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Modules

P. F. Smith

Abstract

We investigate the relations between a radical submodule N of a module M

being a finite intersection of prime submodules of M and the factor module M/N

having finite uniform dimension. It is proved that if N is a radical submodule of

a module M over a ring R such that M/N has finite uniform dimension, then N

is a finite intersection of prime submodules. The converse is false in general but

is true if the ring R is fully left bounded left Goldie and the module M is finitely

generated. It is further proved that, in general, if a submodule N of a module M is a

finite intersection of prime submodules, then the module M/N can have an infinite

number of minimal prime submodules.

1. Introduction

Throughout this note all rings are associative with identity and all modules are unital
left modules. Let R be a ring and let M be an R-module. A submodule K of M is called
prime if K 6= M and whenever r ∈ R and L is a submodule of M such that rL ⊆ K

then rM ⊆ K or L ⊆ K. In this case, the ideal P = {r ∈ R : rM ⊆ K} is a prime
ideal of R and we call K a P -prime submodule of M . For more information about prime
submodules of M see, for example, [3]–[8] and [10]. A submodule N of a module M is
called a radical submodule if N is an intersection of prime submodules of M . Note that
radical submodules are proper submodules of M .

Given a submodule N of a module M , a decomposition N = K1 ∩ · · · ∩Kn in terms
of submodules Ki(1 ≤ i ≤ n) of M , where n is a positive integer, is called irredundant
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if N 6= K1 ∩ · · · ∩ Ki−1 ∩ Ki+1 ∩ · · · ∩ Kn for all 1 ≤ i ≤ n. In [11], a submodule
N of a module M is said to have a prime decomposition if N is the intersection of a
finite collection of prime submodules of M . Let N be a submodule of an R–module M

such that N has a prime decomposition. Then N will be said to have a normal prime
decomposition if there exists a positive integer n, distinct prime ideals Pi(1 ≤ i ≤ n) of
R and Pi-prime submodules Ki (1 ≤ i ≤ n) of M such that N = K1 ∩ · · · ∩Kn is an
irredundant decomposition.

Lemma 1.1 (See [11, Corollary 2, Theorem 3 and Lemma 14].) Let R be any ring
and let N be a submodule of an R-module M such that N has a prime decomposition.
Then N has a normal prime decomposition. Moreover, if N = K1 ∩ · · · ∩ Kn and
N = L1 ∩ · · · ∩ Lk are normal prime decompositions of N where Ki is Pi-prime for
some prime ideal Pi(1 ≤ i ≤ n) and Lj is Qj-prime for some prime ideal Qj(1 ≤ j ≤ k),
then n = k and {Pi : 1 ≤ i ≤ n} = {Qj : 1 ≤ j ≤ k}.

In Lemma 1.1, the prime ideals Pi (1 ≤ i ≤ n) are called the associated prime ideals
of N . Given submodules G, H of an R-module M we set (G : H) = {r ∈ R : rH ⊆ G}.
Note that (G : H) is an ideal of R. Moreover, (G : H) = R if and only if H ⊆ G.

Lemma 1.2 (See [11, Theorem 6].) Let R be any ring and let N be a submodule of an
R-module M such that N has a prime decomposition. Then a prime ideal P of R is an
associated prime ideal of N if and only if P = (N : L) for some submodule L of M .

A module M has finite uniform dimension if M does not contain a direct sum of
an infinite number of non-zero submodules. Also, a non-zero module M is uniform if
X ∩ Y 6= 0 for all non-zero submodules X and Y of M .

Lemma 1.3 (See [9, 2.2.7, 2.2.8, 2.2.9].) A non-zero R-module M has finite uniform
dimension if and only if there exist a positive integer n and independent uniform sub-
modules Ui (1 ≤ i ≤ n) of M such that U1 ⊕ · · · ⊕ Un is an essential submodule of
M . Moreover, if Vi(1 ≤ i ≤ k) are independent uniform submodules of M such that
V1 ⊕ · · · ⊕ Vk is essential in M then n = k.

In Lemma 1.3, the positive integer n is called the uniform (or Goldie) dimension of M

and is denoted by u(M). Let N be a submodule of a module M . By Zorn’s Lemma the
collection of submodules L of M such that L ∩ N = 0 has a maximal member and any
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such is called a complement of N (in M). A submodule K of M is called a complement
(in M) if there exists a submodule N of M such that K is a complement of N .

Lemma 1.4 (See [2, 1.10 and 5.10].) Let L, N be submodules of a module M with
L ∩N = 0. Then there exists a complement K of N such that L ⊆ K. Moreover, if M

has finite uniform dimension then u(M) = u(N) + u(K) = u(M/K) + u(K).

We shall require the following result later. Its proof is included for completeness.

Lemma 1.5 Given a positive integer n, a module M has uniform dimension n if and
only if there exist submodules Li (1 ≤ i ≤ n) such that

(a) M/Li is a uniform module for all 1 ≤ i ≤ n,

(b) 0 = L1 ∩ · · · ∩ Ln, and

(c) 0 6= L1 ∩ · · ·Li−1 ∩ Li+1 ∩ · · · ∩ Ln for all 1 ≤ i ≤ n.

Note that in Lemma 1.5, (b) and (c) can be restated thus: 0 = L1 ∩ · · · ∩ Ln is an
irredundant decomposition.

Proof. Suppose first that M has uniform dimension n. By Lemma 1.3, there exist
independent uniform submodules Ui(1 ≤ i ≤ n) of M such that U1 ⊕ · · · ⊕ Un is an
essential submodule of M . For each 1 ≤ i ≤ n, let Ki be a complement of Ui in M

such that U1 ⊕ · · · ⊕ Ui−1 ⊕ Ui+1 ⊕ · · · ⊕ Un ⊆ Ki (Lemma 1.4). By Lemma 1.4, M/Ki

is a uniform module for each 1 ≤ i ≤ n. Suppose that K1 ∩ · · · ∩ Kn 6= 0. Then
(K1 ∩ · · ·∩Kn)∩ (U1⊕ · · ·⊕Un) 6= 0. Let 0 6= x = U1 + · · ·+Un where x ∈ K1 ∩ · · ·∩Kn

and ui ∈ Ui (1 ≤ i ≤ n). Then u1 = x − u2 − · · · − un ∈ K1 ∩ U1 = 0, so that
u1 = 0. Similarly, ui = 0(2 ≤ i ≤ n), and hence x = 0, a contradiction. Therefore
0 = K1∩· · ·∩Kn. Moreover, for each 1 ≤ i ≤ n, 0 6= Ui ⊆ K1∩· · ·∩Ki−1∩Ki+1∩· · ·Kn.

Conversely, suppose that M contains submodules Li (1 ≤ i ≤ n) satisfying (a), (b) and
(c). Define a mapping φ : M → (M/L1)⊕· · ·⊕(M/Ln) by φ(m) = (m+L1 , · · · , m+Ln)
for all m ∈ M . By (b), φ is a monomorphism. Let 1 ≤ i ≤ n. By (c) there exists
0 6= mi ∈ L1 ∩ · · · ∩ Li−1 ∩ Li+1 ∩ · · · ∩ Ln and hence mi 6∈ Li by (b). It follows
that 0 6= (0, · · · , 0, mi + Li, 0, · · · , 0) = φ(mi) ∈ φ(M). Hence φ(M) ∩ (0 ⊕ · · · ⊕ 0 ⊕
(M/Li) ⊕ 0 ⊕ · · · ⊕ 0) 6= 0 for all 1 ≤ i ≤ n. Hence φ(M) is an essential submodule of
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(M/L1)⊕ · · · ⊕ (M/Ln) and hence u(M) = u(φ(M)) = n by Lemma 1.3 and (a). 2

Before proceeding we make two comments about Lemma 1.5. Firstly, note that a
non-zero module M has finite uniform dimension if and only if the zero submodule is the
intersection of a finite collection of irreducible submodules. Recall that a submodule N

of M is called irreducible if the factor module M/N is uniform. The second comment is
that condition (a) in Lemma 1.5 is crucial because if K and L are non-zero submodules
of a module M such that K ∩ L = 0 and M/K and M/L both have finite uniform
dimension then u(M) ≤ u(M/K) + u(M/L) but it is not necessarily the case that
u(M) = u(M/K) + u(M/L). A simple example can be given to illustrate this fact. Let
Z denote the ring of rational integers and Q the field of rational numbers. Let M denote
the Z-module Q⊕Q so that u(M) = 2. Let K = {(q, q) : q ∈ Q}. Then M = K⊕ (Q⊕0)
so that u(M/K) = 1. Let n be any positive integer and let π be any collection of n

distinct primes in Z. Let X denote the submodule
∑
p6∈π

∞∑
k=1

Z(1/pk) of Q. Note that X

consists of all s/t in Q such that s, t ∈ Z, t 6= 0 and t is not divisible by any prime p in
π. Note that Q/X ∼= (Q/Z)/(X/Z) so that u(Q/X) = n. Let L denote the submodule
0 ⊕ X of M . Then K and L, are non-zero submodules of M such that K ∩ L = 0,
u(M/K) = 1, u(M/L) = n + 1 and u(M) = 2, so that u(M) 6= u(M/K) + u(M/L).

We complete this section with two results about prime submodules.

Lemma 1.6 (See [8, Proposition 1.4(ii)].) Let N be a P -prime submodule of an R-
module M , for some prime ideal P of R, and let K be a proper submodule of M containing
N such that K/N is a complement in M/N . Then K is a P -prime submodule of M .

In what follows we shall be particularly interested in irreducible prime submodules of
a module M , i.e. prime submodules K of M such that M/K is a uniform module. For
example, in the Z-module Q, the zero submodule of Q is an irreducible prime submodule.
Lemma 1.6 has the following consequence.

Corollary 1.7 Let N be a P -prime submodule of an R-module M , for some prime ideal
P of R, and let L be a non-zero submodule of M such that N ∩ L = 0. Let K be a
complement of L in M such that N ⊆ K. Then K is a P -prime submodule of M .
Moreover, if L is a uniform module then K is an irreducible P -prime submodule of M .
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Proof. Note that K∩L = 0 and L 6= 0 together imply K 6= M . It is easy to check that
K/N is a complement of (L+N)/N in M/N . By Lemma 1.6, K is a P -prime submodule
of M . Now suppose that L is uniform. By Lemma 1.4, u(M/K) = u(L) = 1, i.e. K is
an irreducible prime submodule of M . 2

2. Modules with finite uniform dimension

In this section we shall prove that any radical submodule N of a module M such that
the factor module M/N has finite uniform dimension has a prime decomposition and we
shall investigate the associated prime ideals of N .

Let U be a uniform R-module. Let P = {r ∈ R : rV = 0 for some non-zero submodule
V of U}. Then P is an ideal of R. Following [1] we shall call P the assassinator of U . It
can easily be checked that if PW = 0 for some non-zero submodule W of U then P is a
prime ideal of R.

Lemma 2.1 Let U be a uniform submodule of an R-module M and let P be the
assassinator of U . Suppose that PM ∩ U = 0. Then there exists an irreducible P -prime
submodule K of M such that K ∩ U = 0.

Proof. Note that PU = 0 so that P is a prime ideal of R. Let K be a complement
of U in M such that PM ⊆ K (Lemma 1.4). Let r ∈ R and let L be a submodule of
M containing K such that rL ⊆ K. Then r(L ∩ U) ⊆ K ∩ U = 0. Either L ∩ U = 0 in
which case L = K or L ∩ U 6= 0 in which case r ∈ P because P is the assassinator of
U . It follows that K is a P -prime submodule of M . By Lemma 1.4, M/K is a uniform
module and hence K is an irreducible P -prime submodule of M . 2

Lemma 2.2 Let M be an R-module such that the zero submodule of M is a radical
submodule. Let U be a uniform submodule of M with assassinator P . Then PM ∩U = 0.

Proof. Let A be a finitely generated left ideal of R such that A ⊆ P . There exists a
non-zero submodule V of U such that AV = 0. There exist prime submodules Kλ (λ ∈ Λ)
of M such that 0 = ∩λ∈ΛKλ. Let λ ∈ Λ. If V * Kλ then AV = 0 ⊆ Kλ gives AM ⊆ Kλ.
Hence AM ∩V ⊆ Kλ. Thus AM ∩V ⊆ ∩λ∈ΛKλ = 0. Next (AM ∩U)∩V = AM ∩V = 0,
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so that AM ∩U = 0 because U is uniform. Clearly it follows that PM ∩ U = 0. 2

Theorem 2.3 Let R be any ring and let M be a non-zero R-module such that the zero
submodule of M is a radical submodule. Then the following statements are equivalent.

(i) The zero submodule of M is a finite intersection of irreducible prime submodules
of M .

(ii) M has finite uniform dimension.
Moreover, in this case if 0 = K1 ∩ · · · ∩Kn is any irredundant decomposition, where Ki

is an irreducible prime submodule of M for each 1 ≤ i ≤ n, then n = u(M).

Proof. (i) ⇒ (ii) and last part By Lemma 1.5.
(ii) ⇒ (i) Suppose that M has finite uniform dimension. Let U1 be any uniform

submodule of M and let P1 be the assassinator of U1. By Lemma 2.2, P1M ∩ U1 = 0
and by Lemma 2.1 there exists an irreducible P1-prime submodule K1 of M such that
K1 ∩U1 = 0. If u(M) = 1 then K1 = 0 and the result is proved.

Suppose that u(M) ≥ 2. Let U2 be any uniform submodule of M such that U1∩U2 = 0.
If K1 ∩ (U1 ⊕ U2) = 0 then set K2 = M . Suppose that K1 ∩ (U1 ⊕ U2) 6= 0. Note that
K1 ∩ (U1 ⊕ U2) embeds in U2 (because K1 ∩ U1 = 0) and hence K1 ∩ (U1 ⊕ U2) is a
uniform submodule of M . Let P2 be the assassinator of K1 ∩ (U1 ⊕ U2). As above, by
Lemmas 2.2 and 2.1 there exists an irreducible P2-prime submodule K2 of M such that
K2 ∩ {K1 ∩ (U1 ⊕ U2)} = 0 and hence (K1 ∩K2) ∩ (U1 ⊕ U2) = 0. If u(M) = 2 then
U1 ⊕U2 is essential in M and hence K1 ∩K2 = 0 so that again the result is true because
K2 = M or K2 is an irreducible prime submodule.

Suppose that u(M) ≥ 3. Let U3 be any uniform submodule of M such that
(U1 ⊕U2)∩U3 = 0. By the above argument there exists a submodule K3 of M such that
(K1 ∩K2 ∩K3) ∩ (U1 ⊕ U2 ⊕ U3) = 0 and either K3 = M or K3 is an irreducible prime
submodule of M . Repeat this process to obtain a sequence Ui(i ≥ 1) of independent uni-
form submodules and a sequence Ki(i ≥ 1) of submodules such that K1 is an irreducible
prime submodule and for each i ≥ 2 the submodule Ki = M or Ki is irreducible prime
satisfying

(K1 ∩ · · · ∩Ks) ∩ (U1 ⊕ · · · ⊕ Us) = 0

for each positive integer s. Let n = u(M) ≥ 1. Then U1 ⊕ · · · ⊕ Un is an essential
submodule of M and hence K1 ∩ · · · ∩Kn = 0. 2
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Corollary 2.4 Let N be a radical submodule of an R-module M . Then N is a finite
intersection of irreducible prime submodules of M if and only if M/N has finite uniform
dimension. In this case, N has a prime decomposition.

Proof. By Theorem 2.3. 2

In certain circumstances, every radical submodule of a module M is an intersection of
irreducible prime submodules. In order to prove this we begin with the following lemma.

Lemma 2.5 Let P be a prime ideal of a ring R and let M be an R-module such that 0 is
a P -prime submodule of M and every non-zero submodule contains a uniform submodule
of M . Then the zero submodule is an intersection of irreducible P -prime submodules of
M .

Proof. By Zorn’s Lemma M contains a maximal independent collection of uniform
submodules Uλ(λ ∈ Λ) and by hypothesis ⊕λ∈Λ Uλ is an essential submodule of M . Let
µ ∈ Λ and let Lµ = ⊕λ 6=µ Uλ. Note that Lµ is a submodule of M such that Lµ ∩Uµ = 0.
By Lemma 1.4 there exists a complement Kµ of Uµ in M such that Lµ ⊆ Kµ. Now
Lemma 1.6 gives that Kµ is P -prime. It is easy to check that (∩λ∈ΛKλ)∩ (⊕λ∈ΛUλ) = 0
and hence ∩λ∈ΛKλ = 0 where Kλ is a P -prime submodule of M for each λ ∈ Λ. 2

We shall say that a (non-zero) R-module M has many uniforms if for every prime
submodule K of M and for each element m ∈M\K, the submodule (Rm+K)/K contains
a uniform submodule.

Theorem 2.6 Let M be an R-module with many uniforms. Then, for any prime ideal P

of R, every P -prime submodule of M is an intersection of irreducible P -prime submodules
of M . Moreover, every radical submodule of M is an intersection of irreducible prime
submodules of M .

Proof. Let P be a prime ideal of R and let K be a P -prime submodule of M . Applying
Lemma 2.5 to the module M/K we see that 0 = ∩λ∈ΛKλ/K where Kλ is a submodule
containing K such that Kλ/K is an irreducible P -prime submodule of M/K for each
λ ∈ Λ. Clearly K = ∩λ∈ΛKλ where Kλ is an irreducible P -prime submodule of M for
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each λ ∈ Λ. The last part is clear. 2

Note that if R is a left Noetherian ring then every non-zero left R-module has many
uniforms. More generally, if a ring R has left Krull dimension then every non-zero left
R-module has many uniforms by [9, 6.2.4 and 6.2.6]. A ring R is called left semi-artinian
if every non-zero cyclic left R-module contains a simple submodule. For example, right
perfect rings are left semi-artinian. Clearly if R is a left semi-artinian ring then every
non-zero left R-module has many uniforms. (For more information on left semi-artinian
rings see [2, pp26-28].) In the next section we shall show that if R is any commutative
ring, or more generally any ring satisfying a polynomial identity, then every non-zero
R-module has many uniforms.

Next we give a characterization of the associated prime ideals of a radical submodule
N in case M/N has finite uniform dimension (compare Lemma 1.2).

Theorem 2.7 Let N be a radical submodule of an R-module M such that M/N has finite
uniform dimension. Then P is an associated prime ideal of N if and only if P is the
assassinator of a uniform submodule of the module M/N .

Proof. Suppose first that L is a submodule of M containing N such that L/N is a
uniform module. Let P be the assassinator of L/N . By Lemma 2.2, P = (N : L) and by
Lemma 1.2, P is an associated prime ideal of N .

Conversely, suppose that P is an associated prime ideal of N . Let N = K1 ∩ · · ·∩Kn

be a normal prime decomposition of N where Ki is a Pi-prime submodule of M for some
prime ideal Pi for each 1 ≤ i ≤ n and n is a positive integer. Without loss of generality,
we can suppose that P = P1 (Lemma 1.1). If n = 1 then N = K1 and so N is a P -prime
submodule of M . Let H be a submodule of M properly containing N such that H/N is
a uniform module. Clearly P is the assassinator of H/N .

Now suppose that n ≥ 2. Since K2 ∩ · · · ∩ Kn 6= N it follows that there exists a
submodule G of K2 ∩ · · · ∩Kn properly containing N such that G/N is a uniform mod-
ule. Note that PG ⊆ K1 ∩ · · · ∩ Kn = N . On the other hand, let r ∈ R and let J be
a submodule of G such that rJ ⊆ N . Then rJ ⊆ K1. Either J ⊆ K1–in which case
J ⊆ K1 ∩ · · · ∩Kn = N–or r ∈ P . It follows that P is the assassinator of the uniform
submodule G/N of M/N . 2
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Corollary 2.8 Let N be a radical submodule of an R-module M such that M/N has
finite uniform dimension. Then a prime ideal P of R is the assassinator of a uniform
submodule of the module M/N if and only if P = (N : L) for some submodule L of M .

Proof. By Lemma 1.2 and Theorem 2.5. 2

3. Modules over fully bounded rings

We now consider when it is the case that every submodule N of a module M with N

having a prime decomposition has the property that the factor module M/N has finite
uniform dimension. Note that if F is a field and V an infinite dimensional vector space
over F then the zero subspace of V is a prime submodule, but the F -module V does
not have finite uniform dimension. Because of this example we shall consider finitely
generated modules. But even for finitely generated modules there are problems. In [1,
Example 1.22] an example is given of a right Noetherian domain such that the left R-
module R does not have finite uniform dimension. Thus we shall also restrict the choice
of the ring R.

A prime ring R is left bounded if every essential left ideal contains a non-zero two-sided
ideal. A general ring R is a fully left bounded left Goldie ring (left FBG-ring for short)
if, for each prime ideal P of R, the prime ring R/P is a left bounded left Goldie ring.
Clearly commutative rings are (left) FBG-rings, as are rings with polynomial identity by
[9, 13.6.6].

Let R be a prime left Goldie ring. An element c of R is regular if cr 6= 0 and rc 6= 0
for every non-zero element r of R. An R-module M is called torsion-free if cm 6= 0 for
every regular element c of R and non-zero element m of M . On the other hand, M is a
torsion module if for each m ∈M there exists a regular element c of R such that cm = 0.

Lemma 3.1 (See [8, Lemma 2.6].) Let P be a prime ideal of a ring R such that R/P is
a left bounded left Goldie ring and let K be a submodule of an R-module M . Then K is
a P -prime submodule of M if and only if P = (K : M) and the (R/P )-module M/K is
torsion-free.

Let P be a prime ideal of a ring R. By a maximal P-prime submodule of an R-
module M we mean a P -prime submodule K of M such that K is not properly contained
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in any P -prime submodule of M . By a maximal prime submodule of M we shall mean
a submodule which is a maximal Q-prime submodule of M for some prime ideal Q of R.
In [7], given a prime ideal P of R, a submodule L of a module M is called P -maximal if
L is maximal in the collection of submodules H of M such that P = (H : M).

Lemma 3.2 Let P be a prime ideal of a ring R. Consider the following statements about
a submodule K of an R-module M .

(i) K is P -maximal;

(ii) K is maximal P -prime;

(iii) K is irreducible P -prime.

Then (i) ⇒ (ii) ⇒ (iii). Moreover, if R/P is a left bounded left Goldie ring then
(iii) ⇒ (ii). If in addition M is finitely generated, then (ii) ⇒ (i).

Proof. (i) ⇒ (ii) Let K be a P -maximal submodule of M . Note that P = (K : M).
Let r ∈ R such that rL ⊆ K for some submodule L of M properly containing K. Let
A = (L : M). Then P ⊂ A because K is P -maximal. Now rAM ⊆ rL ⊆ K, so that
rA ⊆ P and hence r ∈ P . It follows that K is P -prime. Clearly K is a maximal P -prime
submodule of M .

(ii) ⇒ (iii) Let K be a maximal P -prime submodule of M . Let L be any submodule
of M properly containing K. Let H be a submodule of M containing K such that H/K

is a complement of L/K in M/K. Since L/K 6= 0 it follows that H/K 6= M/K. By
Lemma 1.6, H is a P -prime submodule of M . Then H = K. It follows that L/K

is an essential submodule of M/K. Therefore M/K is a uniform module and K is an
irreducible P -prime submodule of M .

Now suppose that R/P is a left bounded left Goldie ring. Let K be an irreducible
P -prime submodule of M . Let G be any submodule of M properly containing K. Let
m ∈ M . Since G/K is an essential submodule of the (R/P )-module M/K it follows that
E(m + G) = 0 for some essential left ideal E of the ring R/P . By [9, 2.3.5.] there exists
a regular element c of R/P such that c(m + G) = 0. It follows that M/G is a torsion
(R/P )-module for every submodule G properly containing K. By Lemma 3.1, N is a
maximal P -prime submodule of M .
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Finally, suppose that M is a finitely generated module (and R/P is left bounded
left Goldie). Let K be an irreducible P -prime submodule of M and let G be any sub-
module of M properly containing N . As before, M/G is a torsion (R/P )-module. By
hypothesis, there exists an ideal A of R properly containing P such that AM ⊆ G. Thus
P ⊂ (G : M). It follows that K is P -maximal. 2

Let M be a finitely generated R-module. Then g(M) will denote the least number of
elements in a smallest generating set of M .

Lemma 3.3 Let R be a prime left Goldie ring and let M be a finitely generated torsion-
free R-module. Then M has finite uniform dimension and u(M) ≤ g(M)u(R).

Proof. Suppose that M 6= 0 and g(M) = k, for some positive integer k. There exists
an epimorphism φ : R(k)→M . Let K = kerφ. Then R(k)/K is torsion-free so that K is
a complement submodule of R(k) by [2, 1.10]. By Lemma 1.4,

ku(R) = u(R(k)) = u(K) + u(R(k)/K) ≥ u(R(k)/K) = u(M).

2

Corollary 3.4 Let P be a prime ideal of a ring R such that the ring R/P is left bounded
left Goldie and let K be a P -prime submodule of a finitely generated R-module M . Then
the R-module M/K has finite uniform dimension and u(M/K) ≤ g(M/K)u(R/P ).

Proof. By Lemmas 3.1 and 3.3 2

Theorem 3.5 Let R be a left FBG-ring. Then the following statements are equivalent
for a submodule N of a finitely generated R-module M .

(i) N is a radical submodule of M and M/N has finite uniform dimension.

(ii) N is a finite intersection of maximal prime submodules of M .

(iii) N has a prime decomposition.
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Proof. (i) ⇒ (ii) By Corollary 2.4 and Lemma 3.2.
(ii) ⇒ (iii) Clear.
(iii)⇒ (i) Suppose that N has a prime decomposition. Then N is a radical submodule

of M . Let N = K1∩· · ·∩Kn be a prime decomposition where Ki is a Pi-prime submodule
of M for some prime ideal Pi of R for each 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, the prime
ring R/Pi is left bounded left Goldie. By Corollary 3.4, the R-module M/Ki has finite
uniform dimension. Since M/N embeds in (M/K1)⊕ · · ·⊕ (M/Kn) it follows that M/N

has finite uniform dimension. 2

Theorem 3.6 Let R be a left FBG-ring and let M be a non-zero R-module. Then, for
any prime ideal P of R, every P -prime submodule of M is an intersection of maximal
P -prime submodules of M . Moreover, every radical submodule of M is an intersection of
maximal prime submodules of M .

Proof. We shall prove that M has many uniforms. Let Q be a prime ideal of R and
let K be a Q-prime submodule of M . Let m ∈ M\K. Note that the ring R/Q is a left
bounded left Goldie ring and the (R/Q)-module M/K is torsion-free (see Lemma 3.1).
Hence (Rm + K)/K is a torsion-free cyclic (R/Q)-module. There exists a non-essential
left ideal L of R = R/Q such that (Rm + K)/K ∼= R/L. Next there exists a uniform left
ideal U of R such that L ∩ U = 0, and hence U embeds in (Rm + K)/K. It follows that
M has many uniforms. By Theorem 2.6 and Lemma 3.2, every P -prime submodule is an
intersection of maximal P -prime submodules of M , for each prime ideal P of R. The last
part is clear.

Next we shall examine the fully left bounded condition further. We begin with the
following result. 2

Lemma 3.7 Let R be a prime ring such that every ideal is finitely generated as a left ideal
and let M be a finitely generated R-module such that the zero submodule 0 = K1∩· · ·∩Kn

where n is a positive integer and Ki is a maximal 0-prime submodule of M for each
1 ≤ i ≤ n. Let L be a submodule of M such that L∩K1∩· · ·∩Ki−1∩Ki+1∩· · ·∩Kn * Ki

for each 1 ≤ i ≤ n. Then there exists a non-zero ideal A of R such that AM ⊆ L.

Proof. The result is proved by induction on n. Suppose that n = 1. Then 0
is a maximal 0-prime submodule of M and L is a non-zero submodule of M . Let

266



SMITH

H = {m ∈ M : Bm ⊆ L for some non-zero ideal B of R}. It is easy to check that
H is a submodule of M . Let x ∈ M such that Cx ⊆ H for some non-zero ideal C

of R. There exist a positive integer k and elements ci ∈ C(1 ≤ i ≤ k) such that
C = Rc1 + · · · + Rck. For each 1 ≤ i ≤ k there exists a non-zero ideal Di of R

such that Dicix ⊆ L. Let D = D1 · · ·DkC. Then D is a non-zero ideal of R such
that Dx = D1 · · ·DkCx =

∑k
i=1 D1 · · ·Dkckx ⊆ L, and hence x ∈ H . It follows that if

H 6= M then H is a 0-prime submodule of M . Because 0 is a maximal 0-prime submodule
of M , we deduce that H = M . Now M is finitely generated and it easily follows that
AM ⊆ L for some non-zero ideal A of R.

Now suppose that n ≥ 2. Let K = K1∩· · ·∩Kn−1. Note that {[(L ∩Kn) + K] /K}∩
[(K1/K) ∩ · · · ∩ (Ki−1/K) ∩ (Ki+1/K) ∩ · · · ∩ (Kn−1/K)] * Ki/K for all 1 ≤ i ≤
n − 1. By induction on n there exists a non-zero ideal A1 of R such that A1(M/K) ⊆
[(L ∩Kn) + K] /K, i.e. A1M ⊆ (L ∩ Kn) + K. On the other hand, L ∩ K * Kn so
that, by the case n = 1, there exists a non-zero ideal A2 of R such that A2(M/Kn) ⊆
[(L ∩K) + Kn]/Kn, i.e. A2M ⊆ (L ∩K) + Kn. Let A = A1A2. Then A is a non-zero
ideal of R and

AM ⊆ [(L ∩Kn) + K] ∩ [(L ∩K) + Kn] ⊆ (L ∩K) + (L ∩Kn) ⊆ L,

because K ∩Kn = 0. 2

Corollary 3.8 Let R be a prime ring such that every ideal is finitely generated as a left
ideal and let M be a finitely generated left R-module such that the zero submodule is the
intersection of a finite collection of maximal 0-prime submodules. Let L be an essential
submodule of M . Then there exists a non-zero ideal A of R such that AM ⊆ L.

Proof. There exist a positive integer n and maximal 0-prime submodules Ki(1 ≤ i ≤
n) such that 0 = K1∩· · ·∩Kn and 0 6= K1∩· · ·∩Ki−1∩Ki+1∩· · ·∩Kn for all 1 ≤ i ≤ n.
Clearly L ∩K1 ∩ · · · ∩Ki−1 ∩Ki+1 ∩ · · · ∩Kn * Ki for all 1 ≤ i ≤ n. The result follows
by Lemma 3.6. 2

Theorem 3.9 The following statements are equivalent for a left Noetherian ring R.
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(i) R is fully left bounded.

(ii) Every radical submodule of every finitely generated R-module is a finite intersec-
tion of maximal prime submodules of M .

(iii) Every radical submodule of the R-module R is a finite intersection of maximal
prime submodules of the R-module R.

(iv) Every prime ideal P of R is a finite intersection of maximal P -prime submodules
of the R-module R.

Proof. (i) ⇒ (ii) By Theorem 3.5.

(ii) ⇒ (iii) Clear.

(iii) ⇒ (iv) Let P be any prime ideal of R. By (iii) there exist a positive integer
n, prime ideals Pi(1 ≤ i ≤ n) and maximal Pi-prime submodules Ki(1 ≤ i ≤ n) of
R such that P = K1 ∩ · · · ∩ Kn and P 6= K1 ∩ · · · ∩ Ki−1 ∩ Ki+1 ∩ · · · ∩ Kn for all
1 ≤ i ≤ n. For each 1 ≤ i ≤ n, PR ⊆ Ki so that P ⊆ (Ki : R) = Pi. Suppose that
P 6= Pi for some 1 ≤ i ≤ n. Then Pi(K1 ∩ · · · ∩Ki−1 ∩Ki+1 ∩ · · · ∩Kn) ⊆ P , so that
K1 ∩ · · · ∩Ki−1 ∩Ki+1 ∩ · · · ∩Kn = P , a contradiction. Thus P = Pi(1 ≤ i ≤ n). This
proves (iv).

(iv) ⇒ (i) Let Q be any prime ideal of R. Let M denote the R-module R/Q. Then
the (R/Q)-module M satisfies the hypotheses of Corollary 3.8. Let E be any left ideal of
R containing Q such that E/Q is an essential left ideal of R/Q. By Corollary 3.8 there
exists an ideal A of R properly containing Q such that (A/Q)(R/Q) ⊆ E/Q, i.e. A ⊆ E.
Hence R/Q is left bounded. 2

Finally, note that if R is an arbitrary ring and N is a radical submodule of an R-module
M such that the module M/N has only a finite number of minimal prime submodules
then N has a prime decomposition (see [8, p.1059]). The converse is false. Consider the
following result.

Theorem 3.10 Let P and Q be prime ideals of a ring R such that P * Q and Q * P

and let N be the submodule P ⊕Q of the R-module R⊕R. Then N = K ∩L where K is
the P -prime submodule P ⊕R and L is the Q-prime submodule R⊕Q of M . Moreover,
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the minimal prime submodules of M/N are K/N, L/N and BM/N where P + Q ⊆ B

and B/(P + Q) is a minimal prime ideal of the ring R/(P + Q).

Proof. The first part is clear. Let G be a submodule of M containing N such that
G/N is a minimal prime submodule of M/N . Note that G is a prime submodule of M .
Now P (R ⊕ 0) ⊆ G gives R ⊕ 0 ⊆ G or PM ⊆ G. If R ⊕ 0 ⊆ G then R ⊕ Q ⊆ G and
(R ⊕ Q)/N is a prime submodule of M/N so that G/N = (R ⊕ Q)/N . Suppose that
PM ⊆ G. Next Q(0⊕R) ⊆ G gives that G/N = (P ⊕R)/N or QM ⊆ G. Suppose that
QM ⊆ G. Then (P + Q)M ⊆ G. Because P + Q is contained in the prime ideal (G : M)
there exists a prime ideal B of R such that P + Q ⊆ B ⊆ (G : M) and B/(P + Q) is a
minimal prime ideal of the ring R/(P + Q). Note that BM/N is a prime submodule of
M/N such that BM/N ⊆ G/N . Then G/N = BM/N . 2

Let S be a commutative domain such that there exists a proper ideal A of S such that
the ring S/A has an infinite number of minimal prime ideals. Let R denote the polynomial
ring S[X] where X is the set of indeterminates {xa : a ∈ A}. Let P =

∑
a∈A Rxa and let

Q =
∑
a∈A R(xa − a). Then P and Q are prime ideals of R because R/P ∼= R/Q ∼= S.

Moreover, P +Q = P +A and R/(P +Q) ∼= S/A, so that the ring R/(P +Q) contains an
infinite number of minimal prime ideals. If N is the submodule P ⊕Q of the R-module
M = R ⊕ R then N has a prime decomposition but the R-module M/N contains an
infinite number of minimal prime submodules by Theorem 3.10.

To find a commutative domain S and an ideal A with the above properties we proceed
as follows. Let T be any commutative von Neumann regular ring which is not Artinian.
Then every prime ideal of T is maximal and T contains an infinite number of (minimal)
prime ideals. Let S = Z[X] denote the polynomial ring in the set X = {xt : t ∈ T} of
indeterminates. Then S is a commutative domain and there exists a ring epimorphism
φ : S → T such that φ(xt) = t (t ∈ T ). Let A denote the kernel of φ. Then A is an ideal
of S such that S/A ∼= T .
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