A Note On Groups With All Subgroups Subnormal

Ahmet Arıkan, Tahire Özen

Abstract

We prove that if G is a periodic group with all subgroups subnormal, and if for every $x, y \in G, \langle x, y \rangle^G$ is an *FC*-group, then G is nilpotent.

1. Introduction

A group G is called an N_0 -group if all subgroups of G are subnormal. Several authors have considered N_0 -groups and obtained remarkable results. For example, N_0 -groups are soluble [13], Fitting [6] groups. Some examples of non-nilpotent N_0 -groups can be found in [3], [7], [8], [10], [11]. If G is an N_0 -group, then G is nilpotent if it satisfies one of the following conditions:

- (i) G is torsion-free ([4], [17]);
- (ii) G is periodic hypercentral group ([14]);
- (iii) G is hypercentral of length at most ω ([15]);
- (iv) G has a normal nilpotent subgroup A such that G/A has finite exponent ([16], c. f. [12]);
- (v) G is residually nilpotent locally finite group ([18]); and
- (vi) G is a bounded Engel group ([19]).

In this note we prove the following theorem.

415

ARIKAN, ÖZEN

Theorem. Let G be a periodic \mathbf{N}_0 -group. If for every $x, y \in G$, $\langle x, y \rangle^G$ is an FC-group, then G is nilpotent.

Subgroups X and Y of some group is called commensurable if $|X : X \cap Y| < \infty$ and $|Y : X \cap Y| < \infty$.

Lemma. Let G be an \mathbf{N}_0 -p-group and let G have a normal nilpotent subgroup N such that $G/N \cong C_{p^{\infty}}$. If for every $x \in N, y \in G, \langle x, y \rangle^G$ is an FC-group, then G is nilpotent.

Proof. First we show that the center Z(G) of G is non-trivial. Assume that Z(G) is trivial. Let $1 \neq a \in Z(N)$. Then clearly $N \leq C_G(a^g)$ for every $g \in G$. Put $\Omega = \{a^g : g \in G\}$ and let G act on Ω via conjugation. We also have that $\langle \Omega \rangle$ is an infinite proper subgroup of G, since G is a Fitting group with trivial center. Let $1 \neq b \in G$ and $B = \langle b^G \rangle$. By hypothesis $\langle a, b \rangle^G$ is an FC-group and whence

$$B: C_B(a) | < \infty$$
, then $| \{ [b, a^x] : x \in G \} | < \infty$.

We also have that

$$|C_G([g,a]): C_G([g,a]) \cap C_G(a)| < \infty$$

for every $g \in B \setminus C_B(a)$, since $C_G([g, a]) \neq G$ and $N \leq C_G([g, a])$. Furthermore, if a^x and a^y are two conjugates of a in G, then

$$|C_G(a^y):C_G(a^y)\cap C_G(a^x)|<\infty,$$

since $N \leq C_G(a^y) \cap C_G(a^x)$, i. e., the centralizers of the conjugates of a are commensurable. By Lemma 4 of [2], supp(b) is finite and this means that G acts on Ω as a finitary permutation group. Thus $G/C_G(\langle a^G \rangle)$ is isomorphic to a subgroup G_1 of $FSym(\Omega)$. Since $G/N \cong C_{p^{\infty}}$, $G/C_G(\langle a^G \rangle) \cong C_{p^{\infty}}$, that is, $G_1 \cong C_{p^{\infty}}$. But by [1] (c. f. [20]) $FSym(\Omega)$ contains no nontrivial radicable subgroup, a contradiction. Consequently the center of G is nontrivial.

Now consider the α -centre $Z_{\alpha}(G)$ of G for an ordinal α . By (ii) $Z_{\alpha}(G)$ is nilpotent. Hence we may assume that $K = Z_{\alpha}(G)N \neq G$. We also have that $G/K \cong C_{p^{\infty}}$ and that $G/Z_{\alpha}(G)$ provides the statement of the lemma. By the first paragraph we conclude that $Z(G/Z_{\alpha}(G)) \neq 1$. This implies that G is hypercentral and it is nilpotent by (ii).

416

ARIKAN, ÖZEN

Proof of the theorem. By Theorem 2.5.1 (ii) of [9] G is locally nilpotent and hence G is the direct product of primary components. So by Lemma 5 of [5] we may assume that G is a p-group for a prime p. Suppose that G is not nilpotent. We also have that G has a proper normal nilpotent subgroup N such that $G/N \cong C_{p^{\infty}} \times \cdots \times C_{p^{\infty}}$ (n factors) for a positive integer n by Theorem 1 of [5]. This means that G/N contains subgroups K_i/N such that $K_i/N \cong C_{p^{\infty}}$ for $i = 1, \ldots, n$ and $G/N = K_1/N \times \cdots \times K_n/N$. By the lemma each K_i is nilpotent and whence G is nilpotent.

References

- Ado I. D.: Subgroups of the countable symmetric group, Dokl. Akad. Nauk. SSSR 50, 15-18 (1945).
- Belyaev V. V.: On the question of existence of minimal non-FC-groups, Siberian Mathematical Journal. 39 No. 6, 1093-1095.; translated from Sibirskiĭ Matematicheskiĭ Zhurnal. Vol 39 No. 6, November- December, pp. 1267-1270 (1998).
- Bruno B. and Phillips R.: On multipliers of Heineken-Mohamed type groups, Rend. Sem. Mat. Univ. Padova. Vol. 85, 133-146 (1991).
- [4] Casolo C.: Torsion-free groups with all subgroups subnormal, Rend. Circ. Mat. Palermo 2 50, 321–324 (2001).
- [5] Casolo C.: On the structure of groups with all subgroups subnormal. J. Group Theory. 5, 293-300 (2002).
- [6] Casolo C.: Nilpotent subgroups of groups with all subgroups subnormal, Bull. London Math. Soc. 35 (1), 15-22 (2003).
- [7] Hartley B.: A note on the normalizer condition, Proc. Camb. Phil. Soc. 74, 11-15 (1973).
- [8] Heineken H. and Mohamed I. J.: A group with trivial centre satisfying the normalizer condition, J. Algebra. 10, 368-376 (1968).
- [9] Lennox J. C. and Stonehewer S. E.: Subnormal subgroups of groups. (Clarendon Press, Oxford, 1987).
- [10] Menegazzo F.: Groups of Heineken-Mohamed, J. Algebra. 171 (3), 807-825 (1995).
- [11] Möhres W.:
- [12] Gruppen deren Untergruppen alle subnormal sind, Würzburg Ph.D. thesis Aus Karlstadt, (1988).
- [13] Möhres W.: Torsionsgruppen, deren Untergruppen alle subnormal sind, Geom. Ded. 31, 237-244 (1989).

417

ARIKAN, ÖZEN

- [14] Möhres W.: Auflösbarkeit von Gruppen deren Untergruppen alle subnormal sind, Arch. Math. 54, 232-235 (1990).
- [15] Möhres W.: Hyperzentrale torsionsgruppen, deren Untergruppen alle subnormal sind, Illinois J. Math. 35 (1), 147-157 (1991).
- [16] Smith H.: Hypercentral groups with all subgroups subnormal, Bull. London Math. Soc. 15 (3), 229-334 (1983).
- [17] Smith H.: Nilpotent-by-(finite exponent) groups with all subgroups subnormal, J. Group Theory. 3,47-56 (2000).
- [18] Smith H.: Torsion-free groups with all subgroups subnormal, Arch. Math. (Basel). 76,1-6 (2001).
- [19] Smith H.: Residually nilpotent groups with all subgroups subnormal, Journal of Algebra. 44, 845-850 (2001).
- [20] Smith H.: Bounded Engel groups with all subgroups subnormal, Communications in Algebra.
 30 (2), 907-909 (2002).
- [21] Wiegold J.: Groups of finitary permutation, Arch. Math. Vol. XXV, 466-469 (1974).

Ahmet ARIKAN Gazi University, Faculty of Education, Department of Mathematics Education, 06500 Beşevler, Ankara-TURKEY e-mail: arikan@gazi.edu.tr, Tahire ÖZEN Gazi University, Faculty of Arts and Sciences, Department of Mathematics, 06500 Beşevler, Ankara-TURKEY e-mail: tahire@gazi.edu.tr Received 11.08.2003