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Abstract

Given a simplicial topologically non radical algebra A, we characterize its topo-

logical radical, radA. If furthermore A is advertive, then radA coincides with the

Jacobson radical RadA. On the other hand, it is shown that every two-sided in-

vertive simplicial topological Gelfand-Mazur algebra has a functional spectrum and

for every topologically nonradical simplicial Gelfand-Mazur amits the set X (A), of

all continuous multiplicative linear functionals, is not empty.

Key Words: Left, right or two-sidedness, commutativity, almost commutativity,

aits, alits, arits, amits, almits, armits, topological algebra, simplicial algebra, ad-

vertive or invertive algebra, radical, topological radical, Gelfand-Mazur algebra.

1. Notations and Preliminaries

Let A be a topological algebra over IC, the set of complex numbers, with separately
continuous multiplication (in the sequel topological algebra). If for each a, b ∈ A there
exists u, v ∈ A such that ab = va = bu [6] (resp. ab = va [7], ab = bu [7]) then A is said to
be two-sided or bilateral (resp. left-sided or left-lateral, right-sided or right-lateral)
algebra. An aits (resp. alits, almits, arits, armits, amits) is by definition an algebra A
for which every ideal (resp. left ideal, left maximal ideal, right ideal, right maximal ideal,
(right or left) maximal ideal) is two-sided. Denote by aits(A) (resp. alits(A), almits(A),
arits(A), armits(A), amits(A)) an algebra A which is aits (resp. alits, almits, arits,
armits, amits). Denote by com(A) (resp. bil(A), ls(A), rs(A)) an algebra A which is
commutative (resp. two-sided, left-sided, right-sided). It is shown in [6] and [7] that

1991 Mathematics Subject Classification: 46H05, 46H10, 46H20

313



NAJMI

com(A) =⇒ bil(A) =⇒
{

ls(A)
rs(A)

.

Respectively, also we have ls(A) =⇒ alits(A) =⇒ almits(A) =⇒ amits(A).
We note that, by passage to the reverse algebra, the study of an alits or arits, an almits
or armits, as well as of a left or a right-sided algebra reduces each type to the other
one. Consequently, we have rs(A) =⇒ arits(A) =⇒ armits(A) =⇒ amits(A). Finally,
one has the following reduction diagram

com(A)
↓

ls(A) ← bil(A) → rs(A)
↓ ↙ ↓ ↘ ↓

alits(A) ← aits(A) → arits(A)
↓ ↙ ↘ ↓

almits(A) ↓ armits(A)
↘ ↙

amits(A)

where the symbol “→” denotes “included in”.

An element a of a topological algebra A is right ( resp. left) quasi-invertible or right
(resp. left) advertible if there exists an element b ∈ A such that a ◦ b = ab − a − b = 0
(resp. b ◦ a = 0) and it is quasi-invertible or advertible if it is both left and right
advertible; finally it is topologically right (resp. left) quasi-invertible or right (resp.
left) advertible if there exists a net (aλ)λ∈Λ such that (aλ ◦ a)λ∈Λ (resp. (a ◦ aλ)λ∈Λ)
converge to the zero element of A. In this context the terminology ”advertibly null net”
(A. Mallios), appropriately specialized, each time, concerning ”sidedness”, is also of use.
In particular, when A has a unit element e then a ∈ A is topologically right (resp. left)
invertible if there exists a net (aλ)λ∈Λ such that (aλa)λ∈Λ (resp. (aaλ)λ∈Λ) converge to
e. We denote the set of all advertible (resp. invertible (when A has a unit), topologically
advertible, topologically invertible) elements of A by QinvA (resp. InvA, TqinvA,
TinvA). Similarly we define the sets RqinvA (resp. RinvA, TrqinvA, TrinvA) with
r or R as the initial of ”right”. If A has a unite it is easy to see that QinvA = e− InvA
and TqinvA = e− TinvA. We will say that A is an advertive (resp. invertive) algebra
if it is a topological algebra such that TqinvA = QinvA (resp. TinvA = InvA). Recall
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that a B0 -algebra is a topological algebra whose underlying topological vector space is
a complete metrizable and locally convex space (hence, alias, a Fréchet locally convex
algebra). When I is a two-sided ideal, we note by S the canonical map from A onto A/I.
If I is a subset of A, then we denote by clA(I) the closure of I in A. The set X (A) is the
set of all nontrivial continuous characters (continuous multiplicative linear functionals)
on A. For every x ∈ A, the spectrum of x is by definition

SpA(x) =

{ {
λ ∈ IC\ {0} : xλ /∈ QinvA

}
∪ {0} if A is not unital

{λ ∈ IC : x− λe /∈ InvA} if A is unital

The spectral radius of A is by definition the function ρA : x −→ ρA(x) =
sup {|λ| : λ ∈ SpA(x)}. Finally, RadA will indicate the Jacobson radical of A.

We follow [3] for the definition of the topological radical (radA), topologically semi-
simple algebra, topologically radical algebra, Gelfand-Mazur algebra (see also [10]), topo-
logically nonradical Gelfand-Mazur algebra and simplicial algebra (normal in the sense
of E. A. Michael ([11], p. 71)). We follow [12] for the definition of a topologically spectral
algebra (i.e. for every x ∈ A, we have SpA(x) = {f(x) : f ∈ X (A)}). We will say that A is
spectral if there is a semi-norm P on A such that, for every x ∈ A, we have ρA(x) ≤ P (x).
We denote by M(A) (resp. m(A)) the set of all regular two-sided (resp. regular, two-sided
and closed) ideals in A such that each one is maximal as left or as right; i(A) the set of all
two-sided regular and closed ideals of A. Also, if L(X) is the set of all continuous linear
mappings on a topological space X endowed with the composition product (a, b) 7→ ab,
then consider L(X)◦ as the reverse algebra of L(X) (algebra obtained by endowing the
space L(X) with the reverse composition product a.b = ba ; a, b ∈ L(X)). Furthermore
we endow L(X) (resp. L(X)◦) with the topology of simple convergence.

2. Introduction

The identical map i : L(X) 7→ L(X)◦ is an algebraic and topological isomorphism.
We know that any morphism π of an algebra A into L(X) is called a representation
of A on X and it define on X a left A-module multiplication if we put ax = π(a)(x).
Instead, contrary to ([3], p. 26), the right multiplication xa = π(a)(x), doesn’t defines
on X a right A-module multiplication. But any anti-morphism π (that is a vector space
morphism such that π(ab) = π(b)π(a) for every a, b ∈ A) of an algebra A into L(X),
called here a reverse representation of A on X (see e.g. proof of Proposition 13), defines
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on X a right A-module multiplication if we put xa = π(a)(x). In [3], Abel has defined the
topological radical radA, as the intersection of the kernels of all continuous irreducible
representations of A on a linear Hausdorff space. He proved that radA is the intersection
of all closed maximal regular left (resp. right) ideals of A. We can define here radA, as
the intersection of the kernels of all continuous irreducible reverse representations of A
on a linear Hausdorff space X. Thus, with this new definition, we can prove by the same
arguments as those of Theorem 1, p. 27, of [3] that radA is the intersection of all closed
maximal regular left (resp. right) ideals of A. So the two definitions coincide. In this
context, see also, for instance, proof of Proposition 13.

First we deal with algebraic aspect of alits and almits. Many properties of one sided
algebras are preserved by alits and almits, except the passage to the unitization which
fails for the alits (Remark 5).

We give also some expressions of the topological radical in every simplicial topo-
logically nonradical algebra. In [6] (resp. [7]), the authors proved that every Banach
two-sided (resp. left-sided) algebra is almost commutative. So the set X (A) is not empty.
Here, we get that the set X (A) is not empty for every topologically nonradical simplicial
Gelfand-Mazur amits. On the other hand, it is shown that every two-sided invertive
simplicial topological Gelfand-Mazur algebra is a topologically spectral algebra.

We describe the structure of an artinian, simplicial Gelfand-Mazur topologically non-
radical topological amits. Furthermore, we prove that every simplicial Gelfand-Mazur
topologically nonradical topological amits is almost commutative. Finally, we solve the
problem of the closed ideal (whether a given topological algebra admits a proper and closed
unilateral or bilateral ideal) for a topological algebra which is, in particular, topologically
nonradical (cf. Lemma 21 below).

All algebras considered here will be complex. We will say that the algebra A is a zero
algebra if A2 := {xy : x, y ∈ A} = {0} . For every x ∈ A put

Annl(x) = {y ∈ A : yx = 0} ,
Annr(x) = {y ∈ A : xy = 0} ,

where Lx a supplementary of Annl(x) and Rx a supplementary of Annr(x).
Recall ([7]) that if A is a left (resp. right)-sided algebra, there exists a function f of

two variables such that for every x, y ∈ A : xy = f(x, y)x (resp. xy = yf(x, y)). Note
that the function of left (resp. right)-sidedness is such a function with the fact that each
partial function fx : t 7−→ f(x, t) (resp. fx : t 7−→ f(t, x)) is into Lx (resp. Rx).
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3. Algebraic Properties and Examples

Here are some examples of alits, almits and amits.

Example 1 Every left -sided algebra (and, also every commutative or two-sided algebra)
is an alits.

Example 2 Let A =

{(
a 0
b 0

)
: a, b ∈ IC

}
. The only left-sided (maximal) ideal of A

is RadA =

{(
0 0
b 0

)
: b ∈ IC

}
. Of course it is two-sided. So A is an alits as well as

an almits (then also an amits). We remark that A is not left-sided algebra. Because the

equation

(
0 0
1 0

)(
1 0
0 0

)
=

(
e 0
f 0

)(
0 0
1 0

)
where the unknowns are e and

f , give that

(
0 0
1 0

)
=

(
0 0
0 0

)
: which is impossible.

Example 3 Let R be a zero algebra and θ an extra element to R. Let A = R⊕ ICθ, with
θ a right unit for A and θr = 0 for every r ∈ R. Then A is an associative algebra and
every left ideal of A is a left ideal of R. So A is an alits. We can remark that A2 = A

and A has infinitely many right units, namely r + θ, for every r in R. Now let I be a
proper ideal of R. Then I ⊕ ICθ is a right ideal of A, which contains θ. So it is not a left
ideal. Consequently A is not an arits. We can remark here that A is not a left-sided
algebra. Indeed, let r ∈ R with r 6= 0, then the equation r(s + θ) = (t + λθ)r where
s is any element of R and t and λ are the unknowns, is equivalent to r = 0. Which is
impossible. So A is not left-sided.

Example 4 Let A =


 0 a b

0 0 c

0 0 0

 : a, b, c ∈ IC

 . The only left maximal ideal of A is

M =


 0 a b

0 0 0
0 0 0

 : a, b ∈ IC

 , and it is two-sided. Then A is an almits (then also
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an amits). But, for example,

I =


 0 a a

0 0 0
0 0 0

 : a ∈ IC

 , is a left ideal of A which is not two-sided ; so A is not

an alits.

Contrary to the aits where the unitization is always a two-sided algebra (Proposition
9), we have the following Remark.

Remark 1 If A is an alits, then the unitization A1 of A (algebra obtained by junction
of a unit e to A) is not necessarily a left-sided algebra nor an alits. For this, consider the
algebra of Example 2. Then A1 is not an alits. For it, all left ideals of A1, different from
RadA and A, are of the form Td = RadA⊕ IC(ud,−1) or Ld = A1(ud,−1) = IC(ud,−1),

where ud =

(
1 0
d 0

)
, d ∈ IC. All ideals Td are two-sided. But none of left ideals Ld

is two-sided. Indeed, for every d ∈ IC let a, b ∈ IC such that da 6= b. Then, for exam-

ple,

((
1 0
d 0

)
− e
)(

a 0
b 0

)
=

(
0 0
da− b 0

)
/∈ IC(ud,−1). So A1 is not an alits.

Therefore A1 can’t be a left-sided algebra. Now we have the following proposition.

Proposition 1 1. The unitization of a radical algebra is always an amits, an almits

and an armits.

2. The unitization of a radical alits is always an alits.

Proof. 1. Let R be a radical algebra. Every proper left ideal I of R gives a proper left
ideal I⊕{0} of R⊕ICe. Let J = {(j, α) : (j, α) ∈ R⊕ ICe} be a proper left ideal of R⊕ICe,
different from the I⊕{0}, for every proper left ideal I of R. There exists a (j, α) ∈ J with
α 6= 0. Put i = − j

α . Then (i,−1) ∈ J . Since i is quasi-invertible in R, there exists r ∈ R
such that ri−r−i = 0. Then (r,−1)(i,−1) = (0, 1) ∈ J . So J = R⊕ICe. Therefore every
proper left ideal of R ⊕ ICe is of the form I ⊕ {0}, with I a proper left ideal of R. Since
R is the only maximal, left maximal and right maximal ideal of R ⊕ ICe, the conclusion
follows. 2. As in the proof of 1. every left ideal of R ⊕ ICe is a left ideal of R. So it is
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two-sided. Hence R⊕ ICe is an alits 2

Corollary 2 Let R be a radical algebra and R1 its unitization. Then R1 is two-sided if,
and only if, all ideals of R are two-sided.

Proof. If R1 is two-sided, then by Lemma I-19 [7], R is two- sided. So all its ideals
are two-sided. Conversely, as in the proof of the last proposition, every proper left ideal
of R1 is of the form I ⊕{0}, with I a proper left ideal of R. So R1 is an alits. The same
study can be done for proper right ideals. So R1 is an arits. By Proposition I-4, p. 18,
of [6], the algebra R1 is two-sided 2

Lemma 3 Let A be a non radical algebra; and I a left regular ideal of A with right unit
element θ of A modulo I. Furthermore suppose that I is two-sided and A/I is left-sided.
Then A/I is unitary and I is also right regular with left unit element θ of A modulo I.

Proof. Let I be a left regular ideal of A with right unit element θ of A modulo I. Then
aθ − a ∈ I, for every a ∈ A. Consequently, A/I is right unitary with right unit e = S(θ).
Since B = A/I is left-sided, we have xe = e′(x, e)x = x for every x ∈ B. Consider a fixed
x ∈ B and put e′(x, e) = e′. Then we have e′x = x; and so e′xy = xy, for every y ∈ B.
So the algebra xB is unitary with unit e = e′. Consequently aθ − a ∈ I and θa − a ∈ I,
for every a ∈ A. 2

Corollary 4 Let A be a non radical left-sided algebra; and I a left regular ideal of A with
right unit element θ of A modulo I. Then A/I is unitary and I is also right regular with
left unit element θ of A modulo I.

Proof. It is sufficient to remark that A/I is left-sided. So we can apply the above
lemma 2

For the next proposition, recall the next lemma from [6].

Lemma 5 Let A be a left-sided algebra and let f be the function of left-sidedness. Then,
for every x ∈ A, each partial application fx : t 7−→ fx(t) is linear from Lx into Lx.
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Lemma 6 Let A be a left-sided algebra. The following assertions are equivalent.

1. A is two-sided

2. For the function f of left-sidedness, each partial application

t 7−→ fx(t) = f(x, t), from A −→ Lx, is onto for every x ∈ A.

Proof. 1. =⇒ 2.. Let y ∈ A be fixed and x ∈ Ly . Since A is right-sided, there exists
u ∈ A such that xy = yu. Let f be the function of left-sidedness of A. Then yu = fy(u)y.
So xy = fy(u)y. Consequently (x− fy(u)) y = 0. So x − fy(u) ∈ Annl(y) ∩ Ly. But
Annl(y) ∩ Ly = {0}. Then for every x ∈ Ly, there exists u ∈ Ly such that x = fy(u).
2. =⇒ 1.. Let y ∈ A be fixed. Every z ∈ A is written as z = z1 + z2, with z1 ∈ Annl(y)
and z2 ∈ Ly . There exists x ∈ A such that z2 = fy(x). Since yx = fy(x)y, we have
zy = fy(x)y = yx. So, there exists x ∈ A such that zy = yx. And so A right-sided. 2

In the next proposition we can restrict ourselves to the study of a left-sided algebra,
because, by passage to the reverse algebra, the study of a right-sided one can then be
reduced to the previous case.

Proposition 7 Let A be a left (resp. right)-sided algebra of finite dimension. Then A is
two-sided.

Proof. Let x ∈ A be fixed, y ∈ Lx and let f be the function of left-sidedness of A, then
xy = fx(y)x. We can remark here that y ∈ Annr(x) if, and only if, fx(y) ∈ Annl(x) and,
equivalently, y ∈ Rx if, and only if, fx(y) ∈ Lx. Let z ∈ Lx such that fx(y− z) = 0, then
(fx(y − z))x = 0. So fx(y−z) ∈ Annl(x)∩Lx = {0} and so y−z ∈ Annr(x)∩Rx = {0}.
Therefore fx is an injection from Lx −→ Lx. Hence it is also onto, because Lx is of finite
dimension. All the more fx is onto from A onto Lx. One concludes by the previous
Lemma 6. 2

Lemma 8 Let A be a non radical aits. If I is a left (resp. right) regular ideal of A with
right (resp. left) unit element θ of A modulo I. Then A/I is two-sided, unitary and I is
also right (resp. left) regular with left (resp. right) unit element θ of A modulo I.

320



NAJMI

Proof. We can restrict our selves to the case when I is left regular, because the other
case can be returned to the first one. All ideals of B = A/I are two- sided and B is
right unitary with right unit e = S(θ). So B := A/I is right-sided, because we have
Bx ⊂ BxB ⊂ xB for every x ∈ B. Since B = A/I is right-sided, we have ex = xe′(x, e)
for every x ∈ B. Consider a fixed x ∈ B and put e′(x, e) = e′. Then we have ex = xe′;
and so yex = yxe′, for every y ∈ B. Then yx = yxe′, for every y ∈ B. So the algebra Bx
is right unitary with units e and e′. Then e = e′. Hence ex = xe = x for every x ∈ B.
Consequently B is two-sided. So aθ− a ∈ I and θa− a ∈ I for every a ∈ A. 2

Contrary to the alits where the unitization is not always an alits, we have the following
proposition.

Proposition 9 1. Let A be an aits. Then its unitization A1 is a two-sided algebra.

2. Let A be an almits (resp amits). Then its unitization A1 is of the same type.

Proof. 1. By Proposition 1, it is enough to consider a nonradical algebra. If A is an
aits, then every proper left ideal I of A gives a proper left ideal I ⊕ {0} of A1 = A⊕ ICe.
So it is two-sided. Let J = {(j, β) : (j, β) ∈ A1} be a proper left ideal of A1, different
from all ideals I ⊕ {0}, with I a proper left ideal of A. There exist a (j, β) ∈ J with
β 6= 0. Put i = − j

β . Then (i,−1) ∈ J . For every (x, α) ∈ A1 we have (x, α)(j, β) ∈ J
and so (xj − x, 0) ∈ J . But Ilj = {xj − x : x ∈ A} is a left regular ideal of A with right

unit element j of A modulo Ilj and Ilj ⊕ {0} ⊂ J. By Lemma 8, Irj ⊕ {0} ⊂ J with
Irj = {jx − x : x ∈ A}. So, for every (x, α) ∈ A1 we have (j, β)(x, α) ∈ J . So all ideals
of A1 are two-sided. We conclude by Proposition I-4 of [7]. 2. If A is an almits (resp.
amits), by Proposition 1, it is enough to suppose that A is not a radical algebra . Every
left maximal (resp. left maximal or right maximal) ideal M1 of A1 which is included in A
is two-sided. If M1 is not included in A1 let (j, β) ∈M1 with β 6= 0. Put i = − j

β . Then

(i,−1) ∈ M1. For every (x, α) ∈ A1 we have (x, α)(j, β) ∈ M1 (resp. (j, β)(x, α) ∈ M1,

when M1 is right maximal). So (xi − x, 0) ∈ M1 (resp. (ix − x, 0) ∈ M1, when M1

is right maximal). Hence xi − x ∈ I := A ∩M1 (resp. ix − x ∈ I := A ∩M1, when
M1 is right maximal). But I is a regular left (resp. right) maximal ideal of A. Since
it is two-sided and left (resp. right) regular with right (resp. left) unit element i of A
modulo I, then A/I is a field. So (ix − x, 0) ∈ M1 (resp. (xi − x, 0) ∈ M1). Therefore
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(i,−1)(x, α) ∈M1 (resp. (x, α)(i,−1) ∈M1). Hence (j, β)(x, α) = −β(i,−1)(x, α) ∈ M1

(resp. (x, α)(j, β) ∈M1). Consequently M1 is two-sided 2

Proposition 10 1. Let A and B be two algebras and h a morphism algebra from A to
B. If A is an alits, then h(A) is a sub-alits of B. In particular, if I is a two-sided
ideal of A, then the quotient algebra A/I is also an alits.

2. Cartesian product is an alits if, and only if, every factor is an alits.

3. Every inductive limit of a family of alits is an alits.

Remark 2 By 1. of Proposition 10, if A is an alits, then the algebra A/RadA is of

the same type. But the converse is false. To see this, let A =

{(
a b

0 0

)
: a, b ∈ IC

}
,

then RadA =

{(
0 b

0 0

)
: b ∈ IC

}
; and so A/RadA is isomorphic to IC. Hence, the

quotient algebra is commutative. But I =

{(
a 0
0 0

)
: a ∈ IC

}
is a left ideal which is

not two-sided.

4. Topological Almits

We don’t know if the completion of an almits (resp. amits) is necessarily an almits

(resp. amits) or not. But to have a partial answer, let us recall at the following definition.

Definition 1. ([11]) A topological algebra A is factor finite if A/J is of finite dimension
for every, closed, regular one sided maximal ideal J in A.

Proposition 11 Let A be a topological algebra the completion Â of which is a topological
algebra too. If A is a factor finite almits (resp. amits), then Â is an almits (resp.
amits) too.

Proof. Let J be a closed maximal left ideal of Â. By Lemma B 13, p. 74, of [11],

A ∩ J
bA

= J and A ∩ J is a left maximal ideal of A. So, by assumption, it is two-sided.
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Let y ∈ Â, j ∈ J and a net (yα)α∈Λ of elements of A which converge to y. Then

jy = lim
α
jyα ∈

{
iy = lim

α
iyα : i ∈ J

}
:= lim

α
Jyα = lim

α
J ∩A

bA
yα ⊂ lim

α
(J ∩A) yα

bA ⊂

lim
α

(J ∩A)
bA

= (J ∩A)
bA

= J. Consequently JÂ ⊂ J . The case where J is a right maxi-

mal ideal is handled in a similar way. 2

To describe the topological radical of a topologically nonradical algebra, we need the
following proposition.

Proposition 12 Let A be a topologically non radical simplicial algebra. Then radA ⊂
TqinvA.

Proof. Let b ∈ A\T lqinvA and let I be the closure of the left ideal {a− ab : a ∈ A}.
Then I is closed regular left ideal of A and b is a right unit of A modulo I. Since
A is a simlicial algebra, then there exists a closed regular maximal left ideal M of A
such that I ⊂ M . Hence b /∈ M. Consequently b /∈ radA ([3], Theorem 1, p. 27). So
radA ⊂ T lqinvA. Similarly we can prove that radA ⊂ TrqinvA. Finally, we conclude
that radA ⊂ TqinvA (= T lqinvA ∩ TrqinvA). 2

We shall say that a closed (resp. closed left) (resp. closed right) ideal I of A is
topologically (resp. left) (resp. right) quasi-regular ideal , if I ⊂ TqinvA (resp.
I ⊂ T lqinvA) (resp. I ⊂ TrqinvA).

Proposition 13 Let A be a topologically non radical simplicial algebra. Then

1.

radA = {a ∈ A : λa+ ba ∈ T lqinvA, ∀λ ∈ IC, ∀b ∈ A}
= {a ∈ A : λa+ ba ∈ TrqinvA, ∀λ ∈ IC, ∀b ∈ A}
= {a ∈ A : λa+ ba ∈ TqinvA, ∀λ ∈ IC, ∀b ∈ A}
= {a ∈ A : λa+ ab ∈ T lqinvA, ∀λ ∈ IC, ∀b ∈ A}
= {a ∈ A : λa+ ab ∈ TrqinvA, ∀λ ∈ IC, ∀b ∈ A}
= {a ∈ A : λa+ ab ∈ TqinvA, ∀λ ∈ IC, ∀b ∈ A}

323



NAJMI

2. radA is a (closed) topologically quasi-regular ideal which includes all topologically
left or right or quasi-regular ideals of A.

Proof. 1. Let us prove the first equality. Let A be a simplicial algebra over IC and let
a ∈ radA. Since radA is a two-sided ideal of A then λa + ba ∈ radA for each λ ∈ IC and
b ∈ A. Therefore, by the last proposition, λa+ ba ∈ T lqinvA for each λ ∈ IC and b ∈ A.
Hence radA ⊂ {a ∈ A : λa + ba ∈ T lqinvA, ∀λ ∈ IC, ∀b ∈ A}. To show the converse, it is
enough in the proof of Theorem 3 ([3], p. 29) to replace ” A-module” by ” left A-module”
and ”TqinvA” by ”T lqinvA”. The first and second equalities are similarly proved. To
show that

radA = {a ∈ A : λa + ab ∈ T lqinvA, ∀λ ∈ IC, ∀b ∈ A} ,

we consider reverse representations in place of representations, right A-(sub) module in
place of A-(sub)module and follow Mati Abel’s proof of Theorem 3 of [3], p. 29. 2.
By Proposition 12, the topological radical radA is a topologically quasi-regular ideal of
A. By using representations and reverse representations alternatively, we can use Abel’s
proof of Theorem 3 (loc. cit.), to show that all left, right and two-sided quasi-regular
ideals are included in radA 2

Proposition 14 Let A be an advertive simplicial topologically nonradical algebra. Then
we have radA = RadA.

Proof. It is known that

RadA = {a ∈ A : λa+ ba ∈ QinvA, ∀λ ∈ IC, ∀b ∈ A} .

Since A is an advertive algebra then QinvA = TqinvA. Therefore, by the last proposi-
tion, radA = RadA. 2

Lemma 15 If A is a unital (with unit e) and two-sided topological algebra then TinvA =
A\(∪ {I : I ∈ i(A)}.
Proof. The inclusion TinvA ⊂ A\(∪ {I : I ∈ i(A)} is done by ([2], Lemma 1, p. 17).
For the converse inclusion, let a ∈ A\(∪ {I : I ∈ i(A)}. If a /∈ TinvA then a /∈ InvA

and then Aa is an ideal for which I = cl(Aa) 6= A (otherwise, there exists a net (xα)α
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such that lim
α
xαa = e; so a should be in TinvA; contradiction). Besides, I is obviously

a vector subspace and also a two-sided ideal. For it, let x ∈ A and y ∈ I. Then there
exists a net (zα)α such that lim

α
zαa = y ; so xy = lim

α
(xzα)a ∈ I. Hence AI ⊂ I. In an

other hand cl(Aa) = cl(aA), so, if z ∈ A and y ∈ I, there exist a net (yα)α ⊂ A such
that y = lim

α
ayα. So yz = lim

α
a(yαz) ∈ I. Hence IA ⊂ I. Consequently, I is a closed

two-sided ideal which contains a. But it is not possible. So a ∈ TinvA. 2

Recall that Abel ([3]) has proved that every unital two-sided topological algebra,
which satisfies the condition ⋃

M∈M(A)

M =
⋃

M∈m(A)

M (4.1)

is an invertive algebra. Now by the preceding lemma and the same proof as that one
given by Abel ([3]) in the commutative case we have the following.

Proposition 16 Every two-sided invertive simplicial algebra satisfies condition (4.1).

Corollary 17 A unital simplicial two-sided topological algebra A is invertive if, and only
if, A satisfies condition (4.1).

Proposition 18 Every two-sided invertive simplicial Gelfand-Mazur algebra is a topo-
logically spectral algebra.

Proof. Let x ∈ A and λ ∈ SpA(x). Then x − λe /∈ InvA = TinvA. By Lemma 15,
there exists a closed (regular and two-sided) ideal I of A such that x− λe ∈ I. But A is
simplicial, so there exists an ideal M ∈ m(A) such that I ⊂M . As A is a Gelfand-Mazur
algebra , the maximal ideal M define an f ∈ X (A) such that M = Kerf . Therefore
f(x) = λ. Whence SpA(x) = {f(x) : f ∈ X (A)}. 2

The following result extends to our case (non-commutativity of the algebra concerned)
a previous one of Mati Abel in [2: p.19, Proposition 7]. That is, one has the following
proposition.
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Proposition 19 For every topologically nonradical simplicial Gelfand-Mazur almits or
amits A the set X (A) is not empty.

Proof. Since A\radA is not empty, by Proposition 13, there exists a ∈ A\radA,
b ∈ A and λ ∈ IC such that c = λa + ab /∈ T lqinvA. Hence c /∈ LqinvA. Then
I = {a− ac : a ∈ A} is a regular left ideal with right unit element c of A modulo I

and J = clA(I) 6= A. Hence J is of the same type as I and, in addition, it is closed.
Since A is a simplicial algebra, then there exists a closed and maximal left ideal M of
the same type as J such that J ⊂ M . But M is two-sided and the quotient A/M has a
right unit and no proper left ideals. Therefore A/M is a division algebra. Since A is a
Gelfand-Mazur algebra, A/M is isomorphic to IC; and thereby M defines an f ∈ X (A)
such that M = Kerf . 2

By Proposition 8 ([2]), in a topological algebra with non empty set X (A), if a ∈
TqinvA (resp. if A is a unital algebra and a ∈ TinvA) then f(a) 6= 1 (resp. f(a) 6= 0) for
each f ∈ X (A). So we have the following proposition which is in some way a reciprocal
of the result just mentioned.

Proposition 20 Let A be a topologically nonradical simplicial Gelfand-Mazur almits or
amits. Let a ∈ A, then from f(a) 6= 1 (resp. f(a) 6= 0, when A is unital) for each
f ∈ X (A) follows that a ∈ TqinvA (resp. a ∈ TinvA).

Proof. By the last proposition, the set X (A) is not empty. Let a ∈ A and f(a) 6= 1
(resp. f(a) 6= 0, when A is unital) for each f ∈ X (A). If a /∈ TqinvA (resp. a /∈ TinvA),
then a /∈ QinvA (resp. a /∈ InvA). Hence, I = {b− ba : b ∈ A} is a regular left ideal with
right unit element a of A modulo I (resp. I = Aa is a left ideal of A) and J = clA(I) 6= A.
Consequently, J is a regular and closed left ideal with right unit element a of A modulo J
(resp. J is a closed left ideal of A). Since A is a simplicial topological algebra then there
exists a regular, closed and maximal left ideal M, with right unit element a of A modulo
M (resp. there exists a closed and maximal left ideal M), which contains J . But A is
an almits (or amits), so M is two-sided. Hence, by the fact that A is a Gelfand-Mazur
algebra, M defines an f ∈ X (A) such that M = Kerf . Consequently, f(a) = 1 (resp.
f(a) = 0). But it is not possible. Hence, a ∈ TqinvA (resp. a ∈ TinvA) 2
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The following lemma yields a positive response to the problem of closed ideal in a
topological algebra.

Lemma 21 A given topological algebra has a closed regular unilateral ideal if, and only
if, it is topologically nonradical.

Proof. Necessary condition. Consider, for example, if A admits a regular and closed
left ideal I with right unit u of A modulo I. As A is simplicial, there exists a regular and
closed maximal M containing I. Consequently A admits at least a continuous and irre-
ducible representation. As, by definition, a topological algebra is topologically nonradical
if it does not admits any continuous irreducible representation, then A is topologically
nonradical. Conversely, if any element of A is topologically advertible, then A must be
an ideal of topologically advertible elements. So A must be topologically radical a con-
tradiction. Then, there exists an x ∈ A such that x is not, for example, left topologically
advertible. So x is not left advertible. Then Il = {zx− z : z ∈ A} is a regular left ideal
of A with right unit element x of A modulo Il such that ClA(Il) is a closed regular left
ideal of A with right unit element x of A modulo ClA(Il). 2

Proposition 22 Every topologically nonradical artinian and simplicial topological Gelfand-
Mazur amits A is almost commutative.

Proof. The case of a radical algebra is trivial. If A is not radical, then the quotient
algebra A/RadA is artinian and semi-simple. So, by Theorem 27, p. 315, of [9], the
quotient is isomorphic to a finite product of simple algebras, say

∏n
i=1 Ai. The quotient

A/RadA is an amits, so every Ai is an amits too. Because Ai is semi-simple, it can’t
be a proper zero-algebra. So Ai = {0} or Ai is a field. On another hand, by Lemma 21
and the fact that A is a simplicial amits, m(A) 6= ∅. Now by a result of Mart Abel ( [1],
Corollary 1, p. 3) the topological algebra A/RadA is a Gelfand-Mazur algebra. If Ai is

different from {0} it is isomorphic to (
∏n
j=1 Aj)/(

∏i−1
j=1 Ai × {0} ×

∏n
j=i+1Ai). By the

preceeding reference, Ai is a Gelfand-Mazur division algebra. So Ai is isomorphic to IC
(see [4], Theorem 1, p. 120). 2

Lemma 23 Let A be a topologically nonradical and simplicial topological algebra and
x ∈ A. Then the following assertions are equivalent.

327



NAJMI

1. x is topologically advertible.

2. x is not a unit element of A modulo any regular and closed one-sided ideal of A.

3. x is not a unit element of A modulo any regular, maximal and closed one-sided ideal
of A.

Proof. 1. ⇒ 2.. If x is a unit element of A modulo, for example, a closed right ideal
I, one has xy − y ∈ I for any y ∈ A. Since x is topologically advertible, there exists a
generalized sequence (zα) ⊂ A such that xzα − zα −→ x. Consequently x ∈ I. Since
y = y − xy + xy for every y ∈ A, one has I = A; a contradiction. 2. ⇒ 1.. If x is not
topologically advertible, as in the proof of the preceedent lemma, there exist a closed
regular one-sided ideal I such that x is a unit element of A modulo I. 2.⇒ 3. is obvious.
3. ⇒ 2.. Suppose that x is a unit element of A modulo a regular, closed one-sided ideal
of A. Since the algebra A is simplicial, the element x is a unit element of A modulo a
maximal, regular, closed one-sided ideal of A. 2

The following corollary is an improvement on Lemma 15.

Corollary 24 If A is a topologically nonradical aits (or simply, with the less restricting
assumption: an algebra in which all regular ideals are two-sided) and simplicial topological
algebra (which is neither necessarily unital, nor necessarily bilateral) then

TqinvA = A\
⋃

I∈i(A)

I = A\
⋃

M∈m(A)

M

Proof. The equation TqinvA = A\ ⋃
I∈i(A)

I is the interpretation of equivalence 1.⇔ 2.

of Lemma 23. While equation TqinvA = A\ ⋃
M∈m(A)

M is the interpretation of equiva-

lence 1.⇔ 3. of Lemma 23. 2

Lemma 25 Let A be a topological algebra. Moreover, consider the following assertions:

1. a ∈ QinvA if, and only if f(a) 6= 1 for every f ∈ X (A).

2. a ∈ InvA if, and only if f(a) 6= 0 for every f ∈ X (A).
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3. RadA is closed and A is almost commutative.

Then 1.⇒ 3. and 2.⇒ 3..

Proof. 1. ⇒ 3.. We know that RadA ⊂
⋂

f∈X (A)

Ker(f). If a ∈
⋂

f∈X (A)

Ker(f),

then f(a) 6= 1 for every f ∈ X (A). So a ∈ QinvA. Since
⋂

f∈X (A)

Ker(f) is an ideal of

quasi-invertible elements, then it is included in RadA. So RadA =
⋂

f∈X (A)

Ker(f) and it

is closed. Now, since xy − yx ∈ RadA for all x, y ∈ A, the quotient algebra A/RadA is
commutative. 2.⇒ 3.. One can come down to the previous case. 2

As it is shown by the following examples, the converse is false.

Remark 2

1. Let A = IC(X) × lC , where IC(X) is the field of rational fractions which can be
provided with a topology of a metrizable l.c.a. with continuous multiplication
([13], 3, p. 731). Then A/RadA = A/{0} = A is commutative. But the only
non vanishing character of the unital algebra A is f : (x, λ) 7→ λ; and we have
f((0, 1)) = 1 6= 0. Nevertheless (0, 1) is not invertible.

2. Let A = IC[t] be the algebra of polynomial functions of one indeterminate, equipped
with the following algebra norm P (t) −→ ‖P (t)‖ =

∥∥∑n
i=0 ait

i
∥∥ =

∑n
i=0 |ai| .

Obviously A is almost commutative. All characters of A are of the form fz , z ∈ lC ,
with fz(P ) = P (z). But we have X (A) = {fz : |z| ≤ 1}. Here, for example, we
have, fz(X − 2) 6= 0, for every fz ∈ X (A). However, the set of invertible elements
is IC\{0}.

The following proposition generalizes Theorem 5 of Mati Abel [5] to the case of amits
algebras.

Proposition 26 1. Let A be a simplicial and topologically non radical Gelfand-Mazur
amits. Then
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(a) X (A) is non empty.

(b) a ∈ QinvA if, and only if f(a) 6= 1 for every f ∈ X (A).

(c) If A has a unite then a ∈ InvA if, and only if f(a) 6= 0 for every f ∈ X (A).

(d) RadA =
⋂

f∈X (A)

Ker(f). So it is closed.

(e) A is almost commutative.

(f) Let x ∈ A. Then

i. In the non unitary case, SpA(x) = {f(x) : f ∈ X (A)} ∪ {0}.
ii. In the unitary case,

SpA(x) = {f(x) : f ∈ X (A)} ∪ {0}, if x is not invertible.
SpA(x) = {f(x) : f ∈ X (A)}, if x is invertible.

iii. The amits A is advertive. If in addition X (A) is compact, then A is
spectral.

2. Let A be an advertibly complete l.m.c. amits and suppose that A2 = A, then it is a
Gelfand-Mazur algebra and so it is advertive.

Proof. 1.(a). By Lemma 21 and the fact that A is a simplicial amits, m(A) is not
empty. Let M ∈ m(A) be, for example, left maximal. Since A/M is a unital algebra
without proper left ideal, then A/M is a division algebra. Since M is closed and A/M is
a Gelfand-Mazur algebra ([1]), it is isomorphic to IC, the field of complex numbers ([4]).
Consequently, there exists f ∈ X (A) such that M = Ker(f). 1.(b). The necessary condi-
tion is obvious. For the sufficient condition, suppose that a is not advertible. By Lemma
23, a is a right or left unit element of A modulo a regular, maximal and closed respec-
tively left or right ideal M of A. Since A is an amits, M is two-sided. Now by Corollary
1, p. 3, of [1], the algebra A/M is a (topological) Gelfand-Mazur (division) algebra. So
it is isomorphic to IC. Then, there exists a nontrivial continuous character f such that
M = Ker(f). Consequently, f(a) = 1; contradiction. 1.(c). Since InvA = e − QinvA,
it is enough to use the previous assertion. 1.(d). As in the proof of Lemma 25 we have

RadA =
⋂

f∈X (A)

Ker(f). Consequently it is closed. 1.(e). By Lemma 25, A is almost

commutative. 1.(f). i. Let λ ∈ SpA(x) and λ 6= 0, then λ−1x is not quasi-invertible.
Or equivalently, by 1.(b) , f(λ−1x) = 1 for certain f ∈ X (A). Hence f(x) = λ for cer-
tain f ∈ X (A). 1.(f).ii. Let e be the unit element of A. If x is not invertible, then
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0 ∈ SpA(x). Let λ ∈ SpA(x) and λ 6= 0, then x−λe is not invertible. Or equivalently, by
1.(c)., f(x−λe) = 0 for certain f ∈ X (A). Hence f(x) = λ for certain f ∈ X (A). 1.(f).iii.
By 1.(f).i., 1.(f).ii. and Proposition 6, p. 19, of [2], A is an advertive algebra. Now from
1.f.i. or 1.f.ii., we have ρA(x) = sup {|f(x)| : f ∈ X (A)}. Since X (A) is compact, then A

is spectral. 2. If A is a radical (so also topologically radical) advertibly complete l.m.c.a,
by Lemma 21, the fact that A is simplicial is trivial. Now, if A is a nonradical advertibly
complete l.m.c.a, then by ([8], Corollary II-6), it is simplicial. Let us suppose now that
A2 = A and let M be a two-sided ideal which is right maximal. Put B = A/M . If
B2 = {0}, then A2 = A ⊂M (this includes the case where A is topologically radical, i.e.
A = radA); which is impossible. Consequently, A is topologically non radical, B is a field
and M is right and left regular. Besides, M is also left maximal. Indeed, if I is a right
ideal which contains M and is strictly included in A, then S(I) is an ideal of the field B,
which is different from B. Hence S(I) = {0}. So M = I. Hence every two sided maximal
ideal is regular and is maximal as left and as right. So if M ∈ m(A), then A/M is isomor-
phic to IC. Consequently A is a Gelfand-Mazur algebra. Now, by 1.(f).i and 1.(f).ii, A is a
topologically spectral algebra. By Proposition 6, p. 19, of [2], A is an advertive algebra. 2

Remark 3 The part 2. of the last proposition is the reciprocal result in case of l.m.c.a.
of Corollary 1 of M. Abel ([2], p. 16).

W. Zelazko ([14]) has given an example of a B0-convex algebra with closed radical
which is Q -algebra and which is not m-convex.

Corollary 27 Let A be a simplicial Gelfand-Mazur B0-convex algebra which is an amits

and for which RadA 6= A. Then B := A/RadA is a l.m.c.a..

Proof. The quotient algebra B is a B0-algebra. By the previous proposition, B is
commutative, then, by Theorem B ([14]), the algebra B is m-convex. 2

Proposition 28 Let A be a topological amits and M a left maximal ideal of A. Then
M is either the kernel of a nontrivial continuous character of A, or a hyperplane of A
of codimension 1 containing A2. In particular, this is the case when M is closed and not
regular.
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Proof. Since A is an amits, then M is two-sided. Besides M is regular if, and only
if, A/M is a field. Then if M is not regular, A/M can not be a field; and then it is a
zero-algebra such that dim(A/M) = 1. If M is regular and closed, then it is easy to prove
that M is the kernel of a nontrivial continuous character of A. 2

Corollary 29 Let A be a topological amits. Then the closed regular maximal left or right
ideals of A of codimension 1, are exactly the kernels of nontrivial continuous characters
of A, hence, two-sided, as well.
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