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On A Certain Class of Bessel Integrals

Ali A. Al-Jarrah∗ , A. Al-Momani

Abstract

There are many old results of integrals involving Bessel functions, currently

available in handbooks, but we found no recourse in the well-known references to

how they were established. In this paper, we attempt to have a clear way of proving

some of these results . In fact, we consider a certain class of Bessel integrals where

we prove that such integrals vanish under certain conditions. To this end some

theorems regarding this class of integrals with their proofs are put forward. A

computer algorithm is provided to implement some of our results. The result in this

paper extend the work in [3], and it concludes by indicating the wide range of old

and new results that can be obtained.
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1. Introduction and Statement of Results.

Bessel functions, with their manifold applications, have been studied in great detail,
and extensive tables of these functions are available [2, 5, 6, 8, 9]. Infinite integrals of these
functions frequently occur in the investigation of some physical and Engineering problems.
There exists a considerable body of information on the subject of these integrals. Of
special significance are chapter XIII of Watson’s classical treaties [ 9] and the excellent
book by Luke [6]which provides a thorough summary of results prior to 1962.
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The purpose of this paper is to derive a number of old and new infinite integrals
involving Bessel functions. In fact, we investigate the class of integrals:

∞∫
0

tµ+1Jv(at)
F (t)

(t2 + b2)m
dt, (1)

where Jv(at) is the Bessel function of the first kind, and F (t) is a function that has a
meromorphic extension in the right upper half-plane.

In [3], a number of infinite integrals involving Bessel functions have been investigated.
One of the main results is that the class of Bessel integrals

∞∫
0

tµ+1Jv(at)F (t)dt, and

∞∫
0

tµ+1Yv(at)F (t)dt (2)

vanishes under the conditions that F belongs to F
λ
, the family of all functions F from

C into C, that have no singularities in the right upper half-plane, and have at most
exponential growth in the sense that |F (z)| ≤ ceλy, for all y > 0 and for some λ > 0,
where Jv(.) is the Bessel function of the first kind, and Yv(.) is the Neumann’s function.

In the first part of this paper we find more relaxed conditions on the class of functions
F (z) to establish a parallel result to that in [3]. In the second part of this paper we state
and prove a theorem where we allow the class of functions F (z) to have singularities of
different orders in the right upper half-plane.

Before stating our main results we give some basic definitions

Definition 1.1 A meromorphic function g is said to have at most polynomial growth if

|g(z)| ≤ |Pg(|z|)| eλy, y > 0, z = x+ iy (3)

for some polynomial Pg and λ > 0.

Definition 1.2 We denote by Gλ the family of all meromorphic functions g that have at
most polynomial growth and satisfying the following two conditions:

1. g has no singularities in the right upper half-plane;

2. g(iy) = g(−iy) for all y ∈ R .
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Our main results are the following theorems.

Theorem 1.1 Given that g ∈ G
λ
, with Pg(t) = td for some d ≥ 0. Then for −2 − d <

µ < −3/2− d,and −2− µ− d < ν < 2 + µ + d, we have

(i)

∞∫
0

tµ+1Jv(at)g(t)dt = 0, (4)

(ii)

∞∫
0

tµ+1Yv(at)g(t)dt = 0 , (5)

for all a > λ.

Theorem 1.2 Suppose that F ∈ G
λ

such that deg(PF ) = d,and G(z) = F (z)
(z2+b2)m , m ≥ 1,

where b is a positive real number. Then for a > λ, ν > −1, and d < 2m − ν − 3/2, we
have

∞∫
0

tv+1Jv(at)G(t)dt

=
m−1∑
`=0

∑̀
s=0

D`,sF
(`−s)(ib)

dm−`−1

dtm−`−1
((
t

2
)v+1Kv (t)) |ab, (6)

where

D`,s =
(s+ m− 1)!
[(m− 1)!]2

(−1)m−1(−1)s(
a

2b
)m(

a

2
)−v−22−sei

π
2 (`−s)

×b−sa−`
(
m− 1
`

)(
`

s

)

It should be pointed out that many results in [4, 7] can be obtained as consequence of
this theorem.
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2. Preliminaries

In this section we give some basic lemmas.

Lemma 2.1 Given 0 < ε < 1,then

sup
|z|=ε

∣∣∣H(1),(2)
v (az)

∣∣∣ ≤ C(ε−v + εv), (7)

where C is a constant independent of ε, and H
(1),(2)
v (·) are the Hankel functions defined

in [2]

Proof. It is known that

H(1)
v (z) =

J−v(z) − e−πviJv(z)
i sin vπ

. (8)

and

J±v(z) = (
z

2
)±v

∞∑
k=0

(−1)k( z2 )2k

Γ(k + 1)Γ(k ± v + 1)
. (9)

since

1
2±v

∞∑
k=0

(−1)k( z2 )2k

Γ(k + 1)Γ(k ± v + 1)
.

is convergent, we have∣∣∣H(1)
v (z)

∣∣∣ ≤ C(ε−v + εv) (since ε < 1 ) ∀ |z| = ε.

Thus,

sup
|z|=ε

∣∣∣H(1)
v (az)

∣∣∣ ≤ C(ε−v + εv).

2

Corollary 2.1 Given 0 < ε < 1, C
ε

=
{
εeiθ : 0 < θ ≤ π

2

}
and g ∈ G

λ
. Then for µ > −2,

and −2− µ < ν < 2 + µ, we have

lim
ε→0

∫
Cε

zµ+1H(1)
v (az)g(z)dz = 0. (10)
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Proof. Let P (z) =
d∑
j=0

ajz
j be such that |g(z)| ≤ C |P (|z|)| eλy. Then

∣∣∣∣∣∣
∫
Cε

zµ+1H(1)
v (az)g(z)dz

∣∣∣∣∣∣ ≤ C · εµ+1(ε−v + εv)(
d∑
j=0

|aj| εj) ·
π

2
ε · eλε → 0 (11)

as ε→ 0. 2

Lemma 2.2 Given g ∈ G
λ
, a > λ , R > 0, and CR =

{
R eiθ : 0 < θ ≤ π

2

}
. Then

lim
R→∞

∣∣∣∣∣∣
∫
CR

zµ+1H(1)
v (az)g(z)dz

∣∣∣∣∣∣ = 0. (12)

Proof. Recall that, [6, 9]

∣∣∣H(1)
v (az)

∣∣∣ ≤ √
2
π

∣∣∣∣ eiaz√az
∣∣∣∣ for large |z| ,

and |g(z)| ≤ |P (|z|)| eλy ≤ (
d∑
`=0

|a
`
|R`)eλR sin θ = M(R)eλR sin θ for |z| = R.

Let

I(R) =
∫
CR

zµ+1H(1)
v (az)g(z)dz

=

π
2∫

0

Rµ+1ei(v+1)θH(1)
v (aReiθ)g(Reiθ)iReiθdθ.

Therefore,

|I(R)| ≤ C

π
2∫

0

Rµ+1 e
−Ra sin θeλR sin θ√

|a|R 1
2

M(R)Rdθ.
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Now by the fact that sin θ ≥ 2θ
π for 0 < θ ≤ π

2 , we have

lim
R→∞

∣∣∣∣∣∣
∫
CR

zµ+1H(1)
v (az)g(z)dz

∣∣∣∣∣∣
≤ C lim

ε→0+
lim
R→∞

π
2∫
ε

Rµ+2

R
1
2
e−2R aθ

π e2λRθπ M(R)dθ

= C lim
ε→0+

lim
R→∞

[
Rµ+ 3

2
πM(R)

2R(a− λ)
(e
−2Rε
π (a−λ) − e−R(a−λ))

]
= 0.

Lemma 2.3 Given g ∈ G
λ
. Then for µ > −2, and −2− µ < ν < 2 + µ we have

(i)

∞∫
0

tµ+1H(1)
v (at)g(t)dt = −(i)µ

∞∫
0

tµ+1H(1)
v (iat)g(it)dt. (13)

(ii)

∞∫
0

tµ+1H(2)
v (at)g(t)dt = −(−i)µ

∞∫
0

tµ+1H(2)
v (−iat)g(−it)dt. (14)

Proof. Given 0 < ε < 1, R > 1 using the contour C = Cε + C1 + C2 + CR, by
Cauchy-Goursat theorem, we get

∫
C1

zµ+1H(1)
v (az)g(z)dz +

∫
CR

zµ+1H(1)
v (az)g(z)dz

+
∫
C2

zµ+1H(1)
v (az)g(z)dz −

∫
Cε

zµ+1H(1)
v (az)g(z)dz = 0. (15)

where C
ε

=
{
z ∈ C : z = εeiθ : 0 < θ ≤ π

2

}
, C1 = {z ∈ C : z = t, ε < t ≤ R} , C2 =

{z ∈ C : z = it, ε < t ≤ R} and CR =
{
z ∈ C : z = R eiθ : 0 < θ ≤ π

2

}
.
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By Corollary(2.1) and Lemma(2.2), we have

lim
ε→0

∫
C3

zµ+1H(1)
v (az)g(z)dz = lim

R→∞

∫
CR

zµ+1H(1)
v (az)g(z)dz = 0. (16)

Therefore, if R →∞ and ε→ 0, we have

∞∫
0

tµ+1H(1)
v (at)g(t)dt +

∞∫
0

(i)µ+1yµ+1H(1)
v (iay)g(iy)idy = 0. (17)

Thus

∞∫
0

tµ+1H(1)
v (at)g(t)dt =

∞∫
0

(i)µ+1tµ+1H(1)
v (iat)g(it)idt

= −(i)µ
∞∫

0

tµ+1H(1)
v (iat)g(it)dt (18)

Finally, (ii) can be obtained in a similar way.

3. Proofs of Main Results

We start this section by presenting a proof of Theorem 1.1.

Proof of (Theorem 1.1).

Recall that

Jv(az) =
1
2

[
H(1)
v (az) +H(2)

v (az)
]

(19)

and

(−i)vH(2)
v (−iat) = −(i)vH(1)

v (iat). (20)

By (19), (20) and Lemma (2.3), we have
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∞∫
0

tµ+1Jv(at)g(t)dt

=
1
2

−(i)µ
∞∫

0

tµ+1H(1)
v (iat)g(it)dt − (−i)µ

∞∫
0

tµ+1H(2)
v (−iat)g(−it)dt


=

1
2

−(i)µ
∞∫

0

tµ+1H(1)
v (iat)g(it)dt + (i)µ

∞∫
0

tµ+1H(1)
v (iat)g(−it)dt


=

1
2

(i)µ
∞∫

0

tµ+1H(1)
v (iat) [g(−it) − g(it)] dt

= 0. (21)

Here, the last equality follows by condition 2 of Definition 1.2.

Following the same procedure we can show that
∞∫
0

tµ+1Yv(at)g(t)dt = 0 holds.

Note that Gλ contains all even polynomials and hence we obtain ,

∞∫
0

tµ+n+1Jv(at)dt = 0 (22)

for even n, −2− n < µ < −3/2− n,and −2 − µ− n < ν < 2 + µ+ n,
which cannot be obtained from the results in [3].

Proof of (Theorem 1.2) Let R > 0 be large so that b < R;
let DR = {z ∈ C : |z| < R and 0 < arg z ≤ π

2
},and Dε = {z ∈ C : |z| < ε and

0 < arg z ≤ π
2 }, where ε is so small, such that b /∈ Dε. Let D be a small disk around ib

with boundary Cb. Consider the integral

I =
1

2πi

∫
C

zv+1H(1)
v (az)

F (z)
(z2 + b2)m

dz (23)

406



AL-JARRAH, AL-MOMANI

where C = the boundary DR − {D ∪Dε}. Then by similar argument as in the proof of
Theorem 1.1, we have

1
2πi

∞∫
0

tv+1[H(1)
v (at) − evπiH(1)

v (ateπi)]
F (t)

(t2 + b2)m
dt

=
1

2πi

∫
Cb

zv+1H(1)
v (az)

F (z)
(z2 + b2)m

dz (24)

Now by [9], we have

(−i)νH(2)
v (−iat) = −(i)νH(1)

v (iat) (25)

Thus

1
2πi

∞∫
0

tv+1[H(1)
v (at) + H(2)

v (at)]
F (t)

(t2 + b2)m
dt

=
1

2πi

∫
Cb

zv+1H(1)
v (az)

F (z)
(z2 + b2)m

dz. (26)

Using the identity

H(1)
v (az) =

J−v(az)− Jv(az)e−vπi

i sin vπ
(27)

and the Bessel’s representation of J±v(az), we have

H(1)
v (az) =

1
i sin vπ


∞∑
n=0

(−1)n( az2 )2n−v

Γ(n+1)Γ(−v+n+1)

−e−vπi
∞∑
n=0

(−1)n( az2 )2n+v

Γ(n+1)Γ(v+n+1)

 .
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Now

1
πi

∞∫
0

tv+1Jv(at)
F (t)

(t2 + b2)m
dt

=
−1

2π sin vπ

[ ∞∑
n=0

(−1)n

Γ(n+ 1)

{
An

Γ(−v + n+ 1)
− e−vπiBn

Γ(v + n+ 1)

}]
, (28)

where

An = (
a

2
)2n−v

∫
Cb

z2n+1F (z)
(z2 + b2)m

dz. (29)

Bn = (
a

2
)2n+v

∫
Cb

z2n+2v+1F (z)
(z2 + b2)m

dz. (30)

By using Leibnitz’s rule,

(fgh)(k) =
k∑
`=0

∑̀
s=0

(
k

s

)(
`

s

)
f(k−`)g(s)h(`−s). (31)

First with f = z2n+1, h = F, and g = (z + ib)−m we get,

An =
2πi

(m− 1)!
(
a

2
)2n−v

m−1∑
`=0

∑̀
s=0

Cn,m,`,s(ib)2n−2m+`−s+2F (`−s)(ib) (32)

where

Cn,m,`,s =
(2n+ 1)!

(2n+ 2−m+ `)!
· (m+ s− 1)!

(m− 1)!
(−1)s

(
m− 1
`

)(
`

s

)
· 2−m−s. (33)

Thus by simplifying Cn,m,`,s, we get,
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An =
(

2πi
[(m− 1)!]2

(
a

2
)2n−v2−m(ib)2n−2m+2(2n+ 1)!

)
(34)

·
m−1∑
`=0

∑̀
s=0

(−1)s(2ib)−s(ib)`
(
m−1
`

)(
`
s

)
(m+ s− 1)!F (`−s)(ib)

(2n+ 2−m+ `)!
.

Second, with f = z2n+2v+1, g = (z + ib)−m, h = F we get,

Bn =
(

2πi
[(m− 1)!]2

(
a

2
)2n+v2−m(ib)2n+2v−2m+2Γ(2n+ 2v + 2)

)
(35)

·
m−1∑
`=0

∑̀
s=0

(−1)s(2ib)−s(ib)`
(
m−1
`

)(
`
s

)
(m+ s− 1)!F (`−s)(ib)

Γ(2n+ 2v + 3−m+ `)
.

Thus (25) becomes,

1
πi

∞∫
0

Jv(at)
tv+1F (t)

(t2 + b2)m
dt

=
−1

2π sin vπ

∞∑
n=0

m−1∑
`=0

∑̀
s=0

(−1)n{ 2πi
[(m− 1)!]2

(
a

2
)2n−v2−m(ib)2n−2m+2

×Γ(2n+ 2) · (−1)s(2ib)−s(ib)`
(
m−1
`

)(
`
s

)
(m+ s− 1)!F (`−s)(ib)

Γ(−v + n+ 1)Γ(n+ 1)(2n+ 2−m+ `)!
}

+
e−vπi

2π sin vπ

∞∑
n=0

m−1∑
`=0

∑̀
s=0

(−1)n{ 2πi
[(m− 1)!]2

(
a

2
)2n+v2−m(ib)2n+2v−2m+2

×Γ(2n+ 2v + 2) · (−1)s(2ib)−s(ib)`
(
m−1
`

)(
`
s

)
(m+ s− 1)!F (`−s)(ib)

Γ(n+ 1)Γ(v + n+ 1)Γ(2n+ 2v + 3−m+ `)
},

=
−(2πi)2−m(ib)−2m+2

[(m− 1)!]2(2π sin vπ)

[
m−1∑
`=0

∑̀
s=0

k`,s {S1(ab)− S2(ab)}F (`−s)(ab)

]
,
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where

k`,s = (−1)s(2ib)−s(ib)`
(
m− 1
`

)(
`

s

)
(m+ s− 1)!, (36)

S1(ab) =
∞∑
n=0

(a2 )2n−v(b)2nΓ(2n+ 2)
Γ(−v + n+ 1)Γ(n+ 1)Γ(2n+ 3−m+ `)

, (37)

S2(ab) =
∞∑
n=0

(a
2
)2n+v(b)2n+2vΓ(2n+ 2v + 2)

Γ(v + n+ 1)Γ(n+ 1)Γ(2n+ 2v + 3−m+ `)
. (38)

Now

(
z

2
)v+1I−v(z) =

∞∑
n=0

( z2 )2n+1

Γ(n+ 1)Γ(−v + n+ 1)
. (39)

Thus

dm−`−1

dzm−`−1

[
(
z

2
)v+1I−v(z)

]
|ab

=
1

2m−`−1

∞∑
n=0

(ab2 )2n+2−m+`Γ(2n+ 2)
Γ(n+ 1)Γ(−v + n+ 1)Γ(2n+ 3−m+ `)

=
1

2m−`−1
(
ab

2
)−m+`+2(

a

2
)v
∞∑
n=0

(a
2
)2n−v(b)2nΓ(2n+ 2)

Γ(n + 1)Γ(−v + n+ 1)Γ(2n+ 3−m+ `)
.

(40)

Therefore,

S1(ab) = 2m−`−1(
ab

2
)m−`−2(

a

2
)−v

dm−`−1

dzm−`−1

[
(
z

2
)v+1I−v(z)

]∣∣∣∣
ab

. (41)

Next, since

(
z

2
)v+1Iv(z) =

∞∑
n=0

( z2 )2n+2v+1

Γ(n + 1)Γ(v + n+ 1)
, (42)
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we have

dm−`−1

dzm−`−1

[
(
z

2
)v+1Iv(z)

]
|ab

=
1

2m−`−1

∞∑
n=0

(ab2 )2n+2v−m+`+2Γ(2v + 2n+ 2)
Γ(n + 1)Γ(v + n + 1)Γ(2v + 2n+ 3−m+ `)

S2(ab) = 2m−`−1(
ab

2
)m−`−2(

a

2
)−v

dm−`−1

dzm−`−1

[
(
z

2
)v+1Iv(z)

]
|ab (43)

Hence

1
πi

∞∫
0

Jv(at)
tv+1F (t)

(t2 + b2)m
dt

=
2−m(ib)−2m+2

[(m− 1)!]2(i sin vπ)

 m−1∑̀
=0

∑̀
s=0

k`,sF
(`−s)(ib)2m−`−1(ab2 )m−`−2(a2 )−v

· dm−`−1

dzm−`−1

[
( z

2
)v+1I−v(z) − ( z

2
)v+1Iv(z)

]
|ab



=
(ib)−2m+2(ab

2
)m−2(a

2
)−v

[(m− 1)!]2(i sin vπ)

 m−1∑̀
=0

∑̀
s=0

k`,sF
(`−s)(ib)2−`−1(ab

2
)−`

· dm−`−1

dzm−`−1

[
( z2 )v+1I−v(z)− ( z2 )v+1Iv(z)

]
|ab

 .
The last equation combined with the identity Kv(z) = π

2 sin vπ (I−v(z)− Iv(z)), we have

∞∫
0

tv+1Jv(at)
F (t)

(t2 + b2)m
dt

=
2(ib)−2m+2(ab2 )m−2(a2 )−v

[(m− 1)!]2

×

 m−1∑̀
=0

∑̀
s=0

k`,s2−`−1(ab2 )−`

·F (`−s)(ib) d
m−`−1

dzm−`−1 (( z2 )v+1Kv (z)) |ab .


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=
(−1)m−1( a

2b
)m(a

2
)−v−2

[(m− 1)!]2

×

 m−1∑̀
=0

∑̀
s=0

(−1)s2−se
iπ
2 (`−s)b−sa−`

(
m−1
`

)(
`
s

)
(m+ s− 1)!

·F (`−s)(ib) d
m−`−1

dtm−`−1 (( t2 )v+1K
v
(t)) |ab .

 .
Thus we obtain (5). 2

Example: Direct application of theorem 1.2 gives

∞∫
0

zv+1Jv(at)
1

(t2 + b2)m
dz =

bν−m+1am−1

2m−1Γ(m)
Kν−m+1(ab),

a, b > 0, −1 < ν < 2m− 3/2.

Finally we provide an algorithm that implement the result in theorem 1.2

Algorithm: To implement the result of theorem 1.2 for the class of integrals:

I =
∞∫
0

tv+1Jv(at) F (z)
(z2+b2)m

dt

using MATLAB 6.0.

INPUT: The Function F (z), m the order of the poles, v the order of Bessel function, a
and b.

OUTPUT: The value of integral I.

STEP 1: for i = 0 to (m− 1)

for j = 0 to i,

D(i, j) = (j+m−1)!
[(m−1)!]2

(−1)m−1(−1)j( a
2b

)m(a
2
)−v−22−jei

π
2 (i−j)

× b−ja−i
(
m−1
i

)(
i
j

)
,

STEP 2: Compute the derivative F (i−j)(z) at z = ib,

STEP 3: Compute dm−i−1

dtm−i−1 (( t
2
)v+1K

v
(t)) at t = ab,

I = D(i, j) ∗ F (i−j)(z) ∗ dm−i−1

dtm−i−1 (( t2)v+1K
v
(t))

STEP 4: OUTPUT I.

STOP.
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4. Summary

The central result is a closed form evaluation of a cerain class of infinite integrals
that involves Bessel functions. This in turn leads to several Bessel integrals that confirm,
extend and add to known identities in handbooks and the literature.
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