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Abstract

In this paper, we study coisotropic submanifolds of a semi-Riemannian manifold.

We investigate the integrability condition of the screen distribution and give a

necessary and sufficient condition on Ricci tensor of a coisotropic submanifold to

be symmetric. Finally, we present some new theorems and results about totally

umbilical coisotropic submanifolds of a semi-Riemannian manifold.
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1. Introduction

The geometry of lightlike submanifolds of a semi-Riemannian manifold is one of
the interesting topics of differential geometry. In [2], Bejancu-Duggal have constructed
a transversal vector bundle of a lightlike submanifold. D. N. Kupeli [5], using the
canonical projection, has investigated the properties of these submanifolds. On the other
hand, Duggal and Jin have studied totally umbilical half-lightlike submanifolds in semi-
Riemannian manifolds, of codimension 2 [4].

In this paper, we consider coisotropic submanifolds which were proposed as a research
problem by Duggal and Jin in [4]. We obtain a necessary and sufficient condition for inte-
grability of the screen distribution. Also, we investigate Ricci tensor of a coisotropic sub-
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335
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manifold and give a necessary and sufficient condition on the Ricci tensor of a coisotropic
submanifold to be symmetric. Moreover, we prove that the null sectional curvatures of
an ambient space and of a coisotropic submanifold are the same for a totally umbilical
coisotropic submanifold.

2. Preliminaries

Let (M, g) be a real (m+n)-dimensional semi-Riemannian manifold of constant index
q such that m, n ≥ 1, 1 ≤ q ≤ m+n− 1 and (xi) be a local coordinate system at a point
x ∈ M . Then the associated quadratic form of g is a mapping h : Tx(M) → R given by
h(X) = g(X,X) for any X ∈ Tx(M). Using a well-known result from linear algebra, we
have the following canonical form for h (with respect to a local basis of Tx(M)):

h = −
q∑

I=1

(wI)2 +
m+n∑
A=q+1

(wA)2,

where w1, · · · , wm+n are linearly independent local differential 1-forms on M . With
respect to the local coordinate system (xi), by replacing in above each wI = wIi dx

i and
each wA = wAi dx

i, we obtain

h = gijdx
idxj, rank|gij| = m+ n,

gij = g(∂i, ∂j) = −
q∑
I=1

wIiw
I
j +

m+n∑
A=q+1

wAi w
A
j ,

where q is the index of g.

Now, let M be an m-dimensional submanifold of M and g the induced metric of g
on M . In this paper, we suppose that all manifolds are paracompact and smooth. M is
called a lightlike (degenerate) submanifold of M , if g is degenerate on the tangent bundle
TM of M , [3]. We suppose that g is degenerate. Then, for each tangent space TxM ,
x ∈M ,

TxM
⊥ = {u ∈ TxM : g(u, v) = 0, ∀v ∈ TxM}

is a degenerate n-dimensional subspace of TxM . Thus, both TxM and TxM
⊥ are de-

generate orthogonal subspaces but no longer complementary. In this case, there exists
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a subspace Rad TxM = TxM ∩ TxM⊥ which is called radical (null) subspace. If the
mapping

Rad TM : x ∈M −→ Rad TxM

defines a smooth distribution on M of rank r > 0, then the submanifold M of M is called
r-lightlike (r-degenerate) submanifold and Rad TM is called the radical (lightlike, null)
distribution on M [3]. Following are four possible cases:

Case 1. r-lightlike submanifold. 1 ≤ r < min{m, n}.

Case 2. Coisotropic submanifold. 1 ≤ r = n < m.

Case 3. Isotropic submanifold. 1 ≤ r = m < n.

Case 4. Totally lightlike submanifold. 1 ≤ r = m = n.

For Case 1, there exists a non-degenerate screen distribution S(TM) which is a
complementary vector subbundle to Rad TM in TM . Therefore,

TM = Rad TM⊥S(TM), (1)

where ⊥ denotes orthogonal direct sum. Although S(TM) is not unique, it is iso-
morphic to the factor bundle TM/Rad TM . Denote an r-lightlike submanifold by
(M, g, S(TM), S(TM⊥)), where S(TM⊥) is a complementary vector subbundle toRad TM
in TM⊥. Let tr(TM) and ltr(TM) be complementary (but not orthogonal) vectors bun-
dles to TM in TM |M and to Rad TM in S(TM⊥), respectively. Then we have

tr(TM) = ltr(TM)⊥S(TM⊥), (2)

TM |M = TM ⊕ tr(TM)

= (RadTM ⊕ ltr(TM))⊥S(TM)⊥S(TM⊥), (3)

where ⊕ denotes direct sum, but it is not orthogonal.

Now, we suppose that U is a local coordinate neighborhood of M . We consider the
following local quasi-orthonormal field of frames of M along M , on U :

{ξ1, ..., ξr,W1, ...,Wm−r, N1, ..., Nr, U1, ..., Un−r}, (4)
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where {ξ1, ..., ξr}, {N1, ..., Nr} are local lightlike bases of Γ(Rad TM |U), Γ(ltr(TM) |U )
and {W1, ...,Wm−r} and {U1, ..., Un−r} are local orthonormal bases of Γ(S(TM) |U ) and
Γ(S(TM⊥) |U), respectively.

For Case 2, we have Rad TM = TM⊥. Therefore S(TM⊥) = {0} and from (2),
tr(TM) = ltr(TM). From (3) and (4), we can write

TM |M = (Rad TM ⊕ ltr(TM))⊥S(TM)

= (TM⊥ ⊕ ltr(TM))⊥S(TM), (5)

{ξ1, ..., ξr,W1, ...,Wm−r, N1, ..., Nr}, (6)

where {ξ1, ... , ξr}, {N1, ..., Nr} are local lightlike bases of Γ(Rad TM |U), Γ(ltr(TM) |U )
and {W1, ...,Wm−r} is a local orthonormal basis of Γ(S(TM) |U), respectively.

For Case 3, we have Rad TM = TM . Thus S(TM) = {0}. Therefore, from (3) and
(4), we have

TM |M= (TM ⊕ ltr(TM))⊥S(TM⊥) (7)

{ξ1, ..., ξr, N1, ..., Nr, U1, ..., Un−r}, (8)

where {ξ1, ... , ξr}, {N1, ..., Nr} are local lightlike bases of Γ(Rad TM |U), Γ(ltr(TM) |U )
and {U1, ..., Un−r} is a local orthonormal basis of Γ(S(TM⊥) |U ), respectively.

For Case 4, we have Rad TM = TM = TM⊥, S(TM) = S(TM⊥) = {0}. Therefore,
from (3) and (4), we have

TM |M= (TM ⊕ ltr(TM)) (9)

{ξ1, ..., ξr, N1, ..., Nr}, (10)

where {ξ1, ..., ξr}, and {N1, ..., Nr} are local lightlike bases of Γ(Rad TM |U ), and
Γ(ltr(TM) |U ), respectively.

For the dependence of all the induced geometric objects, of M , on {S(TM), S(TM⊥)}
we refer to [3].
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Now, let (M, g) be an (m + n)-dimensional semi-Riemannian manifold with index
q ≥ 1 and M a coisotropic submanifold of M , of codimension n. Then, there exists
lightlike vector fields on a local coordinate neighborhood U of M , also denoted by ξi,
such that

g(ξi, X) = 0, g(ξi, ξj) = 0, i, j = 1, ..., n,

for any X ∈ Γ(TM |U ). Therefore, an n-dimensional radical distribution Rad TM of
the coisotropic submanifold M is locally spanned by {ξ1, ..., ξn}. Then, there exists local
lightlike vector fields Ni on U , such that

g(ξi, Ni) = 1, g(ξi, Nj) = 0, i 6= j, g(Ni, Nj) = 0, i, j = 1, ..., n,

where Ni are not tangent to M .

If we choose ξ∗i = αiξi, i=1,...,n, on another neighborhood of coordinates then we
obtain N∗i = 1

αi
Ni. Thus, the vector bundle ltr(TM) is defined over M which is the

canonical affine normal bundle of M with respect to the screen distribution S(TM),
where ltr(TM) is a n-dimensional vector bundle locally spanned by {N1, ..., Nn}.
Now, we give two examples for coisotropic submanifolds.

Example 2.1 Suppose M is a submanifold of R5
2 given by the equations

x3 =
1√
2

(x2 + x1), x4 =
1√
2

(x2 − x1).

Then

TM = Sp{U1 =
∂

∂x1
+

1√
2
∂

∂x3
− 1√

2
∂

∂x4
, U2 =

∂

∂x2
+

1√
2
∂

∂x3
+

1√
2
∂

∂x4
,

U3 =
∂

∂x5
},

and

TM⊥ = Sp{ξ1 = U1, ξ2 = U2}.

Thus, Rad TM = TM⊥ ⊂ TM, and M is an 3-dimensional coisotropic submanifold of
R5

2. Let S(TM) be spanned by the spacelike vector field U3. Then, a lightlike transversal
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vector bundle ltr(TM) is spanned by

{N1 = −1
2
∂

∂x1
+

1
2
√

2
∂

∂x3
− 1

2
√

2
∂

∂x4
, N2 = −1

2
∂

∂x2
+

1
2
√

2
∂

∂x3
+

1
2
√

2
∂

∂x4
}.

Example 2.2 (Duggal and Bejancu, p. 152 in [3]) Consider in R5
2 the submanifold M

given by the equations

x2 = {(x3)2 + (x5)2}1/2, x4 = x1, x3 > 0, x5 > 0.

Then we have

TM = Sp{U1 =
∂

∂x1
+

∂

∂x4
, U2 = x3 ∂

∂x2
+ x2 ∂

∂x3
, U3 = x5 ∂

∂x2
+ x2 ∂

∂x5
},

and

TM⊥ = Sp{ξ1 =
∂

∂x1
+

∂

∂x4
, ξ2 = x2 ∂

∂x2
+ x3 ∂

∂x3
+ x5 ∂

∂x5
}.

It follows that Rad TM = TM⊥ ⊂ TM . Hence M is an 3-dimensional coisotropic
submanifold of R5

2. Let S(TM) be spanned by the spacelike vector field U3 and the
complementary vector bundle F of TM⊥ in S(TM)⊥ be spanned by

{V1 =
∂

∂x1
, V2 =

∂

∂x3
}.

Moreover, ltr(TM) is spanned by

{N1 =
1
2

(
∂

∂x4
− ∂

∂x1
), N2 =

1
2(x3)2

(−x2 ∂

∂x2
+ x3 ∂

∂x3
− x5 ∂

∂x5
)}.

Let us denote by P the projection of TM on S(TM) with respect to the decomposition
(5), then we can write

X = PX +
n∑
i=1

ηi(X)ξi, (11)

for any X ∈ Γ(TM), where ηi, i = 1, ..., n, are local differential 1-forms on M given by

ηi(X) = g(X,Ni), i = 1, ..., n. (12)
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Let 5 be the Levi-Civita connection on M . Then, according to (1) and (5), the Gauss
and Weingarten formulas are given by

∇XY = ∇XY + h(X, Y ), (13)

∇XNi = −ANiX +∇⊥XNi, i = 1, ..., n, (14)

for any X, Y ∈ Γ(TM), where ∇XY , ANiX belong to Γ(TM), while h(X, Y ), and
∇⊥XNi, i = 1, ..., n belong to Γ(ntr(TM)). Moreover, it is easy to check that ∇ is a
torsion-free linear connection on M , h is a symmetric bilinear form on Γ(TM) which is
called the second fundamental form, ANi , i = 1, ..., n are linear operators on M which
are called shape operators.

We define symmetric bilinear forms Di and 1-forms ρij, i, j = 1, ..., n, on a local
coordinate neighborhood U of M by

Di(X, Y ) = g(h(X, Y ), ξi),

ρij(X) = g(∇⊥XNi, ξj), i, j = 1, ..., n,

for any X, Y ∈ Γ(TM). Since ltr(TM) is spanned by N1, ..., Nn, we get

h(X, Y ) =
n∑
i=1

Di(X, Y )Ni, (15)

∇⊥XNi =
n∑
j=1

ρij(X)Nj , i = 1, ..., n, (16)

for any X, Y ∈ Γ(TM), where Di, i = 1, ..., n, are called the lightlike second fundamental
forms of M with respect to ltr(TM).

From (13) and (15), we have

∇Xξi = ∇Xξi +
n∑
j=1

Dj(X, ξi)Nj , i = 1, ..., n.

Hence, we obtain

Di(X, ξi) = 0. (17)
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Moreover, since g(ξi, ξj) = 0, we have

Di(X, ξj) +Dj(X, ξi) = 0. (18)

Similarly, for the lightlike transversal vector fields Ni, i = 1, ..., n, we get

g(ANiX,Ni) = 0, i = 1, ..., n. (19)

g(ANiX,Nj) + g(ANjX,Ni) = 0, i 6= j, i, j = 1, ..., n. (20)

Now, by using (12)–(16), we obtain

ρij(X) = −ηi(∇Xξj), i, j = 1, ..., n. (21)

Since ∇ is a metric connection and by using (13)-(16), we arrive at

(∇Xg)(Y, Z) =
n∑
i=1

Di(X, Y )ηi(Z) + Di(X,Z)ηi(Y ), (22)

for any X, Y, Z ∈ Γ(TM).

Now, we consider the decomposition (1). Then, we can write

∇XPY = ∇∗XPY + h∗(X, PY ), (23)

∇Xξi = −A∗ξiX +∇∗⊥X ξi, i = 1, ..., n, (24)

for any X, Y ∈ Γ(TM), where ∇∗XPY and A∗ξiX belong to Γ(S(TM)) while h∗(X, PY )

and ∇∗⊥X ξi belong to Γ(Rad TM). Furthermore, ∇∗ and ∇∗⊥ are linear connections on
the screen and radical distribution, respectively, Aξi are linear operators on Γ(TM), h∗

is a bilinear form on Γ(TM) × Γ(S(TM)). We note that ∇∗ is a metric connection on
S(TM), but it is not free torsion. We define

Ei(X, PY ) = g(h∗(X, PY ), Ni),

uij(X) = g(∇∗⊥X ξi, Nj), i, j = 1, ..., n,
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for any X, Y ∈ Γ(TM). Thus, (23) and (24) become

∇XPY = ∇∗XPY +
n∑
i=1

Ei(X, PY )ξi, (25)

∇Xξi = −A∗ξ1X +
n∑
j=1

uij(X)ξj , i = 1, ..., n. (26)

Using (13)–(16), (25) and (26) we have

Ei(X, PY ) = g(ANiX, PY ), i = 1, ..., n, (27)

Di(X, PY ) = g(A∗ξiX, PY ), i = 1, ..., n, (28)

uij(X) = −ρji(X) , i, j = 1, ..., n. (29)

Hence (26) becomes

∇Xξ1 = −A∗ξ1X −
n∑
j=1

ρji(X)ξj , i = 1, ..., n. (30)

From (17) and (28), we get

A∗ξiξi = 0, i = 1, ..., n. (31)

3. Some Properties of Coisotropic Submanifolds

It is known that lightlike submanifolds whose screen distribution is integrable have
interesting properties. Therefore, we investigate the integrability of the screen distribu-
tion. On the other hand, the Ricci tensor of a lightlike submanifold is not symmetric, in
general. In this section, we will show that the Ricci tensor of a coisotropic submanifold
is symmetric under certain conditions.

Now, taking ξ∗i = αiξi, it follows that N∗i = 1
αi
Ni, i = 1, ..., n. Hence we obtain

ρij(X) = ρ∗ij(X) + X(logαi), i = 1, ..., n,

for any X ∈ Γ(TM), where we note that ρij depends on the section ξi ∈ Γ(Rad TM).
The exterior derivative of 1-form ρij is given by

dρi(X, Y ) =
1
2
{X(ρi(Y ))− Y (ρi(X)) − ρi([X, Y ])}, i = 1, ..., n.
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Thus we have the following theorem.

Theorem 3.1 Let M be a coisotropic submanifold of a semi-Riemannian manifold (M, g),
of codimension n. Suppose ρij and ρ∗ij are the 1-forms on U associated to ξi and ξ∗i , re-
spectively. Then, dρ∗ij = dρij, i, j = 1, ..., n , on U .

Theorem 3.2 Let M be a coisotropic submanifold of M, of codimension n. The screen
distribution S(TM) is integrable if and only if ηi, i = 1, ..., n, are closed forms on S(TM).

Proof. Since ∇ is a torsion-free linear connection, by using (11), (23) and (30) we
obtain

[X, Y ] = ∇∗XPY −∇∗Y PX +
n∑
i=1

ηi(X)A∗ξiY − ηi(Y )A∗ξiX

+
n∑
i=1

{Ei(X, PY )−Ei(Y, PX) + X(ηi(Y ))− Y (ηi(X)) (32)

+
n∑
j=1

ηj(X)ρij(Y )− ηj(Y )ρij(X)}ξj .

Taking the scalar product of the last equation with Ni, i = 1, ..., n, we obtain

g([X, Y ], Ni) = Ei(X, PY )− Ei(Y, PX) +X(ηi(Y )) − Y (ηi(X)) (33)

+
n∑
j=1

ηj(X)ρij (Y )− ηj(Y )ρij(X), i = 1, ..., n.

Hence we get

2dηi(X, Y ) = Ei(Y, PX) −Ei(X, PY ) (34)

+
n∑
j=1

ηj(Y )ρij(X) − ηj(X)ρij(Y ), i = 1, ..., n.

From (12) and (34) we obtain

2dηi(PX, PY ) = Ei(PY, PX)−Ei(PX, PY ), i = 1, ..., n, (35)

or

ηi([PX, PY ]) = Ei(PY, PX)−Ei(PX, PY ), i = 1, ..., n. (36)
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Thus, we have the assertion of the theorem. 2

The Riemannian curvature tensor R of an arbitrary differentiable manifoldM is given
by R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, for any X, Y, Z ∈ Γ(TM).

Now, let M be a coisotropic submanifold of an (m+n)-dimensional semi-Riemannian
manifold M , of codimensional n. Denote by R and R the curvature tensors of ∇ and ∇,
respectively. Then by straightforward calculations, we have

R(X, Y )Z = R(X, Y )Z +
n∑
i=1

Di(X,Z)ANiY −Di(Y, Z)ANiX

+
n∑
i=1

{(∇XDi)(Y, Z) − (∇YDi)(X,Z)}Ni (37)

+
n∑
j=1

n∑
i=1

{ρij(X)Di(Y, Z)− ρij(Y )Di(X,Z)}Nj ,

R(X, Y )ξk = R(X, Y )ξk +
n∑
i=1

Di(X, ξk)ANiY −Di(Y, ξk)ANiX

+
n∑
i=1

{(∇XDi)(Y, ξk) − (∇YDi)(X, ξk)}Ni (38)

+
n∑
j=1

n∑
i=1

{ρij(X)Di(Y, ξk) − ρij(Y )Di(X, ξk)}Nj ,

R(X, Y )ξk = ∇∗Y (A∗ξkX) −∇∗X(A∗ξkY ) +A∗ξk [X, Y ] +
n∑
i=1

ρik(Y )A∗ξiX − ρik(X)A∗ξiY

+
n∑
i=1

{Ei(Y, A∗ξkX) −Ei(X,A∗ξkY ) − 2dρik(X, Y )}ξi (39)

+
n∑
j=1

n∑
i=1

{ρik(Y )ρji(X) − ρik(X)ρji(Y )}ξj,
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for any X, Y, Z ∈ Γ(TM). From (37)–(39), we have Gauss and Codazzi equations:

g(R(X, Y )PZ, PW ) = g(R(X, Y )PZ, PW ) (40)

+
n∑
i=1

Di(X, PZ)Ei(Y, PW )−Di(Y, PZ)Ei(X, PW ),

g(R(X, Y )ξk, Nk) = g(R(X, Y )ξk, Nk) (41)

+
n∑
i=1

ηk(ANiY )Di(X, ξk)− ηk(ANiX)Di(Y, ξk),

g(R(X, Y )ξk, Nk) = Ek(Y, A∗ξkX) −Ek(X,A∗ξkY )− 2dρkk(X, Y ) (42)

+
n∑
i=1

ρik(Y )ρki(X) − ρik(X)ρki(Y ).

Thus, from (37) we have the following theorem.

Theorem 3.3 Let (M, g) be a coisotropic submanifold of (M, g), of codimension n. If
M is totally geodesic in M , then

R(X, Y ) = R(X, Y )

for any X, Y ∈ Γ(TM).

Now, we consider the Ricci tensor of a coisotropic submanifold. The Ricci tensor Ric
of an arbitrary manifold M is defined by

Ric(X, Y ) = trace{Z −→ R(X,Z)Y }

for any X, Y ∈ Γ(TM) [6]. Then, the Ricci tensor of a coisotropic submanifold M of an
(m+ n)-dimensional semi-Riemannian manifold M , of codimension n, is given by

Ric(X, Y ) =
m−n∑
i=1

εig(R(X,Wi)Y,Wi) +
n∑
i=1

g(R(X, ξi)Y,Ni),

346
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where {W1,W2, ...,Wm−n} is an orthonormal basis of Γ(S(TM)). Using first Bianchi
identity we have

Ric(X, Y )− Ric(Y,X) =
m−n∑
i=1

εig(R(X, Y )Wi,Wi) (43)

+
n∑
i=1

g(R(X, Y )ξi, Ni).

Moreover, from (27) and (28) we derive

Ej(X,A∗ξiY ) =
m−n∑
k=1

εkDj(Y,Wk)Ei(X,Wk), j = 1, ..., n. (44)

Using the structure equations given with (43) and (44), we obtain

Ric(X, Y )− Ric(Y,X) = −2
n∑
k=1

dρkk(X, Y ),

for any X, Y ∈ Γ(TM). So, we have the following theorem.

Theorem 3.4 Let (M, g) be a coisotropic submanifold of (M, g), of codimension n. Then
the Ricci tensor Ric of M is symmetric if and only if on M

n∑
k=1

dρkk = 0.

Corollary 3.5 Let (M, g) be a coisotropic submanifold of (M, g), of codimension n.
Then Ricci tensor Ric of M is symmetric, if ρkk, k = 1, ..., n, are closed form.

Let M(c) be a semi-Riemannian manifold with constant sectional curvature c. Then
curvature tensor of M(c) is given by

R(X, Y )Z = c{g(Y, Z)X − g(X,Z)Y }. (45)

Let M be a coisotropic submanifold of M(c), of codimension n. Then, from (40), (41)
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and (45) we get

Ric(X, Y ) = (1−m)cg(PX, PY ) (46)

+
m−n∑
k=1

n∑
i=1

εk{Di(Wk, Y )Ei(X,Wk)−Di(X, Y )Ei(Wk,Wk)}

+
n∑
j=1

n∑
i=1

ηj(ANiX)Di(ξj , Y ) − ηj(ANiξj)Di(X, Y ).

Then we have the following theorem

Theorem 3.6 Let M be a coisotropic submanifold of an (m + n)-dimensional semi-
Riemannian space form (M(c), g), of codimension n. If M is total geodesic, then M is
an Einstein manifold.

The rest of this section we consider totally umbilical coisotropic submanifolds. A
coisotropic submanifold M is said to be totally umbilical in M if there is a smooth affine
normal vector field Z ∈ Γ(tr((TM)) on M such that

h(X, Y ) = Zg(X, Y )

for all X, Y ∈ Γ(TM) [4]. From (15) it is easy to see that M is totally umbilical if and
only if there exist smooth functions Hi, i = 1, ..., n, on each coordinate neighborhood U

such that

Di(X, Y ) = Hig(X, Y ), i = 1, ..., n, (47)

for any X, Y ∈ Γ(TM). From (28), we have

A∗ξiX = HiPX, i = 1, ..., n, (48)

for any X ∈ Γ(TM). Moreover, we have

Di(X, ξj) = 0, A∗ξiξj = 0, i, j = 1, ..., n. (49)

From (22), we derive

∇ξig = 0, i = 1, ..., n. (50)
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From (46) and (49), we get

Ric(X, ξi) = 0, i = 1, ..., n,

for any X ∈ Γ(TM).

Corollary 3.7 Let M be a coisotropic submanifold of a semi-Riemannian space form
M(c). Then the Ricci tensor of M is degenerate.

Theorem 3.8 Let M be a totaly umbilical coisotropic submanifold of an (m + n)-
dimensional semi-Riemannian manifold (M), of codimension n. Then, the radical distri-
bution Rad TM is parallel in M .

Proof. Since ∇ is a metric connection, we obtain

g(∇ξξ′, X) = −g(∇ξX, ξ′),

for any ξ, ξ′ ∈ Γ(Rad TM) and X ∈ Γ(TM). By using Gauss formula, we get

g(∇ξξ′, X) = −g(h(ξ, X), ξ′).

Thus, since M is totally umbilical coisotropic submanifold, we have h(ξ, X) = 0. Hence

g(∇ξξ′, X) = g(∇ξξ′, X) = 0,

i.e., ∇ξξ′ ∈ Γ(Rad TM). Thus Rad TM is parallel in M .

Theorem 3.9 Let M be a totaly umbilical coisotropic submanifold of an (m + n)-
dimensional semi-Riemannian manifold of constant curvature (M(c), g), of codimension
n. Then the functions Hi, i = 1, ..., n, satisfies the following partial differential equation:

ξi(Hi) +
n∑
j=1

ρji(ξi)Hj −H2
i = 0, i, j = 1, ..., n. (51)

Proof. Taking X = ξi in (37) and using (49), (50) and the fact that M is a space of
constant curvature, we have the assertion of the Theorem 3.9.
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Let σ be a null plane spanned by ξ and X. Then the null sectional curvature of a
semi-Riemannian manifold with respect to ξ is given by

Kξ(σ) =
R(X, ξ, ξ, X)
g(X,X)

,

where X is an arbitrary non-null vector field in Γ(TM) and ξ ∈ Rad TM [1]. Similarly
the null sectional curvature is given by

Kξ(σ) =
R(X, ξ, ξ, X)
g(X,X)

.

2

Then, from (37) and (49) we have the next theorem.

Theorem 3.10 Let M be a totally umbilical coisotropic submanifold of an (m + n)-
dimensional semi-Riemannian manifold (M, g), of codimension n. Then,

Kξ(σ) = Kξ(σ).

The screen distribution S(TM) is called totally umbilical in M if there exists a smooth
vector field ω ∈ Γ(Rad TM) on M such that

h∗(X, PY ) = ωg(X, PY ),

for all X, Y ∈ Γ(TM), (see [3]). Hence S(TM) is totally umbilical if and only if, on any
coordinate neighborhood U ⊂ M , there exists a smooth functions Ki, i = 1, ..., n, such
that

Ei(X, PY ) = Kig(X, PY ), i = 1, ..., n, (52)

for any X, Y ∈ Γ(TM). From (27) we have

Ei(ξj , PY ) = 0, i = 1, ..., n.

Using (34), we obtain

2dηi(X, Y ) =
n∑
j=1

ηj(Y )ρij(X) − ηj(X)ρij (Y ).

Hence, we have the following corollary.
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Corollary 3.11 Let M be a coisotropic submanifold of an (m + n)-dimensional semi-
Riemannian manifold M , of codimension n, such that screen distribution S(TM) is totally
umbilical. If ρij = 0, then dηi = 0, i, j = 1, ..., n.

From (36), we have the following corollary.

Corollary 3.12 Let M be a coisotropic submanifold of an (m + n)-dimensional semi-
Riemannian manifold M , of codimension n. If S(TM) is totally umbilical, then S(TM)
is integrable.
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