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Abstract

We prove that if G is a periodic group with all subgroups subnormal, and if for

every x, y ∈ G, < x, y >G is an FC-group, then G is nilpotent.

1. Introduction

A group G is called an N0-group if all subgroups of G are subnormal. Several authors
have considered N0-groups and obtained remarkable results. For example, N0-groups
are soluble [13], Fitting [6] groups. Some examples of non-nilpotent N0-groups can be
found in [3], [7], [8], [10], [11]. If G is an N0-group, then G is nilpotent if it satisfies one
of the following conditions:

(i) G is torsion-free ([4], [17]);

(ii) G is periodic hypercentral group ([14]);

(iii) G is hypercentral of length at most ω ([15]);

(iv) G has a normal nilpotent subgroup A such that G/A has finite exponent ([16], c. f.
[12]);

(v) G is residually nilpotent locally finite group ([18]); and

(vi) G is a bounded Engel group ([19]).

In this note we prove the following theorem.
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Theorem. Let G be a periodic N0-group. If for every x, y ∈ G, < x, y >G is an
FC-group, then G is nilpotent.

Subgroups X and Y of some group is called commensurable if | X : X ∩ Y |<∞ and
| Y : X ∩ Y |<∞.

Lemma. Let G be an N0-p-group and let G have a normal nilpotent subgroup N such
that G/N ∼= Cp∞. If for every x ∈ N, y ∈ G, < x, y >G is an FC-group, then G is
nilpotent.

Proof. First we show that the center Z(G) of G is non-trivial. Assume that Z(G)
is trivial. Let 1 6= a ∈ Z(N). Then clearly N ≤ CG(ag) for every g ∈ G. Put
Ω = {ag : g ∈ G} and let G act on Ω via conjugation. We also have that < Ω > is
an infinite proper subgroup of G, since G is a Fitting group with trivial center. Let
1 6= b ∈ G and B =< bG >. By hypothesis < a, b >G is an FC-group and whence

| B : CB(a) |<∞, then | {[b, ax] : x ∈ G} |<∞.

We also have that

| CG([g, a]) : CG([g, a])∩ CG(a) |<∞

for every g ∈ B \ CB(a), since CG([g, a]) 6= G and N ≤ CG([g, a]). Furthermore, if ax

and ay are two conjugates of a in G, then

| CG(ay) : CG(ay) ∩ CG(ax) |<∞,

since N ≤ CG(ay) ∩ CG(ax), i. e., the centralizers of the conjugates of a are commensu-
rable. By Lemma 4 of [2], supp(b) is finite and this means that G acts on Ω as a finitary
permutation group. Thus G/CG(< aG >) is isomorphic to a subgroup G1 of FSym(Ω).
Since G/N ∼= Cp∞ , G/CG(< aG >) ∼= Cp∞ , that is , G1

∼= Cp∞ . But by [1] (c. f. [20])
FSym(Ω) contains no nontrivial radicable subgroup, a contradiction. Consequently the
center of G is nontrivial.

Now consider the α-centre Zα(G) of G for an ordinal α. By (ii) Zα(G) is nilpotent.
Hence we may assume that K = Zα(G)N 6= G. We also have that G/K ∼= Cp∞ and that
G/Zα(G) provides the statement of the lemma. By the first paragraph we conclude that
Z(G/Zα(G)) 6= 1. This implies that G is hypercentral and it is nilpotent by (ii).
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Proof of the theorem. By Theorem 2.5.1 (ii) of [9] G is locally nilpotent and hence G
is the direct product of primary components. So by Lemma 5 of [5] we may assume that
G is a p-group for a prime p. Suppose that G is not nilpotent. We also have that G has a
proper normal nilpotent subgroup N such that G/N ∼= Cp∞ × · · ·×Cp∞ (n factors) for a
positive integer n by Theorem 1 of [5]. This means that G/N contains subgroups Ki/N

such that Ki/N ∼= Cp∞ for i = 1, . . . , n and G/N = K1/N × · · · ×Kn/N . By the lemma
each Ki is nilpotent and whence G is nilpotent.
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06500 Beşevler, Ankara-TURKEY

e-mail: tahire@gazi.edu.tr

Received 11.08.2003

418


