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Determination of a Fractional-Linear Pencil of

Sturm-Liouville Operators by Two of Its Spectra

R. T. Pashayev

Abstract

In this paper we consider the Sturm-Liouville equations on a finite interval

which is fractional-linear in the spectral parameter. The inverse spectral problem

consisting of the recovering of the operator from the two spectra is investigated and

a uniqueness theorem for solution of the inverse problem is proved.
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1. Introduction

Consider the second order differential equation

−y′′ + q(x)y =

{
λy, a < x < b,

− 1
λy, 0 < x < a,

(1)

where a and b are fixed positive numbers such that 0 < a < b, q(x) is a real-valued
continuous function on [0, a], and λ is a complex parameter (spectral parameter).

Now we attach to Equation (1) two boundary conditions

y′(0)− hy(0) = 0, y(b) = 0, (2)

and
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y′(0)− hy(0) = 0, y′(b) = 0, (3)

where h is a fixed real number.
Let us denote the eigenvalues of boundary-value problems (1),(2) and (1),(3) by {λn}

and {µn}, respectively.
In this paper we study the inverse spectral problem consisting in determination of

the coefficient q(x) of Equation (1) and the number h in boundary conditions (2),(3)
from two spectra {λn} and {µn}. The main result of this paper is a theorem proved in
Section 2 which states that the function q(x) and number h are uniquely determined by
two spectra {λn} and {µn}. We prove this theorem by reducing the inverse problem from
two spectra to the inverse scattering problem investigated earlier in [1,2].

2. Investigation of the Inverse Spectral Problem

Put λ = k2 in the Equation (1) and denote by ϕ(x, k) and ψ(x, k) its solutions
satisfying the initial conditions

ϕ(0, k) = 1, ϕ′(0, k) = h, ψ(0, k) = 0, ψ′(0, k) = 1.

The eigenvalues {λn} and {µn} of boundary-value problems (1),(2) and (1),(3) coin-
cide with zeros of functions

Φ1(k) = ϕ(b, k) and Φ2(k) = ϕ′(b, k), (4)

respectively.
Let’s consider the auxiliary boundary-value problem on the half axis:

−y′′ + q̃(x)y =

{
k2y, a < x < +∞,
− 1
k2y, 0 < x < a,

(5)

y′(0)− hy(0) = 0, (6)

308



PASHAYEV

where

q̃(x) =

{
q(x), 0 < x < b,

0, b < x <∞

We derive the formula by means of which we can determine the scattering data of
problem (5),(6) from two known spectra {λn} and {µn} of problems (1),(2) and (1),(3).
So the solution of the inverse problem from two spectra will be reduced to the solution of
inverse problem from scattering data which has already been investigated (see [1], [2]).

Denote by f(x, k) the solution of Equation (5) that satisfies the condition

lim
x→+∞

f(x, k)e−ikx = 1.

Lemma 1 The formula

f ′(0, k)− hf(0, k) =
1
h
eikb{ϕ′(b, k)− ikϕ(b, k)} (7)

holds.

Proof. Since functions ϕ(x, k) and ψ(x, k) form a fundamental system of solutions of
Equation (5), the solution f(x, k) of the same equation is equal to their linear combination:

f(x, k) = c1ϕ(x, k) + c2ψ(x, k).

Since the potential q̃(x) is equal to zero when x > b we have f(x, k) = eikx if x > b.

Therefore the continuity of f(x, k) and f ′(x, k) at x = b yields

eikb = c1ϕ(b, k) + c2ψ(b, k),

ikeikb = c1ϕ
′(b, k) + c2ψ

′(b, k)

from which we find the coefficients c1 and c2:

309



PASHAYEV

c1 =
1
h
eikb{ikϕ(b, k)− ϕ′(b, k)},

c2 =
1
h
eikb{ϕ′(b, k)− ikϕ(b, k)}.

Hence

f(x, k) =
1
h
eikb{ikϕ(b, k)− ϕ′(b, k)}ϕ(x, k) +

1
h
eikb{ϕ′(b, k)− ikϕ(b, k)}ψ(x, k)

and the formula (7) follows. The lemma is proved. 2

Theorem 2 The function q(x) and number h are uniquely determined by two spectra
{λn} and {µn}.

Proof. It is known that the scattering function of problem (5),(6) has the form ([1],[2]):

S(k) =
f ′(0,−k)− hf(0,−k)
f ′(0, k)− hf(0, k)

.

So by virtue of (7) we get

S(k) =
ϕ′(b, k) + ikϕ(b, k)
ϕ′(b, k)− ikϕ(b, k)

e−2kbi.

Hence, by (4) we find

S(k) = e−2kbiΦ2(k) + ikΦ1(k)
Φ2(k) − ikΦ1(k)

. (8)

Let us set
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F (k) = Φ2(k) − ikΦ1(k).

We can prove in a standard way that {λn} and {µn} are intermittent, so that the argu-
ment of F (k) as k describes the real axis once is zero (see [3]). Hence, F (k) is non-zero
in the upper halfplane, i.e. problem (5),(6) has no eigenvalues. Thus the scattering data
of problem (5),(6) consist of the function S(k) only. On the other hand in [2] it has
been proved that the coefficient q̃(x) of Equation (5) and the number h in the boundary
condition (6) are uniquely determined by the scattering data of boundary value problem
(5),(6). Since The scattering function S(k) is uniquely determined by (8) from two spec-
tra {λn} and {µn}, the statement of the theorem follows. 2
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