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Abstract

In the present paper, we introduce the Durrmeyer variant of Baskakov-Bezier

operators Bn,α(f, x), which is the modified form of Baskakov-Beta operators. Here

we obtain an estimate on the rate of convergence of Bn,α(f, x) for functions of

bounded variation in terms of Chanturiya’s modulus of variation. In the end we

also propose an open problem for the readers.
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1. Introduction

Let I ≡ [0,∞) and let Mloc(I) be the class of all measurable complex valued locally
bounded functions on I. For f ∈ Mloc(I), the Baskakov-Durrmeyer type operators
Bn(n ∈ N) applied to f are defined as

Bn(f, x) =
∞∑
k=0

pn,k(x)

∞∫
0

bn,k(t)f(t)dt, x ∈ I (1)
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where

pn,k(x) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
, bn,k(t) =

tk

B(k + 1, n)(1 + t)n+k+1

and B(k + 1, n) = k!(n− 1)!/(n+ k)!.
The operator defined by (1) were introduced by the author (see[5],[6]). Some approx-

imation properties of these operators were studied by Gaur and Sharma [4] and Argawal
and Thamer [2].

Recently Zeng and Gupta [7] estimated the rate of convergence of the discrete
Baskakov-Bezier operators, which are defined by

Pn,α(f, x) =
∞∑
k=0

f

(
k

n

)
Q

(α)
n,k(x),

where Q(α)
n,k(x) = Jαn,k(x)−Jαn,k+1(x), α ≥ 1,

∞∑
j=k

pn,j(x) = Jn,k(x) and pn,k(x) is the

Baskakov basis function. As the operator (1) are the Baskakov Durrmeyer type operators
and they have many interesting properties, this motivated us to study further on such
operators. For α ≥ 1, we now introduce the Durrmeyer variant of the Baskakov Bezier
operators as

Bn,α(f, x) =
∞∑
k=0

Q
(α)
n,k(x)

∞∫
0

bn,k(t)f(t)dt . (2)

Obviously, Bn,α(1, x) = 1 and particularly when α = 1, the operators (2) reduce to the

operators (1). For further properties of Q(α)
n,k(x) and Jn,k(x),we refer the readers to [7].

Clearly if f ∈ Mloc(I), and if for every t > 0, |f(t)| ≤M(1+t)γ with some M > 0, γ ≥ 0,
then Bn,α(f, x) are well defined for n > γ.

In the present paper, we obtain the rate of convergence for the Durrmeyer type
Baskakov-Bezier operators Bn,α(f, x) in terms of Chanturiya’s modulus of variation of
the auxiliary function gx defined by

gx (t) =


f(t) − f(x−) , 0 ≤ t < x

0 , t = x

f(t) − f(x+) , x < t <∞ .
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The Chanturiya’s modulus of variation of jth order for the function g, bounded on
a finite or infinite interval Y contained in I is denoted by vj (g, Y )and defined as the

upper bound of the set of all numbers
j∑

k=1

|g(bk)− g(ak)| over all systems of j non-

overlapping intervals (ak, bk), k = 1, 2, 3, ..., j contained in Y . In particular, if j = 0 we
have v0 (g, Y ) = 0, the sequence {vj (g, Y )}∞j=0 is called the modulus of variation we refer

to the readers [3].

2. Basic Results

In this section we give certain results which are necessary to prove the main result.
Recently Zeng [9] estimated the exact bounds for Bernstein basis functions and Meyer

Konig Zeller basis functions. For k ∈ N and t ∈ (0, 1], the author of [9] obtained the
inequality (

n+ k − 1
k

)
tk(1− t)n < 1√

2e
1√
nt
. (3)

Replacing the variable t with
x

1 + x
in eq. (3), we get the following result:

Lemma 1 For all x ∈ (0,∞) and k ∈ N, we have

Q
(α)
n,k(x) ≤ α.pn,k(x) <

α
√

1 + x√
2e
√
nx

,

where the constant 1√
2e

is the best possible.

Lemma 2 [5] Let the mth order moment be defined by

Bn,1((t − x)m, x) ≡ µn,m(x) =
∞∑
k=0

pn,k(x)

∞∫
0

bn,k(t)(t − x)mdt

then, we have

µn,0(x) = 1 , µn,1(x) =
1 + x

n− 1
,
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and

(n−m− 1)µn,m+1(x) = x(1 + x)
{
µ

(1)
n,m(x) + 2mµn,m−1(x)

}
+

+ {(m+ 1)(1 + 2x)− x}µn,m(x), n > m+ 1.

¿From the above recurrence relation, we have

µn,2(x) =
2(n+ 1)x2 + 2(n+ 2)x+ 2

(n− 1)(n− 2)
.

Remark 1 In particular, given any number λ > 2 and x > 0, there is an integer
N(λ, x) > 2, such that

µn,2(x) =
λx(1 + x)

n
.

Following along the lines of the proof of Lemma in [1] and in view of the inequality
|aα − bα| ≤ α |a− b| , 0 ≤ a, b ≤ 1; α ≥ 1, we can easily obtain the following lemma:

Lemma 3 Let x ∈ (0,∞) , h 6= 0 and f be a function of the class Mloc(I). Put Ix(h) =
[x+ h, x] ∩ I if h < 0 and Ix(h) = [x, x+ h] if h > 0. Then, for every n ≥ 4∣∣∣∣∣∣∣

∞∑
k=0

Q
(α)
n,k(x)

∫
Ix(h)

gx(t)bn,k(t)dt

∣∣∣∣∣∣∣ ≤
(

1 +
8nαµn,2(x)

h2

)

×


m−1∑
j=1

1
j3
vj(gx; Ix(

jh√
n

)) +
1
m2

vj(gx; Ix(h))

 ,

where m = [
√
n] means the greatest integer not greater than

√
n.

3. Rate of Convergence

In this section we prove the following theorem.

Theorem 3.1 Let f ∈ Mloc(I) and let there be a fixed point x ∈ (0,∞), the one sided
limits f(x±) exist. Also, |f(t)| ≤ M(1 + t)γ , t > 0 with some M > 0, γ ≥ 0 and choose
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a number λ > 2 and α ≥ 1.Then for n ≥ max {4, γ + 1, N(λ, x)}, we have∣∣∣∣Bn,α(f, x)−
[

1
α+ 1

f(x+) +
α

α+ 1
f(x−)

]∣∣∣∣
≤ |f(x+)− f(x−)| α

√
1 + x√
2enx

+M0
(1 + x)γ

(nx2)γ
+ M1

(1 + x)γ+1

nx
+

+
(

1 +
8αλ (1 + x)

x

)
m−1∑
j=1

vj(gx; x− jx/√n, x) + vj(gx; x, x+ jx/
√
n)

j3
+

+
vm(gx; 0, x) + vm(gx; x, 2x)

m3

 ,

where M0 and M1 are certain constants depending on α, λ and γ.

Proof. It is easily verified [8] that∣∣∣∣Bn,α(f, x)−
[

1
α+ 1

f(x+) +
α

α+ 1
f(x−)

]∣∣∣∣
≤ |Bn,α(gx, x)|+ 1

2
|f(x+) − f(x−)|

∣∣∣∣Bn,α(sign(t− x), x) +
α− 1
α+ 1

∣∣∣∣ . (4)

In order to prove the theorem we need the estimate for Bn,α(gx, x) andBn,α(sign(t−x), x).
We first estimate Bn,α(sign(t − x), x) as follows:

Bn,α(sign(t− x), x) =
∞∑
k=0

Q
(α)
n,k(x)

 ∞∫
x

bn,k(t)dt−
x∫

0

bn,k(t)dt



=
∞∑
k=0

Q
(α)
n,k(x)

 ∞∫
0

bn,k(t)dt − 2

x∫
0

bn,k(t)dt



= 1− 2
∞∑
k=0

Q
(α)
n,k(x)

x∫
0

bn,k(t)dt.
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Using the fact
∞∫
x

bn,k(t)dt =
k∑
j=0

pn,j(x), we have

Bn,α(sign(t − x), x) = 1− 2
∞∑
k=0

Q
(α)
n,k(x)

1−
k∑
j=0

pn,j(x)



= −1 + 2
∞∑
k=0

Q
(α)
n,k(x)

k∑
j=0

pn,j(x)

= −1 + 2
∞∑
j=0

pn,j(x)
∞∑
k=j

Q
(α)
n,k(x) = −1 + 2

∞∑
j=0

pn,j(x)Jαn,j(x).

Thus

Bn,α(sign(t− x), x) +
α− 1
α+ 1

= 2
∞∑
j=0

pn,j(x)Jαn,j(x)− 2
α+ 1

∞∑
j=0

Q
(α+1)
n,k (x),

since
∞∑
k=0

Q
(α)
n,k(x) = 1. By the mean value theorem, we have

Q
(α+1)
n,j (x) = Jα+1

n, j (x)− Jα+1
n, j+1(x) = (α+ 1)pn, j(x)γαn, j(x)

where Jαn, j(x) < γαn, j(x) < Jαn, j+1(x) . Therefore

∣∣∣∣Bn,α(sign(t − x), x) +
α− 1
α+ 1

∣∣∣∣ = 2
∞∑
j=0

pn,j(x)
(
Jn, j

α(x)− γαn, j(x)
)

≤ 2
∞∑
j=0

pn,j(x)
(
Jn, j

α(x)− Jαn, j+1(x)
)

≤ 2α
∞∑
j=0

pn,j(x) (Jn, j(x)− Jn, j+1(x))

= 2α
∞∑
j=0

p2
n,j(x).
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Applying Lemma 1, we have

∣∣∣∣Bn,α(sign(t− x), x) +
α− 1
α+ 1

∣∣∣∣ < 2α
√

1 + x√
2enx

∞∑
j=0

pn,j(x) =
α
√

2(1 + x)√
e
√
nx

. (5)

Next we estimate Bn,α(gx, x), as follows:

Bn,α(gx, x) =
∞∑
k=0

Q
(α)
n,k(x)

x∫
0

gx(t)bn,k(t)dt

+
∞∑
k=0

Q
(α)
n,k(x)

2x∫
x

gx(t)bn,k(t)dt+
∞∑
k=0

Q
(α)
n,k(x)

∞∫
2x

gx(t)bn,k(t)dt

= E1(α, n, x) + E2(α, n, x) +E3(α, n, x), say. (6)

Using Lemma 3 (with h = −x) and Lemma 2, we have

|E1(α, n, x)| ≤
{

1 +
8αλ(1 + x)

x

}

×


m−1∑
j=1

1
j3
vj(gx; x, x+ jx/

√
n, x) +

1
m3

vm(gx; 0, x)

 , (7)

for all n ≥ N(λ, x). Also by Lemma 3 with h = x and Lemma 2, we get the corresponding
estimate of E2(α, n, x) as follows:

|E2(α, n, x)| ≤
{

1 +
8αλ(1 + x)

x

}

×


m−1∑
j=1

1
j3
vj(gx; x, x+ jx/

√
n) +

1
m3

vm(gx; x, 2x)

 . (8)

Finally for n > γ,we have

E3(α, n, x) ≤M
∞∑
k=0

Q
(α)
n,k(x)

∞∫
2x

{(1 + t)γ + (1 + x)γ} bn,k(t)dt.
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Using the identity (1 + t)γ − (1 + x)γ ≤ (2γ − 1)
(1 + x)γ

xγ
(t− x)γ , t ≥ 2x, we have

|E3(α, n, x)| ≤M
∞∑
k=0

Q
(α)
n,k(x)

∞∫
2x

{
(2γ − 1)

(1 + x)γ

xγ
(t− x)γ + 2(1 + x)γ

}
bn,k(t)dt

≤M(2γ − 1)α
(1 + x)γ

xγ
µn, γ(x) + 2Mα

(1 + x)α

x2
µn, 2(x).

Making use of Lemma 2, we get

|E3(α, n, x)| ≤M0
(1 + x)γ

(nx2)γ
+ M1

(1 + x)γ

nx
, (9)

where M0, M1 are constants depending on α, λ and γ.
Finally collecting the estimates of (4)-(9), we get the required result. This completes

the proof of the theorem.

Remark 2 It is remarked here that on the similar lines we may introduce the Durrmeyer
variant of similar operators. For example, Szasz Bezier operators introduced by Zeng [10],
are defined by

Ln (f, x) =
∞∑
k=0

R
(α)
n,k(x) f

(
k

n

)
,

where R(α)
n,k(x) =

(
∞∑
j=k

qn,k(x)

)α
−
(

∞∑
j=k+1

qn,k(x)

)α
, α ≥ 1 and

qn,k(x) = e−nx
(nx) k

k!
is the Szasz basis function. Some basic properties of R(α)

n,k(x) can

be found in [10].
We can define the Durrmeyer type modification of the operators Ln as

Sn,α (f, x) =
∞∑
k=0

R
(α)
n,k(x)

∞∫
0

bn,k(t)dt , x ∈ [0,∞) , (10)

where f ∈ L1[0,∞) and bn,k(t) is defined as in eq.(1).
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Actually the operators Sn,α (f, x) defined above are hybrid Durrmeyer type Szasz-
Bezier operators, as in this case we have taken the entirely different weight functions.

We may note here that the rates of convergence in terms of Chanturiya’s modulus
of variation for the operators Sn,α (f, x) are not possible. The main problem is in
the estimation of Sn,α (sign(t− x), x) , because we can not relate easily the integration
of Baskakov basis functions with the summation of Szasz basis function. The other
approximation properties like direct, inverse and saturation results for the operators
Sn,1 (f, x) are easier, but the analogues results for the operators Sn,α (f, x) (even for
Sn,1 (f, x) are still unresolved. This may be considered as an open problem to the readers.)
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