A New Characteristic of Möbius Transformations by Use of Apollonius Points of Pentagons

Serap Bulut, Nihal Yılmaz Özgür

Abstract

In this paper, we give a new characterization of Möbius transformations. To this end, a new concept of "Apollonius points of pentagons" is used.

Key Words: Möbius transformations; Apollonius points of pentagons

1. Introduction

Throughout the paper, unless otherwise stated, let $w=f(z)$ be a nonconstant meromorphic function on the complex plane \mathbb{C}. Let us consider the following Property 1:

Property 1. $w=f(z)$ maps circles in the z-plane onto circles in the w-plane, including straight lines among circles.

The well known principle of circle transformation (see [1], [3]) reads as follows:

Theorem 1.1 $w=f(z)$ satisfies Property 1 iff $w=f(z)$ is a Möbius transformation.
In [2], Haruki and Rassias introduced the definition of the Apollonius point of a triangle, afterwards in [5], Piyapong Niamsup extended this definition to the (k, l) Apollonius point of a triangle. Then, by means of these definitions, two new invariant characteristic properties of Möbius transformations were obtained. We recall that the following two definitions from [2] and [5], respectively.

[^0]
BULUT, YILMAZ ÖZGÜR

Definition 1.2 [2] Let $\triangle A B C$ be an arbitrary triangle and L be a point on the complex plane. We denote by $a=\overline{B C}, b=\overline{C A}, c=\overline{A B}, x=\overline{A L}, y=\overline{B L}, z=\overline{C L}$. If $a x=b y=c z$ holds, then L is said to be an Apollonius point of $\triangle A B C$.

Definition 1.3 [5] Let $\triangle A B C$ be an arbitrary triangle and L be a point on \mathbb{C}. We denote by $a=\overline{B C}, b=\overline{C A}, c=\overline{A B}, x=\overline{A L}, y=\overline{B L}, z=\overline{C L}$. If $a x=k(b y)=l(c z)$ holds, where $k, l>0$, then L is said to be a (k, l)-Apollonius point of $\triangle A B C$.

The purpose of this paper is to give a new characterization of Möbius transformations. To do this, we introduce the notions of an Apollonius point and of a ($\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$)Apollonius point of a pentagon in Section 2 where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in \mathbb{R}^{+}$. Then we give the following new property:

Property 2. Suppose that $w=f(z)$ is analytic and univalent in a nonempty domain R of the z-plane. Let $Z=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ be an arbitrary pentagon contained in R and let its $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point L be a point of R. If we set $Z_{i}^{\prime}=f\left(Z_{i}\right)$ for $1 \leq i \leq 5$, $L^{\prime}=f(L)$ and if the five different points $Z_{i}^{\prime}(1 \leq i \leq 5)$ form a pentagon (i.e., any triple of $Z_{i}^{\prime}(1 \leq i \leq 5)$ are not collinear), then the point L^{\prime} is also a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point of $Z^{\prime}=Z_{1}^{\prime} Z_{2}^{\prime} Z_{3}^{\prime} Z_{4}^{\prime} Z_{5}^{\prime}$.

Finally we prove the following theorem as a main theorem of this paper in Section 3.
Main Theorem. The following propositions are equivalent:
(i) $w=f(z)$ is a Möbius transformation.
(ii) Suppose that $w=f(z)$ is analytic and univalent in a nonempty domain R of the z-plane. For every quadruple $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$, if L is a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point of the pentagon $Z=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ contained in R, then $f(L)$ is a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point of the pentagon $Z^{\prime}=Z_{1}^{\prime} Z_{2}^{\prime} Z_{3}^{\prime} Z_{4}^{\prime} Z_{5}^{\prime}$ where $Z_{i}^{\prime}=f\left(Z_{i}\right), 1 \leq i \leq 5$.

2. $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius Points of a Pentagon

Definition 2.1 Let $Z=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ be an arbitrary pentagon (not necessarily simple) and L be a point on \mathbb{C}. If the following equality holds for $2 \leq k \leq 5$, then L is said to be $a\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point of Z :

$$
\left|L-Z_{1}\right| \cdot\left|Z_{2}-Z_{3}\right| \cdot\left|Z_{4}-Z_{5}\right|=\lambda_{k-1}\left|L-Z_{k}\right| \cdot\left|Z_{k+1}-Z_{k+2}\right| \cdot\left|Z_{k+3}-Z_{k+4}\right|
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in \mathbb{R}^{+}$. In the right side of the above equation, if the values depend on k are different from 5, then we consider these values in $\bmod (5)$.

BULUT, YILMAZ ÖZGÜR

Remark 2.2 For $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=1$, this definition gives the definition of Apollonius point of an arbitrary pentagon.

Theorem 2.3 Let $Z=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ be an arbitrary pentagon on the complex plane \mathbb{C} and let the positive real numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ be fixed. Then the number of $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ Apollonius points of Z is at most 2.
Proof. The proof follows from the Theorem of Apollonius, [2], and from the fact that if two circles meet, including straight lines among circles, then there are at most two points of intersection.

Example 2.4 Let $Z=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ be an arbitrary regular pentagon. Then, the center of circumscribed circle of Z is its only Apollonius point.

For the proof of the Theorem 2.7 we need the following definition and theorem from [6].

Definition 2.5 A hexagon $A B C D E F$ (not necessarily simple) on the complex plane for which $\overline{A B} \cdot \overline{C D} \cdot \overline{E F}=\lambda \overline{B C} \cdot \overline{D E} \cdot \overline{F A}$ holds (where the bar denotes the length of the segment) is an λ-Apollonius hexagon where $\lambda>0$.

Property 3. Suppose that f is analytic and univalent on a nonempty open region Δ on the complex plane. Let $A B C D E F$ be a λ-Apollonius hexagon in Δ. If we set $Z^{\prime}=f(Z)$ $(Z=A B C D E F)$, then $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ is also a λ-Apollonius hexagon.

Theorem 2.6 $w=f(z)$ satisfies Property 3 iff $w=f(z)$ is a Möbius transformation.
Now we can give the following theorem.
Theorem 2.7 Property 1 implies Property 2.
Proof. Let $w=f(z)$ satisfies Property 1. Suppose that $w=f(z)$ is analytic in a nonempty domain R on the z-plane. Then by Theorem $1.1 w=f(z)$ is a Möbius transformation and so univalent in R. Let $Z=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ be an arbitrary pentagon contained in R and let its $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point L be a point of R. If we set $Z_{i}^{\prime}=f\left(Z_{i}\right)$ for $1 \leq i \leq 5$, then by the univalency of $w=f(z)$, the five points Z_{i}^{\prime} $(1 \leq i \leq 5)$ are different.

BULUT, YILMAZ ÖZGÜR

We now prove that if any triple of $Z_{i}^{\prime}(1 \leq i \leq 5)$ are not collinear, then the point $L^{\prime}=f(L)$ is also a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point of $Z^{\prime}=Z_{1}^{\prime} Z_{2}^{\prime} Z_{3}^{\prime} Z_{4}^{\prime} Z_{5}^{\prime}$. Since L is a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point of Z, by the Definition 2.1, for $k=5$, we have

$$
\left|L-Z_{1}\right| \cdot\left|Z_{2}-Z_{3}\right| \cdot\left|Z_{4}-Z_{5}\right|=\lambda_{4}\left|L-Z_{5}\right| \cdot\left|Z_{1}-Z_{2}\right| \cdot\left|Z_{3}-Z_{4}\right| .
$$

Therefore by the Definition 2.5, $L Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ is a λ_{4}-Apollonius hexagon. By the Theorem 2.6 and [6], $L^{\prime} Z_{1}^{\prime} Z_{2}^{\prime} Z_{3}^{\prime} Z_{4}^{\prime} Z_{5}^{\prime}$ is a λ_{4}-Apollonius hexagon. Hence we obtain

$$
\begin{equation*}
\left|L^{\prime}-Z_{1}^{\prime}\right| \cdot\left|Z_{2}^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{4}^{\prime}-Z_{5}^{\prime}\right|=\lambda_{4}\left|L^{\prime}-Z_{5}^{\prime}\right| \cdot\left|Z_{1}^{\prime}-Z_{2}^{\prime}\right| \cdot\left|Z_{3}^{\prime}-Z_{4}^{\prime}\right| \tag{1}
\end{equation*}
$$

Similarly, we have

$$
\begin{align*}
& \lambda_{4}\left|L^{\prime}-Z_{5}^{\prime}\right| \cdot\left|Z_{1}^{\prime}-Z_{2}^{\prime}\right| \cdot\left|Z_{3}^{\prime}-Z_{4}^{\prime}\right|=\lambda_{3}\left|L^{\prime}-Z_{4}^{\prime}\right| \cdot\left|Z_{5}^{\prime}-Z_{1}^{\prime}\right| \cdot\left|Z_{2}^{\prime}-Z_{3}^{\prime}\right| \tag{2}\\
& \lambda_{3}\left|L^{\prime}-Z_{4}^{\prime}\right| \cdot\left|Z_{5}^{\prime}-Z_{1}^{\prime}\right| \cdot\left|Z_{2}^{\prime}-Z_{3}^{\prime}\right|=\lambda_{2}\left|L^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{4}^{\prime}-Z_{5}^{\prime}\right| \cdot\left|Z_{1}^{\prime}-Z_{2}^{\prime}\right| \tag{3}\\
& \lambda_{2}\left|L^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{4}^{\prime}-Z_{5}^{\prime}\right| \cdot\left|Z_{1}^{\prime}-Z_{2}^{\prime}\right|=\lambda_{1}\left|L^{\prime}-Z_{2}^{\prime}\right| \cdot\left|Z_{3}^{\prime}-Z_{4}^{\prime}\right| \cdot\left|Z_{5}^{\prime}-Z_{1}^{\prime}\right| \tag{4}
\end{align*}
$$

By (1) - (4), we obtain that the following products is equal for every $2 \leq k \leq 5$:

$$
\left|L^{\prime}-Z_{1}^{\prime}\right| \cdot\left|Z_{2}^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{4}^{\prime}-Z_{5}^{\prime}\right|=\lambda_{k-1}\left|L^{\prime}-Z_{k}^{\prime}\right| \cdot\left|Z_{k+1}^{\prime}-Z_{k+2}^{\prime}\right| \cdot\left|Z_{k+3}^{\prime}-Z_{k+4}^{\prime}\right|
$$

By the Definition 2.1, we obtain that $L^{\prime}=f(L)$ is also a $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$-Apollonius point of Z^{\prime}. Consequently, $w=f(z)$ satisfies Property 2.

3. Proof of the Main Theorem

Proof of the Main Theorem. Let $w=f(z)$ be a Möbius transformation. Then by Theorem 1.1, $w=f(z)$ satisfies Property 1. Thus by Theorem 2.7, $w=f(z)$ satisfies Property 2. This proves (ii).

Now assume that the function $w=f(z)$ satisfies (ii). Since $w=f(z)$ is analytic and univalent in the domain R, by a well known lemma

$$
\begin{equation*}
f^{\prime}(z) \neq 0 \tag{5}
\end{equation*}
$$

BULUT, YILMAZ ÖZGÜR

holds in R.
If x is an arbitrary fixed point of R, then by (5), we obtain

$$
\begin{equation*}
f^{\prime}(x) \neq 0 \tag{6}
\end{equation*}
$$

Let L be the point represented by x. Since $L \in R$, there exists a positive real number r such that the r closed circular neighborhood of L is contained in R. We denote this closed circular neighborhood by V.

Throughout the proof let $Z=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ denote an arbitrary regular pentagon which is contained in V and whose center is at L. Here the sense of $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ is counterclockwise. Since $Z=Z_{1} Z_{2} Z_{3} Z_{4} Z_{5}$ is a regular pentagon contained in V, we can represent $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ by complex numbers as

$$
x+w_{k+1} y,
$$

where $0<|y| \leq r$ and $w_{k+1}=e^{\frac{i 2 \pi k}{5}}, 0 \leq k \leq 4$.
Since $w=f(z)$ is univalent in $R, Z_{1}^{\prime}=f\left(Z_{1}\right), Z_{2}^{\prime}=f\left(Z_{2}\right), Z_{3}^{\prime}=f\left(Z_{3}\right), Z_{4}^{\prime}=f\left(Z_{4}\right)$, $Z_{5}^{\prime}=f\left(Z_{5}\right)$ are different points. By a property of analytic functions (see [4]) and by (6) (any triple of $Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}$ are not collinear on the z-plane) there exists some sufficiently small positive real number s satisfying

$$
s \leq r
$$

such that any triple of $Z_{1}^{\prime}, Z_{2}^{\prime}, Z_{3}^{\prime}, Z_{4}^{\prime}, Z_{5}^{\prime}$ are not collinear on the w-plane for all y satisfying $0<|y| \leq s$.

Since L is the Apollonius point of the regular pentagon $Z(0<|y| \leq s)$ (see Example 2.4) and any triple of $Z_{1}^{\prime}, Z_{2}^{\prime}, Z_{3}^{\prime}, Z_{4}^{\prime}, Z_{5}^{\prime}$ are not collinear, by hypothesis $L^{\prime}=f(L)$ is also an Apollonius point of $Z^{\prime}=Z_{1}^{\prime} Z_{2}^{\prime} Z_{3}^{\prime} Z_{4}^{\prime} Z_{5}^{\prime}$. Hence, by definition we obtain

$$
\begin{align*}
& \left|L^{\prime}-Z_{1}^{\prime}\right| \cdot\left|Z_{2}^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{4}^{\prime}-Z_{5}^{\prime}\right| \tag{7}\\
= & \left|L^{\prime}-Z_{2}^{\prime}\right| \cdot\left|Z_{3}^{\prime}-Z_{4}^{\prime}\right| \cdot\left|Z_{5}^{\prime}-Z_{1}^{\prime}\right| \tag{8}\\
= & \left|L^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{4}^{\prime}-Z_{5}^{\prime}\right| \cdot\left|Z_{1}^{\prime}-Z_{2}^{\prime}\right| \tag{9}\\
= & \left|L^{\prime}-Z_{4}^{\prime}\right| \cdot\left|Z_{5}^{\prime}-Z_{1}^{\prime}\right| \cdot\left|Z_{2}^{\prime}-Z_{3}^{\prime}\right| \tag{10}
\end{align*}
$$

BULUT, YILMAZ ÖZGÜR

$$
\begin{equation*}
=\left|L^{\prime}-Z_{5}^{\prime}\right| \cdot\left|Z_{1}^{\prime}-Z_{2}^{\prime}\right| \cdot\left|Z_{3}^{\prime}-Z_{4}^{\prime}\right| \tag{11}
\end{equation*}
$$

Let us consider (7) and (9):

$$
\left|L^{\prime}-Z_{1}^{\prime}\right| \cdot\left|Z_{2}^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{4}^{\prime}-Z_{5}^{\prime}\right|=\left|L^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{4}^{\prime}-Z_{5}^{\prime}\right| \cdot\left|Z_{1}^{\prime}-Z_{2}^{\prime}\right|
$$

Hence we get

$$
\left|L^{\prime}-Z_{1}^{\prime}\right| \cdot\left|Z_{2}^{\prime}-Z_{3}^{\prime}\right|=\left|L^{\prime}-Z_{3}^{\prime}\right| \cdot\left|Z_{1}^{\prime}-Z_{2}^{\prime}\right|
$$

Since $Z_{1}^{\prime}, Z_{2}^{\prime}, Z_{3}^{\prime}, Z_{4}^{\prime}, Z_{5}^{\prime}, L^{\prime}$ are represented by

$$
f\left(x+w_{k+1} y\right), f(x)
$$

where $0 \leq k \leq 4$, respectively, from the last equation we obtain

$$
\begin{aligned}
& |f(x)-f(x+y)| \cdot\left|f\left(x+w_{2} y\right)-f\left(x+w_{3} y\right)\right| \\
= & \left|f(x)-f\left(x+w_{3} y\right)\right| \cdot\left|f(x+y)-f\left(x+w_{2} y\right)\right|
\end{aligned}
$$

and so

$$
\left|\frac{[f(x)-f(x+y)]\left[f\left(x+w_{2} y\right)-f\left(x+w_{3} y\right)\right]}{\left[f(x)-f\left(x+w_{3} y\right)\right]\left[f(x+y)-f\left(x+w_{2} y\right)\right]}\right|=1
$$

By a similar way in [2], after calculations we finally get

$$
\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}=0
$$

holds for all z satisfying $f^{\prime}(z) \neq 0$.
Hence, the Schwarzian derivative of f vanishes for all z satisfying $f^{\prime}(z) \neq 0$. Consequently, by a well-known fact f is a Möbius transformation.

Corollary 3.1 This theorem gives a new proof of the only if part of Theorem 1.1.
Proof. By hypothesis $w=f(z)$ satisfies Property 1. Hence, by the Theorem 2.7, $w=f(z)$ satisfies Property 2. Consequently, by the Main Theorem, $w=f(z)$ is a Möbius transformation.

BULUT, YILMAZ ÖZGÜR

References

[1] H. Haruki, A proof of the principle of circle-transformations by use of a theorem on univalent functions, Lenseign. Math., 18 (1972), 145-146.
[2] H. Haruki and T. M. Rassias, A new characteristic of Möbius transformations by use of Apollonius points of triangles, J. Math. Anal. Appl., 197 (1996), 14-22.
[3] Z. Nehari, "Conformal mapping", McGraw-Hill Book, New York, 1952.
[4] R. Nevanlinna and V. Paatero, "Introduction to Complex Analysis", Addison-Wesley, New York, 1964.
[5] P. Niamsup, A Note on the Characteristics of Möbius Transformations, J. Math. Anal. Appl., 248 (2000), 203-215.
[6] N. Samaris, A new characterization of Möbius transformation by use of $2 n$ points, J. Nat. Geom. 22 (2002), no. 1-2, 35-38.

Serap BULUT

Received 18.06.2003
Ballkesir University, Faculty of Art and
Sciences, Department of
Mathematics, 10100 Balıkesir-TURKEY
e-mail: serapbulut@balikesir.edu.tr
Nihal YILMAZ ÖZGÜR
Balikesir University, Faculty of Art and Sciences, Department of Mathematics, 10100 Balıkesir, TURKEY
e-mail: nihal@balikesir.edu.tr

[^0]: 2000 Mathematics Subject Classification: 30C35, 32A20

