Fuzzy β -Compactness and Fuzzy β -Closed Spaces

I. M. Hanafy

Abstract

The concepts of β -compactness and β - closed spaces in the fuzzy setting are defined and investigated. Fuzzy filterbases are used to characterize these concepts. A comparison between these types and some different forms of compactness in fuzzy topology is established.

Key Words: Fuzzy topological spaces, fuzzy β -compactness, fuzzy β -closed spaces, fuzzy filterbases.

1. Introduction

Compactness occupies a very important place in fuzzy topology and so do some of its forms. In [1], Abd El- Monsef et al introduced the concepts of β -open sets and β continuous functions in general topology and Fath Alla in [8] introduced these concepts in fuzzy setting. In [5], some interesting properties of fuzzy β - compactness are investigated. The purpose of this paper is devoted to introduce and study the concepts of β -compactness and β -closed spaces in fuzzy setting. These notions generalize basic classical results (see [1], [2], [3], [4], [7] and [11]). Using fuzzy filterbases, we characterize fuzzy β -compactness and fuzzy β -closed spaces. We also explore some expected basic properties of these concepts.

AMS Subject Classification Code: 54A40, 54D30 and 54A20

2. Preliminaries

Throughout this paper X and Y mean fuzzy topological spaces (fts, for short). A fuzzy point x_t in X is a fuzzy set having support $x \in X$ and value $t \in (0, 1]$ [13]. The complement and the support of a fuzzy set u denoted by \dot{u} and S(u), respectively. For two fuzzy sets u and v, we shall write $uqv (u\tilde{q}v)$ to mean that u is quasi coincident (not quasi coincident) with v, *i.e.*, there exists $x \in X$ such that u(x) + v(x) > 1 $(u(x) + v(x) \le 1)$ [13].

Definition 2.1 A fuzzy set u in a fts X is said to be:

(a) semiopen fuzzy set if $u \leq cl$ int u [4];

(b) preopen fuzzy set if $u \leq int cl u$ [15];

(c) β -open fuzzy set if $u \leq cl$ int cl u [8], equivalently, if there exists a preopen fuzzy set A such that $A \leq u \leq \overline{A}$.

It is obvious that each semiopen and preopen fuzzy set implies β -open.

Definition 2.2 [4, 10]. Let u be a fuzzy set in a fts X, the fuzzy pre-closure (resp. semi-closure, pre-interior and semi-interior) of u denoted by pcl u (resp. scl u, pint u and sin t u) are defined as follows:

pcl $u(scl u) = \land \{A : u \leq A, A \text{ is preclosed (semiclosed)}\};$ pint $u(sin t u) = \lor \{A : u \geq A, A \text{ is preopen (semiopen)}\}.$

Definition 2.3 Let u be a fuzzy set in a fts X. The fuzzy β -closure (β cl) and β -interior (β int) of u are defined as follows:

 $\beta cl \ u \ = \land \ \{A : u \le A, \ A \ is \ \beta \text{-closed}\};$

 $\beta int \ u = \lor \ \{A : u \ge A, \ A \ is \ \beta \text{-open}\}.$

It is obvious that $\beta cl \ u = (\beta int \ u)'$ and $\beta int \ u = (\beta cl \ u)'$.

Definition 2.4 A function $f : X \to Y$ is said to be fuzzy β -continuous [8] (resp. $M\beta$ continuous) if the inverse image of every open (resp. β - open) fuzzy set in Y is β -open (resp. β -open) fuzzy set in X.

Lemma 2.5 Let $f: X \to Y$ be a function, then the following are equivalent:

(a) f is fuzzy $M\beta$ -continuous.

(b) $f(\beta cl u) \leq \beta cl f(u)$, for every fuzzy set u in X.

Proof. (a) \Rightarrow (b): Let u be a fuzzy set of X, then $\beta cl f(u)$ is β -closed. By (a) $f^{-1}(\beta cl f(u))$ is β -closed and so $f^{-1}(\beta cl f(u)) = \beta cl f^{-1}(\beta cl f(u))$. Since $u \leq f^{-1}(f(u))$, we have $\beta cl u \leq \beta cl f^{-1}(f(u)) \leq \beta cl f^{-1}(\beta cl f(u)) = f^{-1}(\beta cl f(u))$. Hence $f(\beta cl u) \leq \beta cl f(u)$.

(b) \Rightarrow (a): Let v be a β -closed fuzzy set in Y. By (b) if $u = f^{-1}(v)$, then $\beta cl f^{-1}(v) \leq f^{-1}(\beta cl f(f^{-1}(v))) \leq f^{-1}(\beta cl v) = f^{-1}(v)$. Since $f^{-1}(v) \leq \beta cl f^{-1}(v)$, then $f^{-1}(v) = \beta cl f^{-1}(v)$. Hence $f^{-1}(v)$ is β -closed fuzzy set in X. Hence f is fuzzy $M\beta$ - continuous. \Box

Lemma 2.6 Let $f : X \to Y$ be a function, then the following are equivalent:

(a) f is fuzzy β -continuous.

(b) $f(\beta cl u) \leq cl f(u)$, for every fuzzy set u in X.

Proof. Obvious

Theorem 2.7 [16]. If $f : X \to Y$ is fuzzy open function, then $f^{-1}(cl(u)) \leq cl(f^{-1}(u))$, for every fuzzy set u in Y.

Definition 2.8 [9]. A collection of fuzzy subsets ξ of a fts X is said to form a fuzzy filterbases iff for every finite collection $\{A_j : j = 1, ..., n\}, \bigwedge_{j=1}^n A_j \neq 0_X.$

Definition 2.9 [9]. A collection μ of fuzzy sets in a fts X is said to be cover of a fuzzy set u of X iff $(\bigvee_{A \in \mu} A)(x) = 1_X$, for every $x \in S(u)$. A fuzzy cover μ of a fuzzy set u in a fts X is said to have a finite subcover iff there exists a finite subcollection $\eta = \{A_1, ..., A_n\}$ of μ such that $(\bigvee_{j=1}^n A_j)(x) \ge u(x)$, for every $x \in S(u)$.

Definition 2.10 A fts X is said to be strongly compact [14] (resp. semicompact [12]) iff every preopen (resp. semiopen) cover of X has a finite subcover.

Definition 2.11 A fts X is said to be almost compact [7] (resp. S-closed [6], s-closed [11], P-closed [17]) iff every open (resp. semiopen, semiopen, preopen) cover of X has a finite subcollection whose closures (resp. closures, semi-closures, pre-closures) cover X.

3. Fuzzy β -Compact Space

Definition 3.1 [5]. A fts X is said to be fuzzy β -compact iff for every family μ of β -open fuzzy sets such that $\bigvee_{A \in \mu} A = 1_X$ there is a finite subfamily $\eta \subseteq \mu$ such that $\bigvee_{A \in \eta} A = 1_X$.

Definition 3.2 A fuzzy set u in a fts X is said to be fuzzy β -compact relative to X iff for every family μ of β -open fuzzy sets such that $\bigvee_{A \in \mu} A \ge u(x)$ there is a finite subfamily $\eta \subseteq \mu$ such that $\bigvee_{A \in \eta} A \ge u(x)$ for every $x \in S(u)$.

Remark 3.3 Since each of semiopen and preopen fuzzy set implies β -open, it is clear that every fuzzy β -compact space implies each of fuzzy strongly compact space and fuzzy semicompact space. But the converse need not be true.

Theorem 3.4 A fts X is β -compact iff for every collection $\{A_j : j \in J\}$ of β -closed fuzzy sets of X having the finite intersection property, $\bigwedge_{j \in J} A_j \neq 0_X$.

Proof. Let $\{A_j : j \in J\}$ be a collection of β -closed fuzzy sets with the finite intersection property. Suppose that $\bigwedge_{j \in J} A_j = 0_X$. Then $\bigvee_{j \in J} \hat{A}_j = 1_X$. Since $\{\hat{A}_j : j \in J\}$ is a collection of β -open fuzzy sets cover of X, then from the β -compactness of X it follows that there exists a finite subset $F \subseteq J$ such that $\bigvee_{j \in J} \hat{A}_j = 1_X$. Then $\bigwedge_{j \in F} A_j = 0_X$ which gives a contradiction and therefore $\bigwedge_{j \in J} A_j \neq 0_X$.

Conversely, Let $\{A_j : j \in J\}$ be a collection of β - open fuzzy sets cover of X. Suppose that for every finite subset $F \subseteq J$, we have $\bigvee_{j \in F} A_j \neq 1_X$. Then $\bigwedge_{j \in F} \hat{A}_j \neq 0_X$. Hence $\{\hat{A}_j : j \in J\}$ satisfies the finite intersection property. Then from the hypothesis we have $\bigwedge_{j \in J} \hat{A}_j \neq 0_X$ which implies $\bigwedge_{j \in F} A_j \neq 1_X$ and this contradicting that $\{A_j : j \in J\}$ is a β -open cover of X. Thus X is fuzzy β -compact.

Now, we give some results of fuzzy β -compactness in terms of fuzzy filterbases.

Theorem 3.5 A fts X is fuzzy β -compact iff every filterbases ξ in X, $\bigwedge_{G \in \xi} \beta cl G \neq 0_X$.

Proof. Let μ be a β -open fuzzy set cover of X and μ has no a finite subcover. Then for every finite subcollection $\{A_1, ..., A_n\}$ of μ , there exists $x \in X$ such that $A_j(x) < 1$ for every j = 1, ..., n. Then $\hat{A}_j(x) > 0$, so that $\bigwedge_{j=1}^n \hat{A}_j(x) \neq 0_X$. Thus $\{\hat{A}_j(x) : A_j \in \mu\}$ forms a filterbases in X. Since μ is β -open fuzzy set cover of X, then $(\bigvee_{A_j \in \mu} A_j)(x) = 1_X$ for every $x \in X$ and hence $\bigwedge_{A_j \in \mu} \beta cl \hat{A}_i(x) = \bigwedge_{A_j \in \mu} \hat{A}_j(x) = 0_X$, which is a contradiction. Then every β -open fuzzy set cover of X has a finite subcover and hence X is fuzzy β -compact.

Conversely, suppose there exists a filterbases ξ such that $\bigwedge_{G \in \xi} \beta cl \ G = 0_X$, so that $(\bigvee_{G \in \xi} (\beta cl \ G)')(x) = 1_X$ for every $x \in X$ and hence $\mu = \{(\beta cl \ G)' : G \in \xi\}$ is a β -open fuzzy set cover of X. Since X is fuzzy β -compact, then μ has a finite subcover. Then $(\bigvee_{j=1}^n (\beta cl \ G_j)')(x) = 1_X$ and hence $(\bigvee_{j=1}^n G'_j)(x) = 1_X$, so that $\bigwedge_{j=1}^n G_j = 0_X$ which is a contradiction, since the G_j are members of filterbases ξ . Therefore $\bigwedge_{G \in \xi} \beta cl \ G \neq 0_X$ for every filterbases ξ .

Theorem 3.6 A fuzzy set u in a fts X is fuzzy β -compact relative to X iff for every filterbases ξ such that every finite of members of ξ is quasi coincident with u, $(\bigwedge_{G \in \xi} \beta cl G) \wedge u \neq 0_X$.

Proof. Let u not be fuzzy β -compact relative to X, then there exists a β -open fuzzy set μ cover of u such that μ has no finite subcover η . Then $(\bigvee_{A_j \in \eta} A_j)(x) < u(x)$ for some $x \in S(u)$, so that $(\bigwedge_{A_j \in \eta} \dot{A}_j)(x) > \dot{u}(x) \ge 0$ and hence $\xi = \{\dot{A}_j : A_j \in \mu\}$ forms a filterbases and $\bigwedge_{A_j \in \eta} \dot{A}_j qu$. By hypothesis $(\bigwedge_{A_j \in \eta} \beta cl \dot{A}_j) \land u \ne 0_X$ and hence $(\bigwedge_{A_j \in \eta} \dot{A}_j) \land u \ne 0_X$. Then for some $x \in S(u)$, $(\bigwedge_{A_j \in \mu} \dot{A}_j)(x) > 0_X$, that is $(\bigvee_{A_j \in \mu} A_j)(x) < 1_X$, which is a contradiction. Hence u is fuzzy β -compact relative to X.

Conversely, suppose that there exists a filterbases ξ such that every finite of members of ξ is quasi coincident with u and $(\bigwedge_{G \in \xi} \beta cl G) \land u \neq 0_X$. Then for every $x \in S(u)$, $(\bigwedge_{G \in \xi} \beta cl G)(x) = 0_X$ and hence $(\bigvee_{G \in \xi} (\beta cl G)')(x) = 1_X$ for every $x \in S(u)$. Thus $\mu = \{(\beta cl G)' : G \in \xi\}$ is β -open fuzzy set cover of u. Since u is fuzzy β -compact

relative to X, then there exists a finite subcover, say $\{(\beta cl \ G_1)', ..., (\beta cl \ G_n)'\}$, such that $(\bigvee_{j=1}^n (\beta cl \ G_j)')(x) \ge u(x)$ for every $x \in S(u)$. Hence $(\bigwedge_{j=1}^n (\beta cl \ G_j))(x) \le u(x)$ for every $x \in S(u)$, so that $\bigwedge_{j=1}^n (\beta cl \ G_j) \stackrel{\sim}{q} u$, which is a contradiction. Therefore for every filterbases ξ such that every finite of members of ξ is quasi coincident with u, $(\bigwedge_{G \in \xi} \beta cl \ G) \land u \neq 0_X$.

Theorem 3.7 Every β -closed fuzzy subset of a fuzzy β -compact space is fuzzy β -compact relative to X.

Proof. Let ξ be a fuzzy filterbases in X such that $uq \land \{G : G \in \lambda\}$ holds for every finite subcollection λ of ξ and a β -closed fuzzy set u. Consider $\xi^* = \{u\} \cup \xi$. For any finite subcollection λ^* of ξ^* , if $u \notin \lambda^*$, then $\land \lambda^* \neq 0_X$. If $u \in \lambda^*$ and since $uq \land \{G : G \in \lambda^* - u\}$, then $\land \lambda^* \neq 0_X$. Hence λ^* is a fuzzy filterbases in X. Since X is fuzzy β -compact, then $\land \lambda^* \neq 0_X$, so that $(\land \beta \beta cl \ G) \land u = (\land \beta cl \ G) \land \beta cl \ u \neq 0_X$. Hence by Theorem 3.6, we have u is fuzzy β -compact relative to X.

Theorem 3.8 If a function $f : X \to Y$ is fuzzy $M\beta$ -continuous and u is fuzzy β -compact relative to X, then so is f(u).

Proof. Let $\{A_j : j \in J\}$ be a β -open fuzzy set cover of S(f(u)). For $x \in S(u)$, $f(x) \in f(S(u)) = S(f(u))$. Since f is fuzzy $M\beta$ -continuous, then $\{f^{-1}(A_j) : j \in J\}$ is β -open fuzzy set cover of S(u). Since u is fuzzy β -compact relative to X, there is a finite subfamily $\{f^{-1}(A_j) : j = 1, ..., n\}$ such that $S(u) \leq \bigvee_{j=1}^n f^{-1}(A_j)$ which implies $S(u) \leq f^{-1}(\bigvee_{j=1}^n A_j)$ and then $S(f(u)) = f(S(u)) \leq ff^{-1}(\bigvee_{j=1}^n A_j) \leq \bigvee_{j=1}^n A_j$. Therefore f(u) is fuzzy β -compact relative to Y.

Lemma 3.9 If $f : X \to Y$ is fuzzy open and fuzzy continuous function, then f is fuzzy $M\beta$ -continuous.

Proof. Let v be an β -open fuzzy set in Y, then $v \leq clint clv$. So $f^{-1}(v) \leq f^{-1}(clint clv) \leq cl (f^{-1}(int clv))$. Since f is fuzzy continuous, then $f^{-1}(int clv) = int (f^{-1}(clv))$. Also by Theorem 2.7, $f^{-1}(int clv) = int (f^{-1}(int clv)) \leq int (f^{-1}(clv)) \leq int (f^{-1}(clv))$. Thus $f^{-1}(v) \leq cl (f^{-1}(int clv)) \leq cl int cl(f^{-1}(v))$. Hence the result. \Box

Corollary 3.10 Let $f : X \to Y$ be fuzzy open and fuzzy continuous function and X is fuzzy β -compact, then f(X) is fuzzy β -compact.

Proof. It is follows directly from Lemma 3.9 and Theorem 3.8.

Definition 3.11 A function $f : X \to Y$ is said to be fuzzy $M\beta$ -open iff the image of every β -open fuzzy set in X is β -open in Y.

Theorem 3.12 Let $f : X \to Y$ be a fuzzy $M\beta$ -open bijective function and Y is fuzzy β -compact, then X is fuzzy β -compact.

Proof. Let $\{A_j : j \in J\}$ be a collection of β -open fuzzy set cover of X, then $\{f(A_j) : j \in J\}$ is β -open fuzzy set covering of Y. Since Y is fuzzy β -compact, there is a finite subset $F \subseteq J$ such that $\{f(A_j) : j \in F\}$ is an cover of Y. But $1_X = f^{-1}(1_Y) = f^{-1}f(\bigvee_{i \in F} A_j) = \bigvee_{i \in F} A_i$ and therefore X is fuzzy β -compact. \Box

4. Fuzzy β -Closed Spaces

Definition 4.1 A fuzzy set u in a fts X is said to be a βq – nbd of a fuzzy point x_t in X if there exists a β -open fuzzy set $A \leq u$ such that $x_t q A$.

Theorem 4.2 Let x_t be a fuzzy point in a fts X and u be any fuzzy set of X, then $x_t \in \beta cl u$ iff for every βq -nbd H of x_t , Hqu.

Proof. Let $x_t \in \beta cl u$ and there exists a $\beta q - nbd H$ of x_t , $H \stackrel{\sim}{q} u$. Then there exists a β -open fuzzy set $A \leq H$ in X such that $x_t qA$, which implies $A \stackrel{\sim}{q} u$ and hence $u \leq \dot{A}$. Since \dot{A} is β -closed fuzzy set, then $\beta cl u \leq \dot{A}$. Since $x_t \notin \dot{A}$, then $x_t \notin \beta cl u$, which is a contradiction.

Conversely, let $x_t \notin \beta cl \ u = \wedge \{A : A \text{ is } \beta \text{-closed in } X, A \geq u\}$. Then there exists a β -closed fuzzy set $A \geq u$ such that $x_t \notin A$. Hence $x_tqA = H$, where H is a β -open fuzzy set in X and $H \stackrel{\sim}{q} u$. Then there exists a $\beta q - nbd H$ of x_t with $H \stackrel{\sim}{q} u$. Hence the result. \Box

Definition 4.3 A fts X is said to be β -closed iff for every family μ of β -open fuzzy set such that $\bigvee_{A \in \mu} A = 1_X$ there is a finite subfamily $\eta \subseteq \mu$ such that $(\bigvee_{A \in \eta} \beta cl A)(x) = 1_X$, for every $x \in X$.

Remark 4.4 From the above definition and other types of fuzzy compactness, one can draw the following diagram:

 $\begin{array}{cccc} F\text{-semicompact} & \to & Fs\text{-closed} & \to & FS\text{-closed} \\ & \uparrow & & \uparrow & \\ F\beta\text{-compact} & \to & F\beta\text{-closed} \\ & \downarrow & & \downarrow & \\ F\text{-strongly compact} & \to & FP\text{-closed} \end{array}$

where F =fuzzy.

Example 4.5 Let $X \neq 0_X$ be a set and $u_n(x) = 1 - \frac{1}{n}$ for every $x \in X$ and $n \in N^+$. The collection $\{u_n : n \in N^+\}$ is a base for a fuzzy topology on X. The collection $\{u_n : n \in N^+\}$ is obviously a β -open fuzzy set cover of X. On the other hand we have $\beta cl u = 1_X$ for every $n \geq 3$. Hence X is β -closed but not fuzzy β -compact, (see [6]).

Remark 4.6 Example 4.5 also shows that:

(i) Each of the concepts Fs-closed, FS-closed and FP-closed spaces does not imply $F\beta$ -compact.

(ii) Since the collection $\{u_n : n \in N^+\}$ is also semiopen (resp. preopen) fuzzy sets cover of X, then X is $F\beta$ -closed space but not F-semicompact space (resp. F-strongly compact space).

Example 4.7 Let X = I = [0, 1] and consider the following fuzzy sets $U_1(x) = \frac{1.7}{\sqrt{3}}$, $U_2(x) = \frac{1.73}{\sqrt{3}}$, $U_3(x) = \frac{1.732}{\sqrt{3}}$, ..., $\forall x \in I$.

Let $\sigma = \{u_j : j \in N^+\} \cup \{0_X, 1_X\}$. It is clear that σ is a fuzzy topology on X. Now, the collection $\{u_j : j \in N^+\}$ is a semiopen (resp. preopen) fuzzy set cover of X but not has a finite subcover. So X is not F-semicompact space (resp. F-strongly compact space). Since the semi-closure (resp. pre-closure) of every semiopen (resp. preopen) fuzzy set of X is 1_X , then X is Fs-closed (resp. FP-closed).

Remark 4.8 Example 4.7 is also shows that each of the concepts FS-closed and FP-closed spaces does not imply each of F-semicompact and F-strongly compact spaces.

Remark 4.9 From Remark 3.3, Example 4.5, Remark 4.6, Example 4.7 and Remark 4.8, it is clear that:

(i) FS-closed and FP-closed spaces are independent notions.

(ii) FS-closed and F-strongly compact spaces are independent notions.

(iii) FP-closed and F-semicompact spaces are independent notions.

(iv) $F\beta$ -compact, F-semicompact and F-strongly compact spaces are independent notions.

Theorem 4.10 A fts X is β -closed iff for every fuzzy β -open filterbases ξ in X, $\bigwedge_{G \in \xi} \beta cl G \neq 0_X$.

Proof. Let μ be a β -open fuzzy set cover of X and let for every finite subfamily η of μ , $(\bigvee_{A \in \eta} \beta cl A)(x) < 1_X$ for some $x \in X$. Then $(\bigwedge_{A \in \eta} \beta cl A)(x) > 0_X$ for some $x \in X$. Thus $\{(\beta cl A)' : A \in \mu\} = \xi$ forms a fuzzy β -open filterbases in X. Since μ is a β - open fuzzy set cover of X, then $\bigwedge_{A \in \mu} A = 0_X$ which implies $\bigwedge_{A \in \mu} \beta cl(\beta cl A)' = 0_X$, which is a contradiction. Then every β -open fuzzy set μ cover of X has a finite subfamily η such that $(\bigvee_{A \in \eta} \beta cl A)(x) = 1_X$ for every $x \in X$. Hence X is β -closed.

Conversely, suppose there exists a fuzzy β -open filterbases ξ in X such that $\bigwedge_{G \in \xi} \beta cl G = 0_X$, so that $(\bigvee_{G \in \xi} (\beta cl G)')(x) = 1_X$ for every $x \in X$ and hence $\mu = \{(\beta cl G)' : G \in \xi\}$ is a β - open fuzzy set cover of X. Since X is β -closed, then μ has a finite subfamily η such that $(\bigvee_{G \in \eta} \beta cl (\beta cl G)')(x) = 1_X$ for every $x \in X$, and hence $\bigwedge_{G \in \eta} (\beta cl (\beta cl G)')' = 0_X$. Thus $\bigwedge_{G \in \eta} G = 0_X$ which is a contradiction, since all the G are members of filterbases. \Box

Definition 4.11 A fuzzy set u in a fts X is said to be β -closed relative to X iff for every family μ of β -open fuzzy sets such that $\bigvee_{A \in \mu} A = u$, there is a finite subfamily $\eta \subseteq \mu$ such that $(\bigvee_{A \in \mu} \beta cl A)(x) \ge u(x)$ for every $x \in S(u)$.

Theorem 4.12 A fuzzy subset u in a fts X is β - closed relative to X iff every fuzzy β -open filterbases ξ in X, $(\bigwedge_{G \in \xi} \beta cl G) \wedge u = 0_X$, there exists a finite subfamily λ of ξ such that $(\bigwedge_{G \in \lambda} G) \stackrel{\sim}{q} u$.

Proof. Let u be a β -closed relative to X, suppose ξ is a fuzzy β -open filterbases in X such that for every finite subfamily λ of ξ , $(\bigwedge_{G\in\lambda} G)qu$, but $(\bigwedge_{G\in\xi} \beta clG) \wedge u = 0_X$. Then for every $x \in S(u)$, $(\bigwedge_{G\in\xi} \beta clG)(x) = 0_X$ and hence $(\bigvee_{G\in\xi} (\beta clG)')(x) = 1_X$ for every $x \in S(u)$. Then $\mu = \{(\beta clG)' : G \in \xi\}$ is a β -open fuzzy set cover of u and hence there exists a finite subfamily $\lambda \subseteq \xi$ such that $\bigvee_{G\in\lambda} \beta cl(\beta clG)' \ge u$, so that $\bigwedge_{G\in\lambda} (\beta cl(\beta clG)')' =$

 $\underset{G \in \lambda}{\wedge} \beta int(\beta clG) \leq \acute{u} \text{ and hence } \underset{G \in \lambda}{\wedge} G \leq \acute{u}. \text{ Then } \underset{G \in \lambda}{\wedge} G \stackrel{\sim}{q} u \text{ which is a contradiction.}$

Conversely, let u not be a β -closed fuzzy set relative to X, then there exists a β -open fuzzy set μ cover of u such that every finite subfamily $\eta \subseteq \mu$, $(\bigvee_{A \in \eta} \beta clA)(x) \leq u(x)$ for some $x \in S(u)$ and hence $(\bigwedge_{A \in \eta} (\beta clA)')(x) > \dot{u}(x) \geq 0$ for some $x \in S(u)$. Thus $\xi = \{(\beta clA)' : A \in \mu\}$ forms a fuzzy β -open filterbases in X. Let there exists a finite subfamily $\{(\beta clA)' : A \in \eta\}$ such that $(\bigwedge_{A \in \eta} (\beta clA)') \quad \widetilde{q} \quad u$. Then $u \leq \bigvee_{A \in \eta} \beta clA$. So there exists a finite subfamily $\eta \subseteq \mu$ such that $\bigvee_{A \in \eta} \beta clA \geq u$ which is a contradiction. Then for each finite subfamily $\lambda = \{(\beta clA)' : A \in \eta\}$ of ξ , we have $(\bigwedge_{A \in \eta} (\beta clA)')qu$. Hence by the given condition $(\bigwedge_{A \in \mu} \beta cl (\beta clA)') \wedge u \neq 0_X$, so there exists $x \in S(u)$ such that $(\bigwedge_{A \in \mu} \beta cl (\beta clA)')(x) > 0_X$. Then $(\bigvee_{A \in \mu} (\beta cl (\beta clA)')')(x) = (\bigvee_{A \in \mu} \beta int (\beta clA))(x) < 1_X$, and hence $(\bigvee_{A \in \mu} A)(x) < 1_X$ which contradicts the fact that μ is a β -open fuzzy set cover of u. Therefore u is fuzzy β -closed relative to X.

Definition 4.13 A fuzzy set u of X is said to be fuzzy β – regular if it is both β -open

and β -closed fuzzy set.

Proposition 4.14 If u is β -open fuzzy set in X, then $\beta cl u$ is β -regular.

Proof. Since $\beta cl u$ is β -closed, we must show that $\beta cl u$ is β -open. Since u is β -open in X, $v \leq u \leq cl v$ holds for some preopen fuzzy set v in X. Therefore, we have $v \leq \beta cl v \leq \beta cl u \leq cl v$, and hence $\beta cl u$ is β -open.

Theorem 4.15 For a fts X, the following are equivalent:

- (a) X is β -closed space.
- (b) Every cover of X by fuzzy β regular sets has a finite subcover.

(c) For every collection $\{A_j : j \in J\}$ of fuzzy β – regular sets such that $\bigwedge_{j \in J} A_j = 0_X$, there exists a finite subset $F \subseteq J$ such that $\bigwedge_{j \in F} A_j = 0_X$.

Proof. It is obvious from Proposition 4.14 and from the facts that, for every collection $\{A_j : j \in J\}, \quad (\bigvee_{j \in J} A_j)' = \bigwedge_{j \in J} \hat{A}_j, \qquad (\bigwedge_{j \in J} A_j)' = \bigvee_{j \in J} \hat{A}_j \quad \text{and}$

A is β -open fuzzy set iff \hat{A} is β -closed fuzzy set.

Theorem 4.16 Let $f : X \to Y$ be a fuzzy β -continuous surjection function. If X is β -closed space, then Y is almost compact.

Proof. Let $\{A_j : j \in J\}$ be an open fuzzy set cover of Y. Then $\{f^{-1}(A_j) : j \in J\}$ is a β -open fuzzy set cover of X. By hypothesis, there exists a finite subset $F \subseteq J$ such that $\bigvee_{j \in F} \beta cl f^{-1}(A_j) = 1_X$. From the surjectivity of f and by Lemma 2.6, $1_Y = f(1_X) = f(\bigvee_{j \in F} \beta cl f^{-1}(A_j)) \leq \bigvee_{j \in F} cl f(f^{-1}(A_j)) = \bigvee_{j \in F} cl A_j$. Hence Y is almost compact. \Box

Using Lemma 2.5, we have also the following theorem which can proved similarly to Theorem 4.16.

Theorem 4.17 If $f: X \to Y$ is fuzzy $M\beta$ -continuous surjection function and X is fuzzy β - closed space, then Y is so.

Acknowledgement

It is a pleasure to thank the referees for their comments which resulted in an improved presentation of the paper.

References

- M.E. Abd El-Monsef and S.N. El-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci., Assiut Univ., 12, 77-90 (1983).
- [2] M.E. Abd El-Monsef and A.M. Kozae, Some generalized forms of compactness and closedness, Delta J. Sci. 9(2), 257-269 (1985).
- [3] A. Andrijevic, Semi-preopen sets. Mat. Vesnik 38, 24-32 (1986).
- K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82, 14-32 (1981).
- [5] Balasubramanian, Ganesan, On fuzzy β-compact spaces and fuzzy β- extremally disconnected spaces, Kybernetika [cybernetics] 33, no. 3, 271-277 (1997).
- [6] D. Coker and A. Haydar Es, On fuzzy S-closed spaces, Doga Tu J. Math., 145-152 (1987).
- [7] A. Di Concillio and G. Gerla, Almost compactness in fuzzy topological spaces, Fuzzy Sets and Systems, 13, 187-192 (1984).
- [8] M.A. Fath Alla, On fuzzy topological spaces, Ph. D. Thesis, Assiut Univ., Sohag, Egypt (1984).
- [9] S. Ganguly and S. Saha, A note on compactness in fuzzy setting, Fuzzy Sets and Systems, 34, 117-124 (1990).
- [10] B. Ghosh, Semicontinuous and semiclosed mappings and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems, 35, 345-355 (1990).
- [11] G. Di. Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18(3), 226-233 (1987).
- [12] A.S. Mashhour, A.A. Allam and K.M. Abd El-Hakeim, On fuzzy semicompact spaces, Bull. Fac. Sci., Assiut Univ., 16(1), 277-285 (1987).
- [13] Pu Pao-Ming and Liu Ying-Ming, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-smith convergence, J. Math. Anal. Appl., 76, 571-599 (1980).
- S. Nanda, Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems, 42, 259-262 (1991).
- [15] M.K. Singal and N. Prakash, Fuzzy preopen sets and fuzzy preseparation axioms, Fuzzy Sets and Systems, 44, 273-281 (1991).

- [16] T.H. Yalvac, Fuzzy sets and functions on fuzzy topological spaces, J. Math. Anal. Appl., 126, 409-423 (1987).
- [17] A.M. Zahran, Strongly compact and P-closed fuzzy topological spaces, J. Fuzzy Math., 3(1), 97-102 (1995).

I. M. HANAFY Department of Mathematics, Faculty of Education, Suez Canal University, El-Arish-EGYPT e-mail: ihanafy@hotmail.com Received 14.04.2003