2, P is an associated prime ideal of N.

Conversely, suppose that P is an associated prime ideal of N. Let $N=K_{1} \cap \cdots \cap K_{n}$ be a normal prime decomposition of N where K_{i} is a P_{i}-prime submodule of M for some prime ideal P_{i} for each $1 \leq i \leq n$ and n is a positive integer. Without loss of generality, we can suppose that $P=P_{1}$ (Lemma 1.1). If $n=1$ then $N=K_{1}$ and so N is a P-prime submodule of M. Let H be a submodule of M properly containing N such that H / N is a uniform module. Clearly P is the assassinator of H / N.

Now suppose that $n \geq 2$. Since $K_{2} \cap \cdots \cap K_{n} \neq N$ it follows that there exists a submodule G of $K_{2} \cap \cdots \cap K_{n}$ properly containing N such that G / N is a uniform module. Note that $P G \subseteq K_{1} \cap \cdots \cap K_{n}=N$. On the other hand, let $r \in R$ and let J be a submodule of G such that $r J \subseteq N$. Then $r J \subseteq K_{1}$. Either $J \subseteq K_{1}$-in which case $J \subseteq K_{1} \cap \cdots \cap K_{n}=N$-or $r \in P$. It follows that P is the assassinator of the uniform submodule G / N of M / N.

Corollary 2.8 Let N be a radical submodule of an R-module M such that M / N has finite uniform dimension. Then a prime ideal P of R is the assassinator of a uniform submodule of the module M / N if and only if $P=(N: L)$ for some submodule L of M.
Proof. By Lemma 1.2 and Theorem 2.5.

3. Modules over fully bounded rings

We now consider when it is the case that every submodule N of a module M with N having a prime decomposition has the property that the factor module M / N has finite uniform dimension. Note that if F is a field and V an infinite dimensional vector space over F then the zero subspace of V is a prime submodule, but the F-module V does not have finite uniform dimension. Because of this example we shall consider finitely generated modules. But even for finitely generated modules there are problems. In [1, Example 1.22] an example is given of a right Noetherian domain such that the left R module R does not have finite uniform dimension. Thus we shall also restrict the choice of the ring R.

A prime ring R is left bounded if every essential left ideal contains a non-zero two-sided ideal. A general ring R is a fully left bounded left Goldie ring (left FBG-ring for short) if, for each prime ideal P of R, the prime ring R / P is a left bounded left Goldie ring. Clearly commutative rings are (left) $F B G$-rings, as are rings with polynomial identity by [9, 13.6.6].

Let R be a prime left Goldie ring. An element c of R is regular if $c r \neq 0$ and $r c \neq 0$ for every non-zero element r of R. An R-module M is called torsion-free if $c m \neq 0$ for every regular element c of R and non-zero element m of M. On the other hand, M is a torsion module if for each $m \in M$ there exists a regular element c of R such that $\mathrm{cm}=0$.

Lemma 3.1 (See [8, Lemma 2.6].) Let P be a prime ideal of a ring R such that R / P is a left bounded left Goldie ring and let K be a submodule of an R-module M. Then K is a P-prime submodule of M if and only if $P=(K: M)$ and the (R / P)-module M / K is torsion-free.

Let P be a prime ideal of a ring R. By a maximal P-prime submodule of an R module M we mean a P-prime submodule K of M such that K is not properly contained
in any P-prime submodule of M. By a maximal prime submodule of M we shall mean a submodule which is a maximal Q-prime submodule of M for some prime ideal Q of R. In [7], given a prime ideal P of R, a submodule L of a module M is called P-maximal if L is maximal in the collection of submodules H of M such that $P=(H: M)$.

Lemma 3.2 Let P be a prime ideal of a ring R. Consider the following statements about a submodule K of an R-module M.
(i) K is P-maximal;
(ii) K is maximal P-prime;
(iii) K is irreducible P-prime.

Then (i) \Rightarrow (ii) \Rightarrow (iii). Moreover, if R / P is a left bounded left Goldie ring then (iii) \Rightarrow (ii). If in addition M is finitely generated, then (ii) \Rightarrow (i).

Proof. (i) \Rightarrow (ii) Let K be a P-maximal submodule of M. Note that $P=(K: M)$. Let $r \in R$ such that $r L \subseteq K$ for some submodule L of M properly containing K. Let $A=(L: M)$. Then $P \subset A$ because K is P-maximal. Now $r A M \subseteq r L \subseteq K$, so that $r A \subseteq P$ and hence $r \in P$. It follows that K is P-prime. Clearly K is a maximal P-prime submodule of M.
(ii) \Rightarrow (iii) Let K be a maximal P-prime submodule of M. Let L be any submodule of M properly containing K. Let H be a submodule of M containing K such that H / K is a complement of L / K in M / K. Since $L / K \neq 0$ it follows that $H / K \neq M / K$. By Lemma 1.6, H is a P-prime submodule of M. Then $H=K$. It follows that L / K is an essential submodule of M / K. Therefore M / K is a uniform module and K is an irreducible P-prime submodule of M.

Now suppose that R / P is a left bounded left Goldie ring. Let K be an irreducible P-prime submodule of M. Let G be any submodule of M properly containing K. Let $m \in M$. Since G / K is an essential submodule of the (R / P)-module M / K it follows that $\bar{E}(m+G)=0$ for some essential left ideal \bar{E} of the ring R / P. By [9, 2.3.5.] there exists a regular element \bar{c} of R / P such that $\bar{c}(m+G)=0$. It follows that M / G is a torsion (R / P)-module for every submodule G properly containing K. By Lemma 3.1, N is a maximal P-prime submodule of M.

Finally, suppose that M is a finitely generated module (and R / P is left bounded left Goldie). Let K be an irreducible P-prime submodule of M and let G be any submodule of M properly containing N. As before, M / G is a torsion (R / P)-module. By hypothesis, there exists an ideal A of R properly containing P such that $A M \subseteq G$. Thus $P \subset(G: M)$. It follows that K is P-maximal.

Let M be a finitely generated R-module. Then $g(M)$ will denote the least number of elements in a smallest generating set of M.

Lemma 3.3 Let R be a prime left Goldie ring and let M be a finitely generated torsionfree R-module. Then M has finite uniform dimension and $u(M) \leq g(M) u(R)$.
Proof. Suppose that $M \neq 0$ and $g(M)=k$, for some positive integer k. There exists an epimorphism $\phi: R^{(k)} \rightarrow M$. Let $K=\operatorname{ker} \phi$. Then $R^{(k)} / K$ is torsion-free so that K is a complement submodule of $R^{(k)}$ by [2, 1.10]. By Lemma 1.4,

$$
k u(R)=u\left(R^{(k)}\right)=u(K)+u\left(R^{(k)} / K\right) \geq u\left(R^{(k)} / K\right)=u(M)
$$

Corollary 3.4 Let P be a prime ideal of a ring R such that the ring R / P is left bounded left Goldie and let K be a P-prime submodule of a finitely generated R-module M. Then the R-module M / K has finite uniform dimension and $u(M / K) \leq g(M / K) u(R / P)$.

Proof. By Lemmas 3.1 and 3.3

Theorem 3.5 Let R be a left FBG-ring. Then the following statements are equivalent for a submodule N of a finitely generated R-module M.
(i) N is a radical submodule of M and M / N has finite uniform dimension.
(ii) N is a finite intersection of maximal prime submodules of M.
(iii) N has a prime decomposition.

SMITH

Proof. (i) \Rightarrow (ii) By Corollary 2.4 and Lemma 3.2.
(ii) \Rightarrow (iii) Clear.
(iii) \Rightarrow (i) Suppose that N has a prime decomposition. Then N is a radical submodule of M. Let $N=K_{1} \cap \cdots \cap K_{n}$ be a prime decomposition where K_{i} is a P_{i}-prime submodule of M for some prime ideal P_{i} of R for each $1 \leq i \leq n$. For each $1 \leq i \leq n$, the prime ring R / P_{i} is left bounded left Goldie. By Corollary 3.4, the R-module M / K_{i} has finite uniform dimension. Since M / N embeds in $\left(M / K_{1}\right) \oplus \cdots \oplus\left(M / K_{n}\right)$ it follows that M / N has finite uniform dimension.

Theorem 3.6 Let R be a left $F B G$-ring and let M be a non-zero R-module. Then, for any prime ideal P of R, every P-prime submodule of M is an intersection of maximal P-prime submodules of M. Moreover, every radical submodule of M is an intersection of maximal prime submodules of M.

Proof. We shall prove that M has many uniforms. Let Q be a prime ideal of R and let K be a Q-prime submodule of M. Let $m \in M \backslash K$. Note that the ring R / Q is a left bounded left Goldie ring and the (R / Q)-module M / K is torsion-free (see Lemma 3.1). Hence $(R m+K) / K$ is a torsion-free cyclic (R / Q)-module. There exists a non-essential left ideal \bar{L} of $\bar{R}=R / Q$ such that $(R m+K) / K \cong \bar{R} / \bar{L}$. Next there exists a uniform left ideal \bar{U} of \bar{R} such that $\bar{L} \cap \bar{U}=0$, and hence \bar{U} embeds in $(R m+K) / K$. It follows that M has many uniforms. By Theorem 2.6 and Lemma 3.2, every P-prime submodule is an intersection of maximal P-prime submodules of M, for each prime ideal P of R. The last part is clear.

Next we shall examine the fully left bounded condition further. We begin with the following result.

Lemma 3.7 Let R be a prime ring such that every ideal is finitely generated as a left ideal and let M be a finitely generated R-module such that the zero submodule $0=K_{1} \cap \cdots \cap K_{n}$ where n is a positive integer and K_{i} is a maximal 0-prime submodule of M for each $1 \leq i \leq n$. Let L be a submodule of M such that $L \cap K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n} \nsubseteq K_{i}$ for each $1 \leq i \leq n$. Then there exists a non-zero ideal A of R such that $A M \subseteq L$.

Proof. The result is proved by induction on n. Suppose that $n=1$. Then 0 is a maximal 0-prime submodule of M and L is a non-zero submodule of M. Let

SMITH

$H=\{m \in M: B m \subseteq L$ for some non-zero ideal B of $R\}$. It is easy to check that H is a submodule of M. Let $x \in M$ such that $C x \subseteq H$ for some non-zero ideal C of R. There exist a positive integer k and elements $c_{i} \in C(1 \leq i \leq k)$ such that $C=R c_{1}+\cdots+R c_{k}$. For each $1 \leq i \leq k$ there exists a non-zero ideal D_{i} of R such that $D_{i} c_{i} x \subseteq L$. Let $D=D_{1} \cdots D_{k} C$. Then D is a non-zero ideal of R such that $D x=D_{1} \cdots D_{k} C x=\sum_{i=1}^{k} D_{1} \cdots D_{k} c_{k} x \subseteq L$, and hence $x \in H$. It follows that if $H \neq M$ then H is a 0 -prime submodule of M. Because 0 is a maximal 0 -prime submodule of M, we deduce that $H=M$. Now M is finitely generated and it easily follows that $A M \subseteq L$ for some non-zero ideal A of R.

Now suppose that $n \geq 2$. Let $K=K_{1} \cap \cdots \cap K_{n-1}$. Note that $\left\{\left[\left(L \cap K_{n}\right)+K\right] / K\right\} \cap$ $\left[\left(K_{1} / K\right) \cap \cdots \cap\left(K_{i-1} / K\right) \cap\left(K_{i+1} / K\right) \cap \cdots \cap\left(K_{n-1} / K\right)\right] \nsubseteq K_{i} / K$ for all $1 \leq i \leq$ $n-1$. By induction on n there exists a non-zero ideal A_{1} of R such that $A_{1}(M / K) \subseteq$ $\left[\left(L \cap K_{n}\right)+K\right] / K$, i.e. $A_{1} M \subseteq\left(L \cap K_{n}\right)+K$. On the other hand, $L \cap K \nsubseteq K_{n}$ so that, by the case $n=1$, there exists a non-zero ideal A_{2} of R such that $A_{2}\left(M / K_{n}\right) \subseteq$ $\left[(L \cap K)+K_{n}\right] / K_{n}$, i.e. $A_{2} M \subseteq(L \cap K)+K_{n}$. Let $A=A_{1} A_{2}$. Then A is a non-zero ideal of R and

$$
A M \subseteq\left[\left(L \cap K_{n}\right)+K\right] \cap\left[(L \cap K)+K_{n}\right] \subseteq(L \cap K)+\left(L \cap K_{n}\right) \subseteq L
$$

because $K \cap K_{n}=0$.

Corollary 3.8 Let R be a prime ring such that every ideal is finitely generated as a left ideal and let M be a finitely generated left R-module such that the zero submodule is the intersection of a finite collection of maximal 0-prime submodules. Let L be an essential submodule of M. Then there exists a non-zero ideal A of R such that $A M \subseteq L$.

Proof. There exist a positive integer n and maximal 0-prime submodules $K_{i}(1 \leq i \leq$ $n)$ such that $0=K_{1} \cap \cdots \cap K_{n}$ and $0 \neq K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n}$ for all $1 \leq i \leq n$. Clearly $L \cap K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n} \nsubseteq K_{i}$ for all $1 \leq i \leq n$. The result follows by Lemma 3.6.

Theorem 3.9 The following statements are equivalent for a left Noetherian ring R.

SMITH

(i) R is fully left bounded.
(ii) Every radical submodule of every finitely generated R-module is a finite intersection of maximal prime submodules of M.
(iii) Every radical submodule of the R-module R is a finite intersection of maximal prime submodules of the R-module R.
(iv) Every prime ideal P of R is a finite intersection of maximal P-prime submodules of the R-module R.

Proof. (i) \Rightarrow (ii) By Theorem 3.5.
(ii) \Rightarrow (iii) Clear.
(iii) \Rightarrow (iv) Let P be any prime ideal of R. By (iii) there exist a positive integer n, prime ideals $P_{i}(1 \leq i \leq n)$ and maximal P_{i}-prime submodules $K_{i}(1 \leq i \leq n)$ of R such that $P=K_{1} \cap \cdots \cap K_{n}$ and $P \neq K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n}$ for all $1 \leq i \leq n$. For each $1 \leq i \leq n, P R \subseteq K_{i}$ so that $P \subseteq\left(K_{i}: R\right)=P_{i}$. Suppose that $P \neq P_{i}$ for some $1 \leq i \leq n$. Then $P_{i}\left(K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n}\right) \subseteq P$, so that $K_{1} \cap \cdots \cap K_{i-1} \cap K_{i+1} \cap \cdots \cap K_{n}=P$, a contradiction. Thus $P=P_{i}(1 \leq i \leq n)$. This proves (iv).
(iv) \Rightarrow (i) Let Q be any prime ideal of R. Let M denote the R-module R / Q. Then the (R / Q)-module M satisfies the hypotheses of Corollary 3.8. Let E be any left ideal of R containing Q such that E / Q is an essential left ideal of R / Q. By Corollary 3.8 there exists an ideal A of R properly containing Q such that $(A / Q)(R / Q) \subseteq E / Q$, i.e. $A \subseteq E$. Hence R / Q is left bounded.

Finally, note that if R is an arbitrary ring and N is a radical submodule of an R-module M such that the module M / N has only a finite number of minimal prime submodules then N has a prime decomposition (see [8, p.1059]). The converse is false. Consider the following result.

Theorem 3.10 Let P and Q be prime ideals of a ring R such that $P \nsubseteq Q$ and $Q \nsubseteq P$ and let N be the submodule $P \oplus Q$ of the R-module $R \oplus R$. Then $N=K \cap L$ where K is the P-prime submodule $P \oplus R$ and L is the Q-prime submodule $R \oplus Q$ of M. Moreover,

SMITH

the minimal prime submodules of M / N are $K / N, L / N$ and $B M / N$ where $P+Q \subseteq B$ and $B /(P+Q)$ is a minimal prime ideal of the ring $R /(P+Q)$.

Proof. The first part is clear. Let G be a submodule of M containing N such that G / N is a minimal prime submodule of M / N. Note that G is a prime submodule of M. Now $P(R \oplus 0) \subseteq G$ gives $R \oplus 0 \subseteq G$ or $P M \subseteq G$. If $R \oplus 0 \subseteq G$ then $R \oplus Q \subseteq G$ and $(R \oplus Q) / N$ is a prime submodule of M / N so that $G / N=(R \oplus Q) / N$. Suppose that $P M \subseteq G$. Next $Q(0 \oplus R) \subseteq G$ gives that $G / N=(P \oplus R) / N$ or $Q M \subseteq G$. Suppose that $Q M \subseteq G$. Then $(P+Q) M \subseteq G$. Because $P+Q$ is contained in the prime ideal $(G: M)$ there exists a prime ideal B of R such that $P+Q \subseteq B \subseteq(G: M)$ and $B /(P+Q)$ is a minimal prime ideal of the ring $R /(P+Q)$. Note that $B M / N$ is a prime submodule of M / N such that $B M / N \subseteq G / N$. Then $G / N=B M / N$.

Let S be a commutative domain such that there exists a proper ideal A of S such that the ring S / A has an infinite number of minimal prime ideals. Let R denote the polynomial ring $S[X]$ where X is the set of indeterminates $\left\{x_{a}: a \in A\right\}$. Let $P=\sum_{a \in A} R x_{a}$ and let $Q=\sum_{a \in A} R\left(x_{a}-a\right)$. Then P and Q are prime ideals of R because $R / P \cong R / Q \cong S$. Moreover, $P+Q=P+A$ and $R /(P+Q) \cong S / A$, so that the ring $R /(P+Q)$ contains an infinite number of minimal prime ideals. If N is the submodule $P \oplus Q$ of the R-module $M=R \oplus R$ then N has a prime decomposition but the R-module M / N contains an infinite number of minimal prime submodules by Theorem 3.10.

To find a commutative domain S and an ideal A with the above properties we proceed as follows. Let T be any commutative von Neumann regular ring which is not Artinian. Then every prime ideal of T is maximal and T contains an infinite number of (minimal) prime ideals. Let $S=\mathbb{Z}[X]$ denote the polynomial ring in the set $X=\left\{x_{t}: t \in T\right\}$ of indeterminates. Then S is a commutative domain and there exists a ring epimorphism $\phi: S \rightarrow T$ such that $\phi\left(x_{t}\right)=t(t \in T)$. Let A denote the kernel of ϕ. Then A is an ideal of S such that $S / A \cong T$.

References

[1] A.W. Chatters and C.R. Hajarnavis, Rings with chain conditions (Pitman, Boston 1980).
[2] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending modules (Longman, Harlow 1994).

SMITH

[3] S.M. George, R.L. McCasland and P.F. Smith, A Principal Ideal Theorem analogue for modules over commutative rings, Comm. Algebra 22 (1994), 2083-2099.
[4] K.H. Leung and S.H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J. 39 (1997), 285-293.
[5] S.H. Man and P.F. Smith, On chains of prime submodules, Israel J. Math. 127 (2002), 131-155.
[6] A. Marcelo and J. Munoz Maqué, Prime submodules, the descent invariant and modules of finite length, J. Algebra 189 (1997), 273-293.
[7] R.L. McCasland and M.E. Moore, Prime submodules, Comm. Algebra 20 (1992), 1803-1817.
[8] R.L. McCasland and P.F. Smith, Prime submodules, of Noetherian modules, Rocky Mtn. J. 23 (1993), 1041-1062.
[9] J.C. McConnell and J.C. Robson, Noncommutative Noetherian rings (Wiley-Interscience, Chichester 1987).
[10] P.F. Smith, Primary modules over commutative rings, Glasgow Math. J. 43 (2001), 103-111.
[11] P.F. Smith, Uniqueness of primary decompositions, Turkish J. Math. 27 (2003), 425-434.
P. F. SMITH

Received 01.04.2003
Department of Mathematics
University of Glasgow
Glasgow, G12 8QW, Scotland, UK
e-mail: dept@maths.gla.ac.uk

