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A New Characteristic of Möbius Transformations by

Use of Apollonius Points of Pentagons

Serap Bulut, Nihal Yılmaz Özgür

Abstract

In this paper, we give a new characterization of Möbius transformations. To this

end, a new concept of “Apollonius points of pentagons” is used.
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1. Introduction

Throughout the paper, unless otherwise stated, let w = f(z) be a nonconstant
meromorphic function on the complex plane C. Let us consider the following Property 1:

Property 1. w = f(z) maps circles in the z-plane onto circles in the w-plane, including
straight lines among circles.

The well known principle of circle transformation (see [1], [3]) reads as follows:

Theorem 1.1 w = f(z) satisfies Property 1 iff w = f(z) is a Möbius transformation.

In [2], Haruki and Rassias introduced the definition of the Apollonius point of a
triangle, afterwards in [5], Piyapong Niamsup extended this definition to the (k, l)-
Apollonius point of a triangle. Then, by means of these definitions, two new invariant
characteristic properties of Möbius transformations were obtained. We recall that the
following two definitions from [2] and [5], respectively.
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Definition 1.2 [2] Let 4ABC be an arbitrary triangle and L be a point on the complex
plane. We denote by a = BC , b = CA, c = AB, x = AL, y = BL, z = CL. If
ax = by = cz holds, then L is said to be an Apollonius point of 4ABC.

Definition 1.3 [5] Let 4ABC be an arbitrary triangle and L be a point on C. We
denote by a = BC, b = CA, c = AB, x = AL, y = BL, z = CL. If ax = k(by) = l(cz)
holds, where k, l > 0, then L is said to be a (k, l)-Apollonius point of 4ABC.

The purpose of this paper is to give a new characterization of Möbius transformations.
To do this, we introduce the notions of an Apollonius point and of a (λ1, λ2, λ3, λ4)-
Apollonius point of a pentagon in Section 2 where λ1, λ2, λ3, λ4 ∈ R+. Then we give the
following new property:

Property 2. Suppose that w = f(z) is analytic and univalent in a nonempty domain
R of the z-plane. Let Z = Z1Z2Z3Z4Z5 be an arbitrary pentagon contained in R and let
its (λ1, λ2, λ3, λ4)-Apollonius point L be a point of R. If we set Z′i = f(Zi) for 1 ≤ i ≤ 5,
L′ = f(L) and if the five different points Z′i (1 ≤ i ≤ 5) form a pentagon (i.e., any triple
of Z′i (1 ≤ i ≤ 5) are not collinear), then the point L′ is also a (λ1, λ2, λ3, λ4)-Apollonius
point of Z′ = Z′1Z

′
2Z
′
3Z
′
4Z
′
5.

Finally we prove the following theorem as a main theorem of this paper in Section 3.
Main Theorem. The following propositions are equivalent:
(i) w = f(z) is a Möbius transformation.
(ii) Suppose that w = f(z) is analytic and univalent in a nonempty domain R of the

z-plane. For every quadruple (λ1, λ2, λ3, λ4), if L is a (λ1, λ2, λ3, λ4)-Apollonius point of
the pentagon Z = Z1Z2Z3Z4Z5 contained in R, then f(L) is a (λ1, λ2, λ3, λ4)-Apollonius
point of the pentagon Z′ = Z′1Z

′
2Z
′
3Z
′
4Z
′
5 where Z′i = f(Zi), 1 ≤ i ≤ 5.

2. (λ1, λ2, λ3, λ4)-Apollonius Points of a Pentagon

Definition 2.1 Let Z = Z1Z2Z3Z4Z5 be an arbitrary pentagon (not necessarily simple)
and L be a point on C. If the following equality holds for 2 ≤ k ≤ 5, then L is said to be
a (λ1, λ2, λ3, λ4)-Apollonius point of Z:

|L − Z1| · |Z2 − Z3| · |Z4 − Z5| = λk−1 |L − Zk| · |Zk+1 − Zk+2| · |Zk+3 − Zk+4| ,

where λ1, λ2, λ3, λ4 ∈ R+. In the right side of the above equation, if the values depend on
k are different from 5, then we consider these values in mod(5).
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Remark 2.2 For λ1 = λ2 = λ3 = λ4 = 1, this definition gives the definition of
Apollonius point of an arbitrary pentagon.

Theorem 2.3 Let Z = Z1Z2Z3Z4Z5 be an arbitrary pentagon on the complex plane C
and let the positive real numbers λ1, λ2, λ3, λ4 be fixed. Then the number of (λ1, λ2, λ3, λ4)-
Apollonius points of Z is at most 2.

Proof. The proof follows from the Theorem of Apollonius, [2], and from the fact that
if two circles meet, including straight lines among circles, then there are at most two
points of intersection. 2

Example 2.4 Let Z = Z1Z2Z3Z4Z5 be an arbitrary regular pentagon. Then, the center
of circumscribed circle of Z is its only Apollonius point.

For the proof of the Theorem 2.7 we need the following definition and theorem from
[6].

Definition 2.5 A hexagon ABCDEF (not necessarily simple) on the complex plane for
which AB · CD · EF = λBC · DE · FA holds (where the bar denotes the length of the
segment) is an λ-Apollonius hexagon where λ > 0.

Property 3. Suppose that f is analytic and univalent on a nonempty open region ∆ on
the complex plane. Let ABCDEF be a λ-Apollonius hexagon in ∆. If we set Z′ = f(Z)
(Z = ABCDEF ), then A′B′C ′D′E′F ′ is also a λ-Apollonius hexagon.

Theorem 2.6 w = f(z) satisfies Property 3 iff w = f(z) is a Möbius transformation.

Now we can give the following theorem.

Theorem 2.7 Property 1 implies Property 2.

Proof. Let w = f(z) satisfies Property 1. Suppose that w = f(z) is analytic in
a nonempty domain R on the z-plane. Then by Theorem 1.1 w = f(z) is a Möbius
transformation and so univalent in R. Let Z = Z1Z2Z3Z4Z5 be an arbitrary pentagon
contained in R and let its (λ1, λ2, λ3, λ4)-Apollonius point L be a point of R. If we
set Z′i = f(Zi) for 1 ≤ i ≤ 5, then by the univalency of w = f(z), the five points Z′i
(1 ≤ i ≤ 5) are different.
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We now prove that if any triple of Z′i (1 ≤ i ≤ 5) are not collinear, then the point
L′ = f(L) is also a (λ1, λ2, λ3, λ4)-Apollonius point of Z′ = Z′1Z

′
2Z
′
3Z
′
4Z
′
5. Since L is a

(λ1, λ2, λ3, λ4)-Apollonius point of Z, by the Definition 2.1, for k = 5, we have

|L− Z1| · |Z2 − Z3| · |Z4 − Z5| = λ4 |L− Z5| · |Z1 − Z2| · |Z3 − Z4| .

Therefore by the Definition 2.5, LZ1Z2Z3Z4Z5 is a λ4-Apollonius hexagon. By the
Theorem 2.6 and [6], L′Z′1Z

′
2Z
′
3Z
′
4Z
′
5 is a λ4-Apollonius hexagon. Hence we obtain

|L′ − Z′1| · |Z′2 − Z′3| · |Z′4 − Z′5| = λ4 |L′ − Z′5| · |Z′1 − Z′2| · |Z′3 − Z′4| . (1)

Similarly, we have

λ4 |L′ − Z′5| · |Z′1 − Z′2| · |Z′3 − Z′4| = λ3 |L′ − Z′4| · |Z′5 − Z′1| · |Z′2 − Z′3| , (2)

λ3 |L′ − Z′4| · |Z′5 − Z′1| · |Z′2 − Z′3| = λ2 |L′ − Z′3| · |Z′4 − Z′5| · |Z′1 − Z′2| , (3)

λ2 |L′ − Z′3| · |Z′4 − Z′5| · |Z′1 − Z′2| = λ1 |L′ − Z′2| · |Z′3 − Z′4| · |Z′5 − Z′1| . (4)

By (1) – (4), we obtain that the following products is equal for every 2 ≤ k ≤ 5:

|L′ − Z′1| · |Z′2 − Z′3| · |Z′4 − Z′5| = λk−1 |L′ − Z′k| ·
∣∣Z′k+1 − Z′k+2

∣∣ · ∣∣Z′k+3 − Z′k+4

∣∣ .
By the Definition 2.1, we obtain that L′ = f(L) is also a (λ1, λ2, λ3, λ4)-Apollonius point
of Z′. Consequently, w = f(z) satisfies Property 2. 2

3. Proof of the Main Theorem

Proof of the Main Theorem. Let w = f(z) be a Möbius transformation. Then by
Theorem 1.1, w = f(z) satisfies Property 1. Thus by Theorem 2.7, w = f(z) satisfies
Property 2. This proves (ii).

Now assume that the function w = f(z) satisfies (ii). Since w = f(z) is analytic and
univalent in the domain R, by a well known lemma

f ′(z) 6= 0 (5)
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holds in R.
If x is an arbitrary fixed point of R, then by (5), we obtain

f ′(x) 6= 0. (6)

Let L be the point represented by x. Since L ∈ R, there exists a positive real number
r such that the r closed circular neighborhood of L is contained in R. We denote this
closed circular neighborhood by V .

Throughout the proof let Z = Z1Z2Z3Z4Z5 denote an arbitrary regular pentagon
which is contained in V and whose center is at L. Here the sense of Z1, Z2, Z3, Z4, Z5 is
counterclockwise. Since Z = Z1Z2Z3Z4Z5 is a regular pentagon contained in V , we can
represent Z1, Z2, Z3, Z4, Z5 by complex numbers as

x+ wk+1y,

where 0 <| y |≤ r and wk+1 = e
i2πk

5 , 0 ≤ k ≤ 4.
Since w = f(z) is univalent in R, Z′1 = f(Z1), Z′2 = f(Z2), Z′3 = f(Z3), Z′4 = f(Z4),

Z′5 = f(Z5) are different points. By a property of analytic functions (see [4]) and by
(6) (any triple of Z1, Z2, Z3, Z4, Z5 are not collinear on the z-plane) there exists some
sufficiently small positive real number s satisfying

s ≤ r

such that any triple of Z′1, Z′2, Z′3, Z′4, Z′5 are not collinear on the w-plane for all y
satisfying 0 < |y| ≤ s.

Since L is the Apollonius point of the regular pentagon Z (0 <| y |≤ s) (see Example
2.4) and any triple of Z′1, Z′2, Z′3, Z′4, Z′5 are not collinear, by hypothesis L′ = f(L) is
also an Apollonius point of Z′ = Z′1Z

′
2Z
′
3Z
′
4Z
′
5. Hence, by definition we obtain

|L′ − Z′1| . |Z′2 − Z′3| . |Z′4 − Z′5| (7)

= |L′ − Z′2| . |Z′3 − Z′4| . |Z′5 − Z′1| (8)

= |L′ − Z′3| . |Z′4 − Z′5| . |Z′1 − Z′2| (9)

= |L′ − Z′4| . |Z′5 − Z′1| . |Z′2 − Z′3| (10)
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= |L′ − Z′5| . |Z′1 − Z′2| . |Z′3 − Z′4| . (11)

Let us consider (7) and (9):

|L′ − Z′1| . |Z′2 − Z′3| . |Z′4 − Z′5| = |L′ − Z′3| . |Z′4 − Z′5| . |Z′1 − Z′2| .

Hence we get

|L′ − Z′1| . |Z′2 − Z′3| = |L′ − Z′3| . |Z′1 − Z′2| .

Since Z′1, Z′2, Z′3, Z′4, Z′5, L′ are represented by

f(x +wk+1y), f(x),

where 0≤ k ≤ 4, respectively, from the last equation we obtain

|f(x) − f(x + y)| . |f(x + w2y) − f(x +w3y)|
= |f(x) − f(x +w3y)| . |f(x + y) − f(x +w2y)| ,

and so ∣∣∣∣ [f(x) − f(x + y)] [f(x + w2y) − f(x +w3y)]
[f(x) − f(x +w3y)] [f(x+ y) − f(x +w2y)]

∣∣∣∣ = 1.

By a similar way in [2], after calculations we finally get

f ′′′(z)
f ′(z)

− 3
2

(
f ′′(z)
f ′(z)

)2

= 0

holds for all z satisfying f ′(z) 6= 0.

Hence, the Schwarzian derivative of f vanishes for all z satisfying f ′(z) 6= 0. Conse-
quently, by a well-known fact f is a Möbius transformation. 2

Corollary 3.1 This theorem gives a new proof of the only if part of Theorem 1.1.

Proof. By hypothesis w = f(z) satisfies Property 1. Hence, by the Theorem 2.7,
w = f(z) satisfies Property 2. Consequently, by the Main Theorem, w = f(z) is a
Möbius transformation. 2
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