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Abstract

In this paper, the geometry of F-invariant submanifolds of a Kaehlerian product
manifold is studied. The fundamental properties of these submanifolds are investi-
gated such as pseudo umbilical, curvature invariant, totally geodesic, mixed geodesic

submanifold and locally decomposable Riemannian product manifold.

Key Words: Kaehlerian Product Manifold, Mixed Geodesic Submanifold, Locally
Decomposable Riemannian Manifold and Constant Holomorphic Sectional Curved
Manifold.

1. Introduction

The geometry of submanifolds of a Kaehlerian product manifold is an interesting sub-
ject which was studied by many geometers. Partially, the geometry of CR-submanifolds
of a Kaehlerian product manifold was studied by M. H. Shahid [8] and he had many
interesting results of this submanifold.

Also, the geometry of CR-submanifold of any Kaehlerian manifold was studied by
Bejancu A., [2] and Chen B. Y. [3, 4].

The object of this note is to study F-invariant submanifolds of a Kaehlerian product
manifold. In this paper, we have researched the fundamental properties of F-invariant
submanifolds of a Kaehlerian product manifold. We think interesting results such as

Theorem 4.5, Theorem 4.6 and Theorem 4.7 are obtained in this paper. We show that

Mathematics Subject Classification (2000): 53C42, 53C15.

367



ATCEKEN

a F-invariant submanifold of a Kaehlerian product manifold and their distributions have

the same properties.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold and M be a m-dimensional manifold
isometrically immersed in M. Then M becomes a Riemannian submanifold of M with
Riemannian metric induced by the Riemannian metric on M. We denote by TM ' the
normal bundle to M and by ¢ both metrics on M and M. Also, we denote by V and V
the Levi-Civita connections on M and M, respectively. Then the Gauss formula is given
by

VxY =VxY +h(X,Y) (1)

for any X, Y € T'(TM), where h:I'(TM)xT'(TM) — T'(T M) is the second fundamental
form of M in M.

Now, for any X € T'(TM) and ¢ € T'(TM*'), we denote by —A¢X and V%¢ the
tangent part and normal part of Vx&, respectively. Then the Weingarten formula is

given by
Vx€=—AcX + Vx¢, (2)

where A is called the shape operator of M with respect to &.

From the Gauss and Weingarten formulas, we have
g(h(X,Y), &) = g(Ac X, Y) 3)
for all X, Y € I'(TM) and & € T(TM*)[3].

Definition 2.1 For a submanifold M C M the mean-curvature vector field H is defined
by the formula

m

H = l Zh(ei,ei),

m
=1

where {e;}, i = 1,2,...,m, is a local orthonormal basis in T'(TM). For any X,Y €
[(TM), If a submanifold M C M having one of the conditions

hZO, h(va) :g(va)Hv g(h(va)vH) :)‘g(va) ’ HZO? A€ Coo(MvR)v
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then submanifold M is called totally geodesic, totally umbilical, pseudo-umbilical and

minimal submanifold, respectively[5].

We recall that the length mean curvature vector field of M is constant, if M is a
totally umbilical submanifold of a Riemannian manifold M 3].

The covariant derivative of h is defined by
(Vxh)(Y,Z) = Vxh(Y, Z) = h(VxY,Z) = l(VxZ,Y)

for all X,Y,Z € T'(TM).
The Gauss and Codazzi equations are, respectively, given by

R(X,Y)Z = R(X,Y)Z— Apy2)X + Anx.z)Y + (Vxh)(Y, Z)
- (Vyh)(X,2) (4)

and
{R(X,Y)Z}* = (Vxh)(Y, Z) = (Vyh)(X, Z), (5)

for all X,Y,Z € F(TM ), where R and R are the Riemannian curvature tensors of M
and its submanifold M, respectively, and {R(X,Y)Z}+ denote the normal component of
R(X,Y)Z.

M is called a curvature-invariant submanifold of M, if R(X,Y)Z € T(TM), that is,
{R(X,Y)Z}*+ =0, for any X,Y, Z € ['(TM)][5].

An almost complex structure on a differentiable manifold M is a tensor field J of type
(1,1) which is, at every point z of M, an endomorphism of T}, (M) such that J? = —1I,
where I denotes the identity transformation of T,(M). A manifold M with an almost
complex structure J is called an almost complex manifold.

We define the torsion of J to be the tensor field N of type (1,2), called the Nijenhuis

torsion, which is given by
NX,Y)=[JX,JY]- [X,Y] - J[X,JY] - JJX,Y],

for any vector fields X and Y. If N vanishes identically, then an almost complex structure
is called a complex structure and M is called a complex manifold.

A Hermitian metric on an almost complex manifold M is a Riemannian metric g such
that

g(JX,JY) =g(X,Y), for all X,Y € (TM).
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An almost complex manifold(resp., a complex manifold) with Hermitian metric is
called an almost Hermitian manifold(resp., a Hermitian manifold). A Hermitian manifold
M is called a Kaehlerian manifold, if the almost complex structure J of M is parallel;
that is, (VxJ)Y = 0, for all X, Y € T'(T'M), where V is the Levi-Civita connection on
M.

The Riemannian curvature tensor R of a Kaehlerian manifold M satisfies
R(X,Y)J=JR(X,Y), R(JX,JY)=R(X,Y).

For each plane v spanned by orthonormal vectors X and Y in the tangent space
T.(M), x € M, we define the sectional curvature K(y) by

K() =KX AY) =gR(X,V)X,Y).

If K(v) is a constant for all planes v in T,(M) and for all points = of M, then M is called
space of constant curvature or real space form.

Now, we consider a plane v invariant by the almost complex structure J. In this
case, we choose a basis {X, JX} in v, where X is a unit vector in 4. Then the sectional
curvature K () is denoted by H(X) and it is called the holomorphic sectional curvature

of M determined by the unit vector X. Then we have
H(X)=g(R(X,JX)JX, X).

If H(X) is a constant for all unit vectors in I'(TM) and for all points in M, then M
is called a space of constant holomorphic sectional curvature and denote it by M(c). In

this case, The Riemannian curvature tensor of M(c) is given by
R(X,)Y)Z = g{g(Y, DX —g9(X,2)Y +9(2,IJY)IX —g(Z,TX)JY
+ 29(X,JY)JZ}, (6)

for any X,Y, Z € T(T M), where c is the constant holomorphic sectional curvature of M.

The holomorphic bisectional curvature for the pair of unit vectors {X, Y} is given by
Hp(X ANY)=g(R(X,JX)JY,Y).

In the rest of this paper, we will denote a Kaehlerian manifold by (M, J, g).
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3. Kaehlerian Product Manifolds

Let (My, J1,¢1) and (Ma, Ja, g2) be Kaehlerian manifolds with complex dimensional
ny and ny(real dimension 2n; and 2ns), respectively. We consider the Kaehlerian product
manifold M = M; x Ms, put

JX = L1 PX + QX
and
9(X,Y)=g1(PX,PY) + g2(QX,QY),

for any vector fields X and Y on M, where P and @ denote the projection mappings of
D(T(M; x My)) to T'(TM;) and T'(T' M), that is,

P:T(TM) — T(TM,), Q:T(TM)—T(TM,).

If we set ' = P — (@, then we can easily see that F? = I, g(FX,FY) = g(X,Y),
JIP=PJ, ,Q=QJ, FJ=JF, J?>=—1,9(JX,JY)=g(X,Y) and (VxJ)Y =0, for
all vector fields X, Y on M. Thus F defines an almost Riemannian product structure and
J defines a Kaehlerian structure on M. We will denote the Kaehlerian product manifold
(M;y x Ms, J1 X Ja,g1 X g2) by (M, J,g) througthout this paper. Furthermore, we have
VP =VQ = VF =0 (for the detail, we refer to [7]).

If M7 and M are complex space forms with constant holomorphic sectional curvatures
¢1 and c¢p and denote them by Mj(c;) and Ms(cz2), respectively, then the Riemannian

curvature tensor R of Kaehlerian product manifold M = Mj(c1) x Ma(cg) is given by

R(X,Y)Z = 11—6(01 +e){9(Y, 2)X — g(X, 2)Y +g(JY, Z)JX — g(JX, Z)JY

+ 29(X,JY)JZ+29(FY, Z)FX — g(FX,Z)FY + g(FJY, Z)FJX
— g(FJX,Z)FJY +29(FX,JY)FJZ}

1
+ E(Cl —{g(FY, 2)X —g(FX,2)Y +g(Y,Z)FX — g(X, Z)FY
+ g(FJY,Z)JX — g(FJX,Z)JY + g(JY,Z)FJX — g(JX,Z)FJY

+ 29(FX,JY)JZ +29(X,JY)JFZ} (7)

for all X,Y, Z € T(TM)]5).
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Theorem 3.1 Let M be a Kaehlerian submanifold of a Kaehlerian product manifold
M = Mi(c) x Ma(c) (¢ # 0). If M is curvature invariant submanifold, then M is an

F-invariant or F-anti invariant submanifold [5].

Now, we suppose that K(X AY) be the sectional curvature of M determined by

orthonormal vectors X and Y. Then using (7), we have

K(XAY) = 1—16(01 +co){1 +39(X,JY)? +29(FY,Y)g(FX,X) — g(FX,Y)?

+Bg(X, FIYP) + 1o(er — e {g(FY, V) + g(FX, X)
+ GQ(FJX,Y)g(JX,Y)}. (8)

Let H(X) be the holomorphic sectional curvature of Kaehlerian product manifold M
by determined the unit vectors X and JX. Then using (8) we get

HX)=KX,JX,JX,X) = 1—16(C1+C2){4+5g(FX,X)2}
+gler - e)g(FX, X)), o)

Finally, the holomorphic bisectional curvature of Kaehlerian product manifold M =

Mi(e1) X Ma(ez) is given by formula

1
g (e + 2){20(X, V)24 29(JX,Y)? + 2+ 3g(FX,Y)?

+ 2g(FIX.Y)’ +29(FX, X)g(FY.Y)}

Hp(X AY)

+ 11—6(cl — ) {29(X,Y)g(FX,Y) +49(JX,Y)g(FIX,Y)

+ 29(FX,Y)g(X,Y) +29(FX, X) +29(FY,Y)}. (10)

4. F-Invariant Submanifolds of Kaehlerian Product Manifold

Let us assume that M be a m-dimensional Riemannian manifold isometrically im-
mersed in Kaehlerian product manifold M. For any vector field X tangent to M we

put

FX = fX + wX, (11)
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where fX is the tangential part of F'X and wX is the normal part of FX. For any vector
field &€ normal to M, we put
F&=t&+ sE, (12)
where t£ is the tangential part of F'§ and s¢ is the normal part of F¢. Then we have

X = X —twX , wfX +swX =0
s%¢ £ —wté | fté +tsé =0.

We can easily see that

for any X,Y € I(TM).

If F(T,M) C T, M, for each x € M, then M is said to be F-invariant submanifold of
Kaehlerian product manifold M. Then w vanishes idendically, f2 = I and g(fX, fY) =
g(X,Y). Therefore, (f,g) defines an almost Riemannian product structure on M. In
the rest of this paper, we assume that the submanifold M is F-invariant submanifold of
Kaehlerian product manifold M. Furthermore, if J(T,M) C T,(M)*, for each z € M,
then we recall that M is called anti-invariant(totally real) submanifold of a Kaehlerian
product manifold M.

If M is a F-invariant submanifold of Kaehlerian product manifold M, then we can
easily see that F(T,(M)) C T.(M) and F(T,(M)+) c T,(M)*, for each x € M. Thus

we have
VxFY = FVxY

VxfYy F(VxY +h(X,Y))
VxfY +h(X, fY) = f(VxY)+sh(X,Y), (13)

for any X,Y € I'(T'M). Comparing the tangential and normal parts of equation (13), we

obtain
(Vxf)Y =0, sh(X,Y) = h(X, fY), (14)

where V is the Levi-Civita connection on M and h denote also the second fundamental
form of M in M.
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Since f defines an almost Riemannian product structure on M, M has the vertical
and the horizontal distributions which are given by
Ty ={X el(TM)|fX = X}
and
Tp = {X € I(TI)|fX = —X},

respectively.

Theorem 4.1 Let (M, J,g) be a Kaehlerian product manifold and M be a F-invariant
submanifold of M. Then M is a mized-geodesic F-invariant submanifold of M.

Proof. Taking into account that h is symmetric and the equation (14), then we obtain
hMX,Y)=h(fX, fY). Thus, forany X = X; € T} and Y = Y5 € Ty, we infer

h(X17 }/2) - _h(X17 }/2)7

that is,
h(X1,Y2) =0.
This completes the proof of the theorem. O

Moreover, we derive
h(X,Y) :hl(Xl,}ﬁ)+h2(X2,}/é). (15)

Since M7 and Ms are totally geodesic submanifolds of M, it is easily seen that h(X;,Y7) =
hi(X1,Y1) and h(Xa, Y2) = ho(Xo, Ys) are the second fundamental forms of M; and Mo
in My and Ms, respectively.

From the equation (15), we have the following Corollary.

Corollary 4.2 Let (M, J,g) be a Kaehlerian product manifold and M be a F-invariant
submanifold of M. We denote the integral manifolds of the wvertical and horizontal
distributions of M by M, and M. Then M is totally geodesic submanifold of M if
and only if My and M,y are totally geodesic submanifolds of My and My, respectively.
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Now, we choose a local field of adapted basis
{€1, s €py €pt1,-ony Enys et el et en2) (16)

of T'(TM) with respect to g so that when restricted to the locally orthonormal basis
over I'(TM), {e1, ..., e,} are the orthonormal tangent vectors to I'(T'M7) with respect to
g1, {e!,...,e?} are the orthonormal tangent vectors to I'(T'My) with respect to go and
{€pt1, ey €ny, €4l . "2} are the normal vectors to T'(T'M).

Let H be the mean curvature vector field of M in M. Then from (15) and (16), we

obtain

ni n2
mH = Z trhie; + Z trhoe! = pHy + qHs, m =p+q, (17)
i=p+1 j=at+1

where H, and Hs denote the mean curvature vector fields of M; and My in M; and Mo,

respectively. The following Lemma is quite easy.

Lemma 4.3 H; and Hs are constant vectors if and only if H is constant vector. || Hi|

and ||Ha|| are constant functions if and only if |H|| is constant function.

From Lemma.4.3 and (17), we can give the following Corollary.

Corollary 4.4 Let (M, J,g) be a Kaehlerian product manifold and M be a F-invariant
submanifold of M. We denote the integral manifolds of the wvertical and horizontal
distributions of M by M, and My. Then M is a minimal submanifold of M if and

only if My and M,y are minimal submanifolds of M, and Ms, respectively.

Theorem 4.5 Let (M, J,g) be a Kaehlerian product manifold and M be a F-invariant

submanifold of M. Then M is a locally decomposable Riemannian product manifold.

Proof. We denote the integral manifolds of the vertical distribution 7; and the
horizontal distribution Ty by M; and Ma, respectively. Then from (14) we have

fVzX1=VzfX; =VzXi,

for all Z € F(TM ) and X7 € Th. Thus the distribution 7} is parallel. In the same way,
the distribution 75 is also parallel.

fiX1,Y1] = fVx,Y1— fVy, X1 =Vx, Y1 — Vy, fXq
= Vx, Y1 —Vy,Xi=[X1, Y]
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for any X;,Y7 € Ti, that is, the distribution T is involutive. In the same way, the
distribution 7 is also involutive. Since V is a Levi-Civita connection, T; and Th are

orthogonal distributions, we have

g(v)ﬁ}/l? Z2) = _g(le Z27Y1) = 07
which implies that M; is the totally geodesic submanifold of M. In the same way, we
get M, is also totally geodesic submanifold of M. Thus M is a locally decomposable

Riemannian product manifold. O

Now, from P+ Q =1 and F = P — Q we have

1
PX, = (I+F)X1:§(X1+FX1): (X1 +fX1):X1

1 1
2 2
and

QX = %(I— X =-(X; - FX;) = %(Xl —fX1)=0

1
2
for any X1 € Ty. Similarly, we get PXy = 0 and QX5 = X, for any Xy € Th. Hence M;
and M, are the submanifolds of M; and M, respectively.

Furthermore, if M; and M, are Kaehlerian submanifolds of M; and Mo, respectively.

Then M is a Kaehlerian product manifold of M, x M.

Theorem 4.6 Let (M, J,g) be a Kaehlerian product manifold and M be a F-invariant
submanifold of M. We denote the integral manifolds of the wvertical and horizontal
distributions of M by M, and Ms, respectively. Then M is a pseudo-umbilical submanifold
of M = My x My if and only if My and My are pseudo-umbilical submanifolds of My and
Ms, respectively.
Proof. We suppose that M be pseudo-umbilical submanifold of M. Then there exists
a smooth function A on M such that
g(h(X,Y),H)Z)\g(X,Y) (18)

for any X,Y € I(TM).

We consider the basis in (16) and taking X =Y = ey, €2, ..., €, in (18), then we obtain

p

g(pH1, H) = \Y g(eie)

=1

pg(Hi, H) = Ap,
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that is,
A= g(H, H) = %gl(Hl,Hl).

In the same way, if we choose X =Y = el €2 ..., e in (18), then we get

q

glqHs, H) = XY g(e, )
j=1
qg(H2, H) = g,

or,

A=g(Hy, H) = %gz(Hz,Hz)-

Thus, using the A\ = Zgy(Hy, H1), h(X,Y) = hi(X1, Y1) + ho(X2,Y2) and taking X =
X1,Y =Y, €T} in (18), we have

g(h (X1, Y1), H) = %gl(Hl,Hl)g(XhYﬁ
g1(h (X1, Y1), Hy) = gi(Hy, Hi)g(X1,Y1).

It follows that M is pseudo-umbilical submanifold of M.
Similarly, making use of A = Lg,(Ha, Hz) and taking X = X5,Y =Y, € Ty in (18),

then we obtain
glha(Xa,Yo). H) = -Lgi(Hy, Ha)g(Xa, Ya)
g2(h2(X2,Y2), Hy) = g2(Ha2, Hz)g(X2,Y5).

Hence M, is also pseudo-umbilical submanifold of Ms.
Conversely, we suppose that M; and My are pseudo-umbilical submanifold of M; and

Ms, respectively. Then we have

g1(h (X1, Y1), Hi) = g1(H1, Hi)g(X1, Y1)
for any X7,Y; € T1 and

92(ha(X2,Y2), Ha) = ga(H2, H2)g(X2, Y2)

for any Xo,Ys € Ts.

From the equations (15), (17) and making use of projection mappings

P :T(TM) — T(TM)
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and
Q :T(TM) — T(TM>),

we get

m m2
;gl(hl(XhYVl)va) = p_291(PH7 PH)g(Xh}/l)

and

2
%92(h2(X2,1/§)»QH) = 75—292(QH» QH)g(X2,Ys).

Hence we have

g1(Ph(X,Y), PH) = %gl(PH» PH)g(X1, Y1) (19)

and
m
92(QNX.Y),QH) = Egz(QH» QH)g(X3,Y3). (20)
We sum equations (19), (20) and using
_ b q
g(H,H) = —g1(Hy, H1) + —g2(Ha, Ha),
m m
we obtain
g(h(X,Y), H) = Lgi(Hy, Hi)g(X0, Y1) + = ga(Ha, Ha)g(Xz, Ya)

= g(H, H){Q(leyl) + g(Xz,Yz)}
= g(H, H)g(X, Y),

which implies that M is pseudo-umbilical submanifold of Kaehlerian product manifold
M. O

Now we denote the Riemannian curvature tensor of Kaehlerian product manifold M
by R. Then from VF = 0 and the properties of R, we can easily see that R(PX,QY) =0
for any X,Y € TI'(TM). Using the first Bianchi’s identity for R and VP = VQ = 0, by

direct calculations, we obtain

R(X,Y)Z = Ri(PX, PY)PZ + Ro(QX,QY)QZ. (21)
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for all X,Y,Z € T'(TM), where R; and Ry are the Riemannian curvature tensors of
Kaehlerian manifolds M; and My, respectively. Moreover, The equation of Gauss is
given by

R(X,Y)Z + (Vxh)(Y, Z) — (Vyh)(X, Z)
+ Anx.2)Y — Any, )X (22)

R(X,Y)Z

for all X,Y,Z € T'(TM), where A and R denote the shape operator and Riemannian

curvature tensor of M, respectively. Thus we can give the following theorem.

Theorem 4.7 Let (M, J,g) be a Kaehlerian product manifold and M be F-invariant
submanifold of M. We denote the integral manifolds of the vertical and horizontal distri-
butions of M by My and Ms, respectively. Then M is a curvature-invariant submanifold
of M if and only if My and My are curvature-invariant submanifolds of My and My,

respectively.

Proof. By direct calculations, from the equations (4), (21) and (22), we conclude

(Vxh)(Y,Z) — (Vyh)(X,Z) = (Vx,h1)(Y1,Z1) = (Vy,h1) (X1, Z1)
+  (Vxoho) (Y2, Z2) — (Vy, he)(X2, Z2), (23)

where X = X1 + X0, Y =Y1 + Y2, Z = 7y + Z € (T M), hy and hy denote the second
fundamental forms of M; and M, in M; and My, respectively. From the equation (23),

we derive

(Vxh)(Y, Z) = (Vyh)(X,Z) =0
if and only if

(Vx,h1) Y1, Z1) — (Vy,h)(X1,21) =0
and

(Vx,h2)(Ya, Z2) — (Vy,h2)(X2, Z2) = 0,

which proves our assertion. O

Theorem 4.8 Let (M, J,g) be a Kaehlerian product manifold and M be a F-invariant
and anti-invariant(with respect to J) submanifold of M = My (c1) X Ma(ca). We denote
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the integral manifolds of the vertical and horizontal distributions of M by M, and Mo,
respectively. Then M, and My are curvature invariant submanifolds of My and Mo,

respectively.

Proof. If M is a F-invariant and anti-invariant submanifold of a Kaehlerian product
manifold M = Mj(c1) x Ma(cz), then from the equations (4) and (7), for any X,Y, Z €
[(TM), we have

R(X,Y)Z — Apy, )X + Anx,2)Y = %WH+QHﬂKZ¥Y—ﬂXJQY
+ 29(FY,Z)FX — g(FX, Z)FY}
+ 11—6(cl — e g(FY, 2)X — g(FX, Z2)Y
+ gV, Z2)FX —g(X,2)FY}

and

(Vxh)(Y, Z) = (Vyh)(X, Z) =0,

which implies that M; and M, are curvature invariant submanifolds of Kaehlerian man-
ifolds Mj(c1) and Ma(es). O
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