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On Simultaneous Approximation by a Linear
Combination of a New Sequence of Linear Positive

Operators
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Abstract

In [1] we introduced a new sequence of linear positive operators M, to approx-
imate unbounded continuous functions of exponential growth on [0,00). As this
sequence is saturated with O(nfl), to accelerate the rate of convergence we applied
the technique of linear combination introduced by May [3] and Rathore et al. [4]
to these operators. The object of the present paper is to study the phenomena of
simultaneous approximation (approximation of derivatives of functions by the cor-
responding order derivatives of operators) by the linear combination My (.,k,z) of
M,,. First, we establish a Voronovskaja-type asymptotic formula and then proceed
to obtain an estimate of error in terms of modulus of continuity in simultaneous

approximation by this sequence of operators.

Key words and phrases: Simultaneous approximation, Linear positive operators,

Linear combination, Voronovskaja-type asymptotic formula, Modulus of continuity.

1. Introduction

We [1] introduced a new sequence of linear positive operators M,, given as follows:
Let @ > 0 and f € C,[0,00) := {f €C[0,00): |f(t)| < Me*" forsomeM >0}.
Then,
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M, (f(t); z) :annu /qnu 1) f(t)dt + (14 x)" " f(0), (1.1)
v=1 0

n+v—1

v

where p,, ,(x) = ( ) 2¥(14+2)"" " and gy, (t) = w, x, t €10,00).

We may also write operators (1.1) as M, (f(t);z) = [ W, (t, x) f(t) dt, where the kernel

Wio(t,z) = 1> Pnp() @np—1(t) + (1 + 2)7™6(t), §(t) being the Dirac-delta function.
v=1
The space Cy [0, 00) is normed by ||fllo = sup [f(t)|e”*", f € Cal0,00).
0<t<oc0o

In [1], we observed that the order of approximation by the operators (1.1) is, at
best, O(n~!) however smooth the function may be. May [3] and Rathore et al. [4]
have described a method for forming linear combinations of a sequence of linear positive
operators so as to improve the order of approximation. Following their method, in [1]
we established some direct theorems for a linear combination of the operators (1.1)
(i.e. Voronovskaja-type asymptotic formula and an error estimate in terms of higher
order modulus of continuity of the function involved by the operators M, (., k,x)). The
approximation process is described as follows.

For k € N (the set of nonnegative integers) and f € C,[0, c0), the linear combination
M, (f, k, ) of the operators My, (f;2), =0, 1, ..., kis defined as:

k
Mo (f, kyx) = C(j, k) Ma,n(f: ),
7=0

where dy, dy, ...,d; € N (the set of positive integers) are arbitrary and distinet but

k
fixed and C(j, k) = ] dv‘ﬁd
i=0,i#£j

Throughout this paper, we denote by C|a, b] the space of all continuous functions on

, k#0and C(0,0)=1.

the interval [a, 0], || . [|¢(,,; denotes the sup norm on the space Cla,b] and C' denotes a

constant not necessarily the same in different cases.
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The object of the present paper is to obtain a Voronovskaja-type asymptotic formula

and an error estimate in terms of the modulus of continuity of the function approximated

by the operators M,(f)( ., k,x), where r € N.

2. Preliminaries

In the sequel, we shall require the following results:

For m € N°, let the m — th order moment for the Lupas operators be defined by

(@) = 3 poule) (£ =)

Lemma 1 [2] For the function pin m(x), we have pno(z) = 1, pn1(x) = 0 and there
holds the recurrence relation

nfinmi1 () = (1 4 )[4y, 0 () + Mpin m—1(2)], for m > 1.
Consequently, we have that

(i) pin,m(x) is a polynomial in x of degree atmost m;

(i3) for every x € [0,00), pinm(x) = O(n~"TV/21) where [8] denotes the integer part
of B.

Let the m — th order moment (m € N°) for the operators (1.1) be defined by:

v=1

Toom(z) = M, ((t —2)™;2) = nz pn,u(w)/ -1t —2)"dt+ (=)™ (1 +z)~ ™.
0

Lemma 2 [1] For the function T, m(z), there follow T, o(x) = 1, Ty 1(xz) = 0 and
nTnmy1(x) = x(1+2)T;, () + mTy () + ma(z +2)T -1 (z), m > 1.

Further, we have the following consequences of T, m(x):
(i) Tpm(z) is a polynomial in x of degree m, m # 1;
(ii) for every x € [0,00), Tpm(zx) = O(n~1m+1/2]);

(iii) the coefficients of n=" in Ty, ox(z) and Ty, o—1(x) are Cy {x(x + 2)}k and Co 2%~ (z+
2)k=2(2% + 32 + 3), respectively, where Cy and Co are constants dependent on k.
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Lemma 3 Let dand v be any two positive real numbers and [a,b] C (0,00). Then, for

any m > 0 we have,

sup annﬂ,(x) / Gno—1(t)eTtdt| =O(n™™).
z€la,b]

v=l t—2|>6

Making use of Taylor’s expansion, Schwarz inequality for integration and then for

summation and Lemma 2, we easily prove Lemma 3 (hence the details are omitted).

Lemma 4 [2] There exist the polynomials ¢; () independent of n and v such that

() () — iy Gigr(@)
Do () = n'(v —nz) —22——"=p, (7).
7 2i;'§7‘ €z (1 + ./L')
i,§>0

Theorem 1 [1] Suppose that f € C4[0,00) for some o > 0 and f**+2) exists at a
point x € [0,00), then

2k+2 ) 2
lim n* Y M, (f, k,x) — f(z)] = Z A

j=k+2

Qj, k, )
and

lim n* M, (f, k+1,2) — f(z)] =0,

n—oo

where Q(j, k,x) are certain polynomials in x of degree j.

3. Main Results

Theorem 2 Let r € N and f € C,[0,00) for some a > 0, admitting a derivative of
order (2k+2+7) at a point x € (0,00). Then we have

2k+2+r

lim nk“[M,(f)(f,k,x) —f(T)(x)} = Z ™ (z) Q(m, k,r, x) (3.1)

n—oo
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and

lim nk+! [M,(f)(f,k +1,2) - fD ()] =0, (3.2)
where Q(m, k,r,x) are certain polynomials in x.

Further, if f@*+247) exists and is continuous on (a —n,b+n) C (0,00), n > 0, then
(3.1) and (3.2) hold uniformly on [a,b].

Proof. Since f(¢2+7) exists at x € (0,00), it follows that

gc (t—a)" +e(t,x) (t— x)2k+2+r,

where e(t,z) — 0 as t — z.

Thus, we can write

2k+2+r f(m)

MéT)(f(t),k,fL') = Z (T)(( )mvkvx)

k

+>_C.k) Mfl:,)l (e(t, ) (t—2)242470) = ST+ 57
T 2

=0

Now, with D = % by Lemma 2 and Theorem 1 we obtain

2k+2+r m
fm ()

Yo=Y e MY ((t—a) k)

2k+2+r f(m)

3 i <m> Y=t k, )

m=r (2

2k+2+4r (m) m .
- X SR (Ve
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. 2k+2 D‘].’L'Z
X Dt 4B |3 Dr< - Q(j,k,x)>+o(1)
j=k+2 )
2k+2+r m .
f(m) m—1 m—r
= Z Z —1)" (@)
=0
2k+2+r

+n~(kHD) Z (m, k, 7, z) [0 (x) + o(n~ kD),

By using the identities

we get

2k+2+r

Z = f(T)( + (4D Z (m, k,r, x) f(m)( )+0(n_(k+1)).

1

Hence, in order to prove (3.1) it is sufficient to show that n*** 3>, — 0 as n — oo

ie. nFtl My(f)(a(t,x) (t —x)2k+247 1) — 0 as n — oo.

Now,
Y = MO (eltoa) (t - a)H )
= nzp(T) /Qnu 1 )(t_l')2k+2+rdt
v=1 0
+<—1>T%(1 b)) ()

Therefore, by using Lemma 4 we have

358



AGRAWAL, MOHAMMAD

oo
o < ¥y anu = nal’ [ gua®) et )]t~ o] P72
Zitsr /
1,720
(n+r—1)!

T (L ) e0,0)| 8 =

Since e(t,x) — 0 as t — =z, for a given ¢ > 0, there exists a § > 0 such that

le(t,z)| < e, whenever 0 < |t — x| < 0. For |t — x| > §, there exists a constant C' > 0
such that |e(t,z)(t — z)"| < Ce“*. Hence,

95,5, ()] 1
J < 3JsT Z-‘r y _
vl i) 2 an o)l = naf
,5>0 itisr
1,70
/ qnv—1(t)e |t — x|2k+2+rdt + / Gn—1(t)Ce*tdt| == J3+ Jy.
[t—x|<§ [t—z|>6
Let sup , % = M(z), z € (0,00) but fixed. Applying Schwarz inequality for
2i+j<r
i,5>0

integration and then for summation, we are led to

©,j20

oo 1/2 oo 1/2
<eC Z nt [Z D (x) (v — n:c)2j] "Z P /qn b1 (£)(E — o)+ g
2itj<r  Lv=1 — J

0o o 1/2
ZEELDY szw v =nat'| [ anomr 0 /q )t — ) g
2itj<r A s

©,j20

(in view of [ gnu—1(t)dt =n"").

0\8

From Lemma 1, we have
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3 pus(@) (v — na) = n? lZ prole) (5 = 2)” = (0
v=1 v=0
=n*[0O(n"7) +O(n"*)] = O(r?) (for any s > 0). (3.3)

Similarly, Lemma 2 yields us

v=1

nz pn,U(x)/Qn,u—l(t)(t - x)%dt = Tn,28(x) - (1 + x)_n(_x)%
0

=0(n~*)+0(n™ ™) =0(Mn"?) (for any m > 0). (3.4)

Therefore, J3 <eC Y. n' O(nj/2)0(n—(2k+2+r)/2) _ EO(n_(k‘H)),
2itj<r
4,520

Next, again using Schwarz inequality for integration and then for summation, (3.3)

and Lemma 3, we have

1/2 1/2
Jy<C Y ntt S pu () y — nald l J qn7,,_1(t)dt1 l | anp-1(t)e*tdt
v=1 |

2Z+JJ2S0T |[t—z|>6 t—x|>8
1/2
. 2 !
<0 3 St (a3t [ s
RV vt |t—z]>5
<C Z n* O(n?/?)0(n™*) (for any s > 0)
2i4j<r
i,§>0

=0n"D7%) = o(n=*+V)(for s > k+1+ g)
Combining the estimate of J3 and J; we get J; = € O(n~**1)). Clearly, J, = O(n~*),
for any s > 0. Choosing s > k + 1, we have Jo = o(n~(**1)). Hence, due to the

arbitrariness of € > 0, n*+13> — 0 as n — oo.
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This completes the proof of the assertion (3.1).

The assertion (3.2) can be proved along similar lines by noting that M, ((t —2)™, k +
Laz)=0n""*2) form=k+3, k+4, ... (cf. [1], p.61).

The uniformity assertion follows easily from the fact that §(¢) in the above proof can
be chosen to be independent of 2 € [a,b] and all the other estimates hold uniformly on
[a, b]. O

For r € N, the next result provides an estimate of the degree of approximation in
M,(f)(f,k, ) — f)(x), n — occ.

Theorem 3. Let 1 < p <2k 42 and f € Cy[0,00) for some o > 0. If fP*7) exists
and is continuous on (@ —n,b+n) C (0,00), n > 0, then for sufficiently large n,

| MOk, ) =0

Clay < Max { Cln_p/2 W p(ptr) (n_1/2) , Cy n~(k+1) },

where C1 = Cy(k,p,7), Co = Ca(k,p,7, f) and wpen (n=1/?)denotes the modulus of
continuity of fP*on (a —n,b+n).
Proof. By the hypothesis

ptr (Z) €T . (p T) — (p T) €T
fty =3 L@ gy O ZTI@ e () 4 (e 1)1 - x(8)),
1=0

1! * (p+1)!

where ¢ lies between ¢ and x, and x(t) is the characteristic function of the interval

(@—n,b+n).
Fort € (a—n,b+n) and z € [a, b], we get

gl

T o4
f(z) T ; f(p+r) 13 _f(p+r) T pir
f(t):i; ()(t—x) + ((p)—i-T)! ()(t—x)+.

For t € [0,00)\(a—n,b+ n)and = € [a, b], we define

P ) (4 .
h(t,w):f(t)—zf i )(t—x)z.

gl
i=0
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Now,
M (). ko) = Y= MO (¢~ )’ k)
=0 !
1 T p+r p+r p+r
oy MO (@) = 0 @) (6= 0 x(0), k)

AM) (h(t2) (1= x(1), ko) =Y +3 +Y .
1 2 3

Proceeding along the lines of the proof of >, in Theorem 2, we get

Z = () + O(n=**+Y), uniformly for all z € [a, b].
1

For every § > 0, we have

FEE) = [P (@) S wpen (16— 2]) < wporn ([ —2]) < (1 + = x') wywen (6).-

Hence, we have

ke oo
1 ; (r) |t — | p+r
‘ E2 ‘< WE, ‘C(%k)‘/ ‘den(t7x)‘ <1+ 5 Wit (6) [t — "7 dt
—o i

W e ( +7‘) ., ) ) )
fpp+7' E‘C ‘7’ ‘dﬁnz ‘pr(i )n,u(:c)‘ /den,uf1(t)(‘t—:c‘p+ + 45 1‘t—:c‘p+ +1) dt
0
s d; —1)! —din—r - _ .
+(_1) %(14—:@ d; (‘x‘l’+ 46 1‘x‘p+ +1):|‘
i — !

Now, in order to estimate ) _,, we proceed as follows:

Using Schwarz inequality for integration and then for summation, (3.3) and (3.4), for
s=0, 1, ..., we have
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o0

nZPnu |V—mc|J/qn7,,_1(t) [t —z|°dt
0
o 1/2 oo 1/2
< ”Z Pw(x) |V — na’ /qm,,_l(t)dt /qmu_l(t)(t — x)%*dt
0 0
00 1/2 0 0 1/2
Zp,w(x) (v — n:c)zj} ”Z pn,u(w)/ Gn—1()(t —x)*dt
v=1 v=1 0
= 0(n?/?)0(n=*/?) = O(nU=*)/2), uniformly in = € [a, b].
Therefore, by Lemma 4, we get
- (r) i
Z ]» |an‘pd:nU ‘/any 1 |t—.’L'| dt
7=0 0
k |q oo
)| d (d; — dyna|m i o nw—1(t)[t — z|°dt
<Y ICGRNn S S )= dynal L) [0l ol
=0 vEL A 0
k oo
< CZ |C >, k)| Z (djn)* |d; nZden (2)|lv —d; nw|m/qdjn7u_1(t)|t —z|°dt
=0 s g
|Qi mr(x)l
C= su sup —————
21+7n:p<7‘ $e[£b] «/L'T(l + :L')T
= Z n' O(n(m=)/2) = O(n(*=*)/2), uniformly in z € [a, b]. (3.5)

2i4+m<r
i,m>0

Choosing § = n~'/? and applying (3.5), we are led to
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W p+r) (n—1/2)
(p+1)!

>

2

[O(n_p/2) +nt/20(n~P*tD/2) L O(n=™)| (for any m > 0)

< Cn P2 Wf+r) (n_1/2), choosing m > p/2.

Since t € [0,00)\(a—1n,b+n), we can choose ¢ > 0 in such a way that |t — | > § for
all © € [a, b].

Thus, by Lemma 4, we obtain

>

3

k
m qzmr
Jj=0

v=1 2i+m<r
i,m>0

ntr =Dy 4 ymamrin(o, )

X / qd;n,v—1(t) |h(t, 2)|dt + “(dn -1

[t—z|=6

For |t — x| > &, we can find a constant C' > 0 such that |h(t,z)| < Ce**. Finally
using Schwarz inequality for integration and then for summation, (3.3), and Lemma 3, it

easily follows that
Z = O(n™*) for any s > 0, uniformly on [a, b].
3

Choosing s > k+1 and then combining the estimates of 3 ~,, >°, and >, the required

result is immediate.
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