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F-Invariant Submanifolds of Kaehlerian Product

Manifold

Mehmet Atçeken

Abstract

In this paper, the geometry of F-invariant submanifolds of a Kaehlerian product

manifold is studied. The fundamental properties of these submanifolds are investi-

gated such as pseudo umbilical, curvature invariant, totally geodesic, mixed geodesic

submanifold and locally decomposable Riemannian product manifold.
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1. Introduction

The geometry of submanifolds of a Kaehlerian product manifold is an interesting sub-
ject which was studied by many geometers. Partially, the geometry of CR-submanifolds
of a Kaehlerian product manifold was studied by M. H. Shahid [8] and he had many
interesting results of this submanifold.

Also, the geometry of CR-submanifold of any Kaehlerian manifold was studied by
Bejancu A., [2] and Chen B. Y. [3, 4].

The object of this note is to study F -invariant submanifolds of a Kaehlerian product
manifold. In this paper, we have researched the fundamental properties of F-invariant
submanifolds of a Kaehlerian product manifold. We think interesting results such as
Theorem 4.5, Theorem 4.6 and Theorem 4.7 are obtained in this paper. We show that
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a F-invariant submanifold of a Kaehlerian product manifold and their distributions have
the same properties.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold and M̄ be a m-dimensional manifold
isometrically immersed in M . Then M̄ becomes a Riemannian submanifold of M with
Riemannian metric induced by the Riemannian metric on M . We denote by TM̄⊥ the
normal bundle to M̄ and by g both metrics on M and M̄ . Also, we denote by ∇̄ and ∇
the Levi-Civita connections on M̄ and M , respectively. Then the Gauss formula is given
by

∇XY = ∇̄XY + h(X, Y ) (1)

for any X, Y ∈ Γ(TM̄), where h:Γ(TM̄)×Γ(TM̄ ) −→ Γ(TM̄⊥) is the second fundamental
form of M̄ in M .

Now, for any X ∈ Γ(TM̄) and ξ ∈ Γ(TM̄⊥), we denote by −AξX and ∇⊥Xξ the
tangent part and normal part of ∇Xξ, respectively. Then the Weingarten formula is
given by

∇Xξ = −AξX +∇⊥Xξ, (2)

where Aξ is called the shape operator of M̄ with respect to ξ.
From the Gauss and Weingarten formulas, we have

g(h(X, Y ), ξ) = g(AξX, Y ) (3)

for all X, Y ∈ Γ(TM̄) and ξ ∈ Γ(TM̄⊥)[3].

Definition 2.1 For a submanifold M̄ ⊆M the mean-curvature vector field H is defined
by the formula

H =
1
m

m∑
i=1

h(ei, ei),

where {ei}, i = 1, 2, ..., m, is a local orthonormal basis in Γ(TM̄). For any X, Y ∈
Γ(TM̄), If a submanifold M̄ ⊆M having one of the conditions

h = 0 , h(X, Y ) = g(X, Y )H , g(h(X, Y ), H) = λg(X, Y ) , H = 0 , λ ∈ C∞(M,R),
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then submanifold M̄ is called totally geodesic, totally umbilical, pseudo-umbilical and
minimal submanifold, respectively[3].

We recall that the length mean curvature vector field of M̄ is constant, if M̄ is a
totally umbilical submanifold of a Riemannian manifold M [3].

The covariant derivative of h is defined by

(∇Xh)(Y, Z) = ∇⊥Xh(Y, Z)− h(∇̄XY, Z)− h(∇̄XZ, Y )

for all X, Y, Z ∈ Γ(TM̄).
The Gauss and Codazzi equations are, respectively, given by

R(X, Y )Z = R̄(X, Y )Z −Ah(Y,Z)X +Ah(X,Z)Y + (∇Xh)(Y, Z)

− (∇Y h)(X,Z) (4)

and

{R(X, Y )Z}⊥ = (∇Xh)(Y, Z) − (∇Y h)(X,Z), (5)

for all X, Y, Z ∈ Γ(TM̄), where R and R̄ are the Riemannian curvature tensors of M
and its submanifold M̄ , respectively, and {R(X, Y )Z}⊥ denote the normal component of
R(X, Y )Z.

M̄ is called a curvature-invariant submanifold of M , if R(X, Y )Z ∈ Γ(TM̄), that is,
{R(X, Y )Z}⊥ = 0, for any X, Y, Z ∈ Γ(TM̄)[5].

An almost complex structure on a differentiable manifold M is a tensor field J of type
(1,1) which is, at every point x of M , an endomorphism of Tx(M) such that J2 = −I,
where I denotes the identity transformation of Tx(M). A manifold M with an almost
complex structure J is called an almost complex manifold.

We define the torsion of J to be the tensor field N of type (1,2), called the Nijenhuis
torsion, which is given by

N(X, Y ) = [JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ],

for any vector fields X and Y . If N vanishes identically, then an almost complex structure
is called a complex structure and M is called a complex manifold.

A Hermitian metric on an almost complex manifoldM is a Riemannian metric g such
that

g(JX, JY ) = g(X, Y ), for all X, Y ∈ Γ(TM).
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An almost complex manifold(resp., a complex manifold) with Hermitian metric is
called an almost Hermitian manifold(resp., a Hermitian manifold). A Hermitian manifold
M is called a Kaehlerian manifold, if the almost complex structure J of M is parallel;
that is, (∇XJ)Y = 0, for all X, Y ∈ Γ(TM), where ∇ is the Levi-Civita connection on
M .

The Riemannian curvature tensor R of a Kaehlerian manifold M satisfies

R(X, Y )J = JR(X, Y ), R(JX, JY ) = R(X, Y ).

For each plane γ spanned by orthonormal vectors X and Y in the tangent space
Tx(M), x ∈ M , we define the sectional curvature K(γ) by

K(γ) = K(X ∧ Y ) = g(R(X, Y )X, Y ).

If K(γ) is a constant for all planes γ in Tx(M) and for all points x of M , then M is called
space of constant curvature or real space form.

Now, we consider a plane γ invariant by the almost complex structure J . In this
case, we choose a basis {X, JX} in γ, where X is a unit vector in γ. Then the sectional
curvature K(γ) is denoted by H(X) and it is called the holomorphic sectional curvature
of M determined by the unit vector X. Then we have

H(X) = g(R(X, JX)JX,X).

If H(X) is a constant for all unit vectors in Γ(TM) and for all points in M , then M

is called a space of constant holomorphic sectional curvature and denote it by M(c). In
this case, The Riemannian curvature tensor of M(c) is given by

R(X, Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(Z, JY )JX − g(Z, JX)JY

+ 2g(X, JY )JZ}, (6)

for any X, Y, Z ∈ Γ(TM), where c is the constant holomorphic sectional curvature of M .

The holomorphic bisectional curvature for the pair of unit vectors {X, Y } is given by

HB(X ∧ Y ) = g(R(X, JX)JY, Y ).

In the rest of this paper, we will denote a Kaehlerian manifold by (M, J, g).
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3. Kaehlerian Product Manifolds

Let (M1, J1, g1) and (M2, J2, g2) be Kaehlerian manifolds with complex dimensional
n1 and n2(real dimension 2n1 and 2n2), respectively. We consider the Kaehlerian product
manifold M = M1 ×M2, put

JX = J1PX + J2QX

and

g(X, Y ) = g1(PX, PY ) + g2(QX,QY ),

for any vector fields X and Y on M , where P and Q denote the projection mappings of
Γ(T (M1 ×M2)) to Γ(TM1) and Γ(TM2), that is,

P : Γ(TM) −→ Γ(TM1), Q : Γ(TM) −→ Γ(TM2).

If we set F = P − Q, then we can easily see that F 2 = I, g(FX, FY ) = g(X, Y ),
J1P = PJ , J2Q = QJ , FJ = JF , J2 = −I, g(JX, JY ) = g(X, Y ) and (∇XJ)Y = 0, for
all vector fields X, Y on M . Thus F defines an almost Riemannian product structure and
J defines a Kaehlerian structure on M . We will denote the Kaehlerian product manifold
(M1 ×M2, J1 × J2, g1 × g2) by (M, J, g) througthout this paper. Furthermore, we have
∇P = ∇Q = ∇F = 0 (for the detail, we refer to [7]).

If M1 and M2 are complex space forms with constant holomorphic sectional curvatures
c1 and c2 and denote them by M1(c1) and M2(c2), respectively, then the Riemannian
curvature tensor R of Kaehlerian product manifold M = M1(c1)×M2(c2) is given by

R(X, Y )Z =
1
16

(c1 + c2){g(Y, Z)X − g(X,Z)Y + g(JY, Z)JX − g(JX, Z)JY

+ 2g(X, JY )JZ + 2g(FY, Z)FX − g(FX, Z)FY + g(FJY, Z)FJX

− g(FJX, Z)FJY + 2g(FX, JY )FJZ}

+
1
16

(c1 − c2){g(FY, Z)X − g(FX, Z)Y + g(Y, Z)FX − g(X,Z)FY

+ g(FJY, Z)JX − g(FJX, Z)JY + g(JY, Z)FJX − g(JX, Z)FJY

+ 2g(FX, JY )JZ + 2g(X, JY )JFZ} (7)

for all X, Y, Z ∈ Γ(TM)[5].
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Theorem 3.1 Let M̄ be a Kaehlerian submanifold of a Kaehlerian product manifold
M = M1(c) ×M2(c) (c 6= 0). If M̄ is curvature invariant submanifold, then M̄ is an
F-invariant or F-anti invariant submanifold [5].

Now, we suppose that K(X ∧ Y ) be the sectional curvature of M determined by
orthonormal vectors X and Y . Then using (7), we have

K(X ∧ Y ) =
1
16

(c1 + c2){1 + 3g(X, JY )2 + 2g(FY, Y )g(FX,X) − g(FX, Y )2

+ 3g(X, FJY )2}+
1
16

(c1 − c2){g(FY, Y ) + g(FX,X)

+ 6g(FJX, Y )g(JX, Y )}. (8)

Let H(X) be the holomorphic sectional curvature of Kaehlerian product manifold M
by determined the unit vectors X and JX. Then using (8) we get

H(X) = K(X, JX, JX,X) =
1
16

(c1 + c2){4 + 5g(FX,X)2}

+
1
2

(c1 − c2){g(FX,X)}. (9)

Finally, the holomorphic bisectional curvature of Kaehlerian product manifold M =
M1(c1)×M2(c2) is given by formula

HB(X ∧ Y ) =
1
16

(c1 + c2){2g(X, Y )2 + 2g(JX, Y )2 + 2 + 3g(FX, Y )2

+ 2g(FJX, Y )2 + 2g(FX,X)g(FY, Y )}

+
1
16

(c1 − c2){2g(X, Y )g(FX, Y ) + 4g(JX, Y )g(FJX, Y )

+ 2g(FX, Y )g(X, Y ) + 2g(FX,X) + 2g(FY, Y )}. (10)

4. F-Invariant Submanifolds of Kaehlerian Product Manifold

Let us assume that M̄ be a m-dimensional Riemannian manifold isometrically im-
mersed in Kaehlerian product manifold M . For any vector field X tangent to M̄ we
put

FX = fX + ωX, (11)
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where fX is the tangential part of FX and ωX is the normal part of FX. For any vector
field ξ normal to M̄ , we put

Fξ = tξ + sξ, (12)

where tξ is the tangential part of Fξ and sξ is the normal part of Fξ. Then we have

f2X = X − tωX , ωfX + sωX = 0

s2ξ = ξ − ωtξ , ftξ + tsξ = 0.

We can easily see that

g(fX, Y ) = g(X, fY ) , g(fX, fY ) = g(X, Y )− g(ωX, ωY )

for any X, Y ∈ Γ(TM̄).

If F (TxM̄) ⊂ TxM̄ , for each x ∈ M̄ , then M̄ is said to be F-invariant submanifold of
Kaehlerian product manifold M . Then ω vanishes idendically, f2 = I and g(fX, fY ) =
g(X, Y ). Therefore, (f, g) defines an almost Riemannian product structure on M̄ . In
the rest of this paper, we assume that the submanifold M̄ is F-invariant submanifold of
Kaehlerian product manifold M . Furthermore, if J(TxM̄) ⊂ Tx(M̄)⊥, for each x ∈ M̄ ,
then we recall that M̄ is called anti-invariant(totally real) submanifold of a Kaehlerian
product manifold M .

If M̄ is a F-invariant submanifold of Kaehlerian product manifold M , then we can
easily see that F (Tx(M̄)) ⊂ Tx(M̄) and F (Tx(M̄)⊥) ⊂ Tx(M̄)⊥, for each x ∈ M̄ . Thus
we have

∇XFY = F∇XY
∇XfY = F (∇̄XY + h(X, Y ))

∇̄XfY + h(X, fY ) = f(∇̄XY ) + sh(X, Y ), (13)

for any X, Y ∈ Γ(TM̄). Comparing the tangential and normal parts of equation (13), we
obtain

(∇̄Xf)Y = 0 , sh(X, Y ) = h(X, fY ), (14)

where ∇̄ is the Levi-Civita connection on M̄ and h denote also the second fundamental
form of M̄ in M .
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Since f defines an almost Riemannian product structure on M̄ , M̄ has the vertical
and the horizontal distributions which are given by

T1 = {X ∈ Γ(TM̄)|fX = X}

and

T2 = {X ∈ Γ(TM̄)|fX = −X},

respectively.

Theorem 4.1 Let (M, J, g) be a Kaehlerian product manifold and M̄ be a F-invariant
submanifold of M . Then M̄ is a mixed-geodesic F-invariant submanifold of M .

Proof. Taking into account that h is symmetric and the equation (14), then we obtain
h(X, Y ) = h(fX, fY ). Thus, for any X = X1 ∈ T1 and Y = Y2 ∈ T2, we infer

h(X1, Y2) = −h(X1, Y2),

that is,

h(X1, Y2) = 0.

This completes the proof of the theorem. 2

Moreover, we derive

h(X, Y ) = h1(X1 , Y1) + h2(X2, Y2). (15)

Since M1 and M2 are totally geodesic submanifolds ofM , it is easily seen that h(X1, Y1) =
h1(X1, Y1) and h(X2, Y2) = h2(X2, Y2) are the second fundamental forms of M̄1 and M̄2

in M1 and M2, respectively.

From the equation (15), we have the following Corollary.

Corollary 4.2 Let (M, J, g) be a Kaehlerian product manifold and M̄ be a F-invariant
submanifold of M . We denote the integral manifolds of the vertical and horizontal
distributions of M̄ by M̄1 and M̄2. Then M̄ is totally geodesic submanifold of M if
and only if M̄1 and M̄2 are totally geodesic submanifolds of M1 and M2, respectively.
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Now, we choose a local field of adapted basis

{e1, ..., ep, ep+1, ..., en1, e
1, ..., eq, eq+1, ..., en2} (16)

of Γ(TM) with respect to g so that when restricted to the locally orthonormal basis
over Γ(TM̄), {e1, ..., ep} are the orthonormal tangent vectors to Γ(TM̄1) with respect to
g1, {e1, ..., eq} are the orthonormal tangent vectors to Γ(TM̄2) with respect to g2 and
{ep+1 , ..., en1, e

q+1 , ..., en2} are the normal vectors to Γ(TM̄).
Let H be the mean curvature vector field of M̄ in M . Then from (15) and (16), we

obtain

mH =
n1∑

i=p+1

trh1ei +
n2∑

j=q+1

trh2e
j = pH1 + qH2, m = p+ q, (17)

where H1 and H2 denote the mean curvature vector fields of M̄1 and M̄2 in M1 and M2,
respectively. The following Lemma is quite easy.

Lemma 4.3 H1 and H2 are constant vectors if and only if H is constant vector. ‖H1‖
and ‖H2‖ are constant functions if and only if ‖H‖ is constant function.

From Lemma.4.3 and (17), we can give the following Corollary.

Corollary 4.4 Let (M, J, g) be a Kaehlerian product manifold and M̄ be a F-invariant
submanifold of M . We denote the integral manifolds of the vertical and horizontal
distributions of M̄ by M̄1 and M̄2. Then M̄ is a minimal submanifold of M if and
only if M̄1 and M̄2 are minimal submanifolds of M1 and M2, respectively.

Theorem 4.5 Let (M, J, g) be a Kaehlerian product manifold and M̄ be a F-invariant
submanifold of M . Then M̄ is a locally decomposable Riemannian product manifold.

Proof. We denote the integral manifolds of the vertical distribution T1 and the
horizontal distribution T2 by M̄1 and M̄2, respectively. Then from (14) we have

f∇̄ZX1 = ∇̄ZfX1 = ∇̄ZX1,

for all Z ∈ Γ(TM̄) and X1 ∈ T1. Thus the distribution T1 is parallel. In the same way,
the distribution T2 is also parallel.

f [X1 , Y1] = f∇̄X1Y1 − f∇̄Y1X1 = ∇̄X1fY1 − ∇̄Y1fX1

= ∇̄X1Y1 − ∇̄Y1X1 = [X1, Y1]
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for any X1, Y1 ∈ T1, that is, the distribution T is involutive. In the same way, the
distribution T2 is also involutive. Since ∇̄ is a Levi-Civita connection, T1 and T2 are
orthogonal distributions, we have

g(∇̄X1Y1, Z2) = −g(∇̄X1Z2, Y1) = 0,

which implies that M̄1 is the totally geodesic submanifold of M̄ . In the same way, we
get M̄2 is also totally geodesic submanifold of M̄ . Thus M̄ is a locally decomposable
Riemannian product manifold. 2

Now, from P +Q = I and F = P −Q we have

PX1 =
1
2

(I + F )X1 =
1
2

(X1 + FX1) =
1
2

(X1 + fX1) = X1

and

QX1 =
1
2

(I − F )X1 =
1
2

(X1 − FX1) =
1
2

(X1 − fX1) = 0

for any X1 ∈ T1. Similarly, we get PX2 = 0 and QX2 = X2 for any X2 ∈ T2. Hence M̄1

and M̄2 are the submanifolds of M1 and M2, respectively.
Furthermore, if M̄1 and M̄2 are Kaehlerian submanifolds of M1 and M2, respectively.

Then M̄ is a Kaehlerian product manifold of M̄1 × M̄2.

Theorem 4.6 Let (M, J, g) be a Kaehlerian product manifold and M̄ be a F-invariant
submanifold of M . We denote the integral manifolds of the vertical and horizontal
distributions of M̄ by M̄1 and M̄2, respectively. Then M̄ is a pseudo-umbilical submanifold
of M = M1×M2 if and only if M̄1 and M̄2 are pseudo-umbilical submanifolds of M1 and
M2, respectively.

Proof. We suppose that M̄ be pseudo-umbilical submanifold of M . Then there exists
a smooth function λ on M̄ such that

g(h(X, Y ), H) = λg(X, Y ) (18)

for any X, Y ∈ Γ(TM̄).
We consider the basis in (16) and taking X = Y = e1, e2, ..., ep in (18), then we obtain

g(pH1, H) = λ

p∑
i=1

g(ei, ei)

pg(H1, H) = λp,
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that is,

λ = g(H1, H) =
p

m
g1(H1, H1).

In the same way, if we choose X = Y = e1, e2, ..., eq in (18), then we get

g(qH2, H) = λ

q∑
j=1

g(ej , ej)

qg(H2, H) = λq,

or,

λ = g(H2, H) =
q

m
g2(H2, H2).

Thus, using the λ = p
mg1(H1, H1), h(X, Y ) = h1(X1, Y1) + h2(X2, Y2) and taking X =

X1 , Y = Y1 ∈ T1 in (18), we have

g(h1(X1, Y1), H) =
p

m
g1(H1, H1)g(X1, Y1)

g1(h1(X1 , Y1), H1) = g1(H1, H1)g(X1 , Y1).

It follows that M̄1 is pseudo-umbilical submanifold of M1.
Similarly, making use of λ = q

m
g2(H2, H2) and taking X = X2, Y = Y2 ∈ T2 in (18),

then we obtain

g(h2(X2, Y2), H) =
q

m
g1(H2, H2)g(X2, Y2)

g2(h2(X2 , Y2), H2) = g2(H2, H2)g(X2 , Y2).

Hence M̄2 is also pseudo-umbilical submanifold of M2.
Conversely, we suppose that M̄1 and M̄2 are pseudo-umbilical submanifold of M1 and

M2, respectively. Then we have

g1(h1(X1 , Y1), H1) = g1(H1, H1)g(X1 , Y1)

for any X1, Y1 ∈ T1 and

g2(h2(X2 , Y2), H2) = g2(H2, H2)g(X2 , Y2)

for any X2, Y2 ∈ T2.
From the equations (15), (17) and making use of projection mappings

P : Γ(TM) −→ Γ(TM1)
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and

Q : Γ(TM) −→ Γ(TM2),

we get

m

p
g1(h1(X1, Y1), PH) =

m2

p2
g1(PH, PH)g(X1, Y1)

and

m

q
g2(h2(X2, Y2), QH) =

m2

q2
g2(QH,QH)g(X2, Y2).

Hence we have

g1(Ph(X, Y ), PH) =
m

p
g1(PH, PH)g(X1, Y1) (19)

and

g2(Qh(X, Y ), QH) =
m

q
g2(QH,QH)g(X2, Y2). (20)

We sum equations (19), (20) and using

g(H,H) =
p

m
g1(H1, H1) +

q

m
g2(H2, H2),

we obtain

g(h(X, Y ), H) =
p

m
g1(H1, H1)g(X1 , Y1) +

q

m
g2(H2, H2)g(X2, Y2)

= g(H,H){g(X1, Y1) + g(X2, Y2)}
= g(H,H)g(X, Y ),

which implies that M̄ is pseudo-umbilical submanifold of Kaehlerian product manifold
M . 2

Now we denote the Riemannian curvature tensor of Kaehlerian product manifold M
by R. Then from ∇F = 0 and the properties of R, we can easily see that R(PX,QY ) = 0
for any X, Y ∈ Γ(TM). Using the first Bianchi’s identity for R and ∇P = ∇Q = 0, by
direct calculations, we obtain

R(X, Y )Z = R1(PX, PY )PZ + R2(QX,QY )QZ. (21)
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for all X, Y, Z ∈ Γ(TM), where R1 and R2 are the Riemannian curvature tensors of
Kaehlerian manifolds M1 and M2, respectively. Moreover, The equation of Gauss is
given by

R(X, Y )Z = R̄(X, Y )Z + (∇Xh)(Y, Z)− (∇Y h)(X,Z)

+ Ah(X,Z)Y − Ah(Y,Z)X (22)

for all X, Y, Z ∈ Γ(TM̄), where A and R̄ denote the shape operator and Riemannian
curvature tensor of M̄ , respectively. Thus we can give the following theorem.

Theorem 4.7 Let (M, J, g) be a Kaehlerian product manifold and M̄ be F-invariant
submanifold of M . We denote the integral manifolds of the vertical and horizontal distri-
butions of M̄ by M̄1 and M̄2, respectively. Then M̄ is a curvature-invariant submanifold
of M if and only if M̄1 and M̄2 are curvature-invariant submanifolds of M1 and M2,
respectively.

Proof. By direct calculations, from the equations (4), (21) and (22), we conclude

(∇Xh)(Y, Z) − (∇Y h)(X,Z) = (∇X1h1)(Y1, Z1)− (∇Y1h1)(X1, Z1)

+ (∇X2h2)(Y2, Z2)− (∇Y2h2)(X2, Z2), (23)

where X = X1 + X2, Y = Y1 + Y2, Z = Z1 + Z2 ∈ Γ(TM̄), h1 and h2 denote the second
fundamental forms of M̄1 and M̄2 in M1 and M2, respectively. From the equation (23),
we derive

(∇Xh)(Y, Z)− (∇Y h)(X,Z) = 0

if and only if

(∇X1h1)(Y1, Z1) − (∇Y1h1)(X1 , Z1) = 0

and

(∇X2h2)(Y2, Z2) − (∇Y2h2)(X2 , Z2) = 0,

which proves our assertion. 2

Theorem 4.8 Let (M, J, g) be a Kaehlerian product manifold and M̄ be a F-invariant
and anti-invariant(with respect to J) submanifold of M = M1(c1) ×M2(c2). We denote
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the integral manifolds of the vertical and horizontal distributions of M̄ by M̄1 and M̄2,
respectively. Then M̄1 and M̄2 are curvature invariant submanifolds of M1 and M2,
respectively.

Proof. If M̄ is a F-invariant and anti-invariant submanifold of a Kaehlerian product
manifold M = M1(c1) ×M2(c2), then from the equations (4) and (7), for any X, Y, Z ∈
Γ(TM̄), we have

R̄(X, Y )Z − Ah(Y,Z)X +Ah(X,Z)Y =
1
16

(c1 + c2){g(Y, Z)X − g(X,Z)Y

+ 2g(FY, Z)FX − g(FX, Z)FY }

+
1
16

(c1 − c2){g(FY, Z)X − g(FX, Z)Y

+ g(Y, Z)FX − g(X,Z)FY }

and

(∇Xh)(Y, Z)− (∇Y h)(X,Z) = 0,

which implies that M̄1 and M̄2 are curvature invariant submanifolds of Kaehlerian man-
ifolds M1(c1) and M2(c2). 2
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