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Abstract

In this paper, we consider fuzzy notion of a Γ-near ring, introduce the notion

of a fuzzy coset and obtained some related important fundamental isomorphism

theorems.
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Introduction

A non-empty set N with two binary operations + and · is called a nearring if it

satisfies the following axioms.

(i) (N,+) is a group (not necessarily Abelian);

(ii) (N, ·) is a semi-group;

(iii) (a + b)c = ac+ bc for all a, b, c ∈ N .

Precisely speaking, it is a right near ring. Moreover, a near ring N is said to be a

zero-symmetric nearring if n0 = 0 for all n ∈ N , where 0 is the additive identity in N .

The concept of Γ-nearring, a generalization of both the concepts nearring and Γ-ring was

introduced by Satyanarayana [10]. Later, several authors such as Satyanarayana [11, 12],

Booth [1-3] and Booth and Groenewald [4] studied the ideal theory of Γ-nearrings.

Let (M, +) be a group (not necessarily Abelian) and Γ a non-empty set. Then M is

said to be a Γ-nearring if there exists a mapping M × Γ ×M → M (the image of (a, α,

b) is denoted by aαb), satisfying the following conditions:
2000 AMS Mathematics Subject Classification: 3E72, 16Y30
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(i) (a + b)αc = aαc+ bαc;

(ii) (aαb)βc = aα(bβc) for all a, b, c ∈ M and α, β ∈ Γ. Moreover, M is said to be

zero-symmetric if aα0 = 0 for all a ∈ M and α ∈ Γ, where 0 is the additive identity in M.

A normal subgroup (I, +) of (M, +) is called

(i) a left ideal, if aα(b + i) – aαb ∈ I for all a, b ∈ M, α ∈ Γ, i ∈ I;

(ii) a right ideal, if iαa ∈ I for all a ∈ M, α ∈ Γ, i ∈ I;

(iii) an ideal, if it is both a left and a right ideal.

It is clear that if M is a Γ-nearring, then the elements of Γ act as binary operations

on M such that the system (M, +, γ) is a nearring for all γ ∈ Γ. The relations between

the concepts Γ-nearring and nearring were studied in Section 1 of Satyanarayana [12].

Throughout this paper, M stands for a zero-symmetric Γ-nearring. The ideal generated

by an element a ∈ M is denoted by < a >. For other definitions and preliminary results

on Γ-nearrings we refer to [7, 11, 12].

The concept of fuzzy subset was introduced by Zadeh [14]. A fuzzy set in a set A is

a function µ: A→ [0, 1]. For any t ∈ [0, 1], the set µt defined by µt = {x ∈ A|µ(x) ≥ t}
is called as a level subset of µ. For any two fuzzy sets µ, σ in A, we write µ ⊆ σ if

µ(x) ≤ σ(x) for all x ∈ A. (In this case, we also say that µ is a subset of σ). Let X and

Y be two non empty sets, f: X → Y, µ and σ be fuzzy subsets of X and Y respectively.

Then f(µ), the image of µ under f is a fuzzy subset of Y defined by

(f(µ))(y) =


sup

f(x)=y
µ(x) if f−1(y) 6= φ

0 if f−1(y) = φ.

f−1(σ), the preimage of σ under f is a fuzzy subset of X defined by (f−1(σ))(x) = σ(f(x))

for all x ∈ X.

Jun, Sapanci and Ozturk [7] introduced the concept “fuzzy ideal” in Γ-nearrings and

studied some fundamental properties. It is clear that a fuzzy set µ in a Γ-nearring M is

a mapping f: M → [0, 1].

A fuzzy set µ in a Γ-nearring M is called a fuzzy left (resp., right) ideal of (or in) M if

(i) µ is a fuzzy normal subgroup with respect to addition (that is, µ(x - y) ≥ min

{µ(x), µ(y)}, and µ(y + x - y) ≥ µ(x));

(ii) µ(xα(y+z)–xαy) ≥ µ(z) (resp., µ(xαy) ≥ µ(x)) for all x, y, z ∈ M and α ∈ Γ.
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If µ is both left and right ideal, then µ is said to be a fuzzy ideal in M.

It is easy to verify that if µ is a fuzzy ideal of M, then the following three conditions

hold: (i) µ(0) ≥ µ(x) (in other words, µ(0) = max {µ(x) / x ∈ M});
(ii) µ(x + y) = µ(y + x); and

(iii) µ(x−y) = µ(0) implies µ(x) = µ(y), for all x, y ∈ M.

Jun, Sapanci and Ozturk [7] proved that for a fuzzy set µ in M, µ is a fuzzy left (resp.,

right) ideal of M if and only if each level subset µt, t ∈ im (µ), of µ is a left (resp. right)

ideal of M.

A fuzzy (left, right) ideal µ of M with µ(0) = 1 is called a normal (left, right) ideal

of M. Jun, Kim and Ozturk [5] introduced the fuzzy maximal ideals and some related

properties were studied. A fuzzy ideal µ of M is said to be a fuzzy maximal ideal if it

satisfies the two conditions: (i) µ is non-constant; and (ii) µ* is a maximal element among

all the normal fuzzy ideals of M where µ ∗ (x) = µ(x) + 1− µ(0), for all x ∈M .

For other preliminary definitions and results related to fuzzyness, see [7].

This paper is divided into three sections. In Section 1, we prove a result on fuzzy

ideals.

In Section 2, we introduce the concept fuzzy coset in Γ-nearrings and prove that the

set of all fuzzy cosets forms a Γ-nearring (theorem 2.4). In the last section, that is, in

Section 3, we prove the following important fundamental results related to isomorphism

theorems on Γ-nearrings;

(i). M/µ is isomorphic to the quotient Γ-nearring M/Mµ, where M/µ is the Γ-nearring

of all the cosets of M with respect to the fuzzy ideal µ, and

Mµ = {x ∈M/µ(x) = µ(0)}.

(ii) There exists an order preserving bijection between the set P of all fuzzy ideals σ

of M such that σ ⊇ µ and σ(0) = µ(0) and the set Q of all fuzzy ideals θ of M/µ such

that θ ⊇ θµ, where θµ is a fuzzy ideal of M/µ defined by θµ(x+µ) = µ(x) for all x ∈ M.

(iii) Let h: M → M1 be a Γ-nearring epimorphism and let σ be a fuzzy ideal of M1

and µ = h−1(σ). Then the map ψ: M/µ → M1/σ defined by ψ(x+µ) = h(x) + σ is a

Γ-near ring isomorphism.

As a consequence of (iii), we obtain the following result: If µ and σ are two fuzzy

ideals of M such that µ ⊆ σ and σ(0) = µ(0), then M/σ ∼= (M/µ)/(σ/µ).

13



BHAVANARI, KUNCHAM

1. Fuzzy ideals

Theorem 1.1 If µ is a fuzzy ideal of M, and a ∈ M then µ(x) ≥ µ(a) for all x ∈< a >.

Proof. By straightforward verification, we conclude that for a ∈ M,< a >=
∞⋃
i=0

Ai,

where Ak+1 = A∗k ∪A+
k ∪A0

k ∪A++
k , A0 = {a} and

A∗k = {n+x–n / n ∈ N, x ∈ Ak};
A+
k = {n1α(n2+a)–n1αn2 / n1, n2 ∈ M, a ∈ Ak,α ∈ M};

A0
k = {x – y / x, y ∈ Ak};

A++
k = {xαm / x ∈ Ak, α ∈ Γ and m ∈ M}.

We prove that µ(u) ≥ µ(a) for all u ∈ Am for m ≥ 1. For this, we use induction on

m. It is obvious if m = 0. Suppose the induction hypothesis for k. That is., µ(x) ≥ µ(a)

for all x ∈ Ak. Now let v ∈ A∗k∪A+
k ∪A0

k∪A++
k . Suppose v ∈ A∗k. Then v = n+x−n for

some x ∈ Ak. Now µ(v) = µ(n+x−n) ≥ µ(x) (since µ is a fuzzy ideal of N) ≥ µ(a) (by

induction hypothesis). Let v ∈ A0
k. Then v = x1−x2 for some x1, x2 ∈ Ak. Now µ(v) =

µ(x1−x2) ≥ min (µ(x1), µ(x2)) ≥ µ(a), by induction hypothesis.

Suppose that v ∈ A+
k . Then v = n1α(n2+x)–n1αn2 for some n1, n2 ∈ M, x ∈ Ak and

α ∈ Γ. Now µ(v) = µ(n1α(n2+x)–n1αn2) ≥ µ(x) (since µ is a fuzzy ideal of M) ≥ µ(a)

(by induction hypothesis on k).

Suppose v ∈ A++
k . Then v = xαm for some x ∈ Ak, α ∈ Γ and m ∈ M. Now µ(v) =

µ(xαm) ≥ µ(x) (since µ is a fuzzy ideal of M) ≥ µ(a) (by induction hypothesis on k).

Thus in all cases we proved that µ(v) ≥ µ(a) for all v ∈ Ak+1. Hence by the principle

of mathematical induction, we conclude that µ(v) ≥ µ(a) for all v ∈ Am and for all

positive integers m. Hence µ(x) ≥ µ(a) for all x ∈< a > . 2

Corollary 1.2 If I is an ideal of N with I =< a >=< b >, then µ(a) = µ(b).

Proof. Since a ∈< b > and b ∈< a >, we have µ(a) ≥ µ(b) and µ(b) ≥ µ(a), so

µ(a) = µ(b). 2
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2. Fuzzy Cosets

Definition 2.1 Let µ be a fuzzy ideal of M and m ∈ M. Then the fuzzy subset m+µ

defined by (m+µ)(m1) = µ(m1−m) for all m1 ∈ M is called a fuzzy coset of the fuzzy

ideal µ.

Lemma 2.2 Let µ be a fuzzy ideal of M. Then for x, y, z ∈ M we have the following:

(i) x+µ = y+µ if and only if µ(x−y) = µ(0);

(ii) If x + µ = y + µ, then µ(x) = µ(y);

(iii) µ(x+y) = µ(y+x);

(iv) Mµ = {x ∈ M / µ(x) = µ(0)} is an ideal of M;

(v) Every fuzzy coset of a fuzzy ideal µ of M is constant on Mµ;

(vi) If z ∈ Mµ,then (x+µ)(z) = µ(x).

Proof. (i), (ii), (iii) have straightforward verifications.

(iv) Proved in Jun, Sapanci and Ozturk [7].

(v) Let y, z ∈ Mµ. We show that (x+µ)(y) = (x+µ)(z). Since y, z ∈ Mµ, we have

that µ(y) = µ(0) and µ(z) = µ(0). Since Mµ is an ideal, we have that y–z ∈ Mµ. So

µ(y–z) = µ(0). Now (x+µ)(y) = µ(y–x) (by the definition of fuzzy coset)

= µ(–(x–y)) (since µ is a fuzzy ideal of M)

= µ(y–x)= µ(–z+y–x+z) (since µ is a fuzzy normal subgroup)

≥ min {µ(–z+y), µ(x−z)} (since µ is a fuzzy ideal of M)

= min{µ(y–z), µ(x–z)} = min {µ(0), µ(x–z)} (since µ(y–z) = µ(0))

= µ(x–z) (since µ (0) ≥ µ (x–z))

= (x+µ)(z) (by definition of fuzzy coset).

Therefore (x+µ)(y) ≥ (x+µ)(z).

Similarly by interchanging y and z in above part, we can show that (x+µ)(z) ≥
(x+µ)(y). Hence (x+µ)(y) = (x+µ)(z) for all y, z ∈ Mµ.

(vi) Let z ∈ Mµ. Then µ(z) = µ(0). Since z, 0 ∈ Mµ, we have (x+µ)(z) = (x+µ)(0)

(by (v)) ⇒ µ(z–x)=µ(0–x) = µ(–x) = µ(x) (since µ is a fuzzy ideal of M). Therefore

µ(z–x) = µ(x). Hence (x+µ)(z) = µ(x). 2

Notation 2.3 We write M/µ = {m + µ} m ∈ M}, the set of all fuzzy cosets of µ.
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Theorem 2.4 Let µ be a fuzzy ideal of M. Then the set M/µ of all fuzzy cosets of µ is

a Γ-nearring with respect to the operations defined by

(x+µ)+(y+µ) = (x+y)+µ; and (x+µ)α(y+µ) = xαy+µ for all x, y ∈ M and α ∈ Γ.

Proof. First we verify that “+” is well defined. Suppose x+µ = u+µ, y+µ = v+µ.

Then by Lemma 2.2 (i), µ(x−u) = µ(y−v) = µ(0). Now µ{(x+y)–(u+v)} = µ{(x+y–v–

u)} = µ{(x+y–v)–u} = µ{–u+(x+y–v)} = µ{(–u+x)+(y–v)} ≥ min {µ(–u+x), µ(y–v)}
(since µ is a fuzzy ideal of M) = min {µ(x–u), µ(y–v)} = µ(0). Also it is clear that

µ(0) ≥ µ{(x+y)–(u+v)}. Therefore µ{(x+y)–(u+v)} = µ(0). Hence by Lemma 2.2 (i),

(x+y)+µ = (u+v)+µ. This shows that “+” is well defined.

Next we verify that “·” is well defined. Now µ(xαy–uαv) = µ(uαv–xαy) = µ(uαv–

xαv+xαv–xαy) = µ((u–x)αv+xα(y+(– y+v))–xαy) ≥ min {µ(u–x), µ(–y+v)} (since µ

is a fuzzy ideal of M) = min {µ(0), µ(0)} = µ(0) ≥ µ(xαy–uαv). This shows that

µ(xαy–uαv)= µ(0). By Lemma 2.2 (i), xαy+µ = uαv+µ.

Now we verify that M/µ = {x+µ / x ∈ M} is a Γ-nearring with respect to the above

operations defined. A direct verification shows that (M/µ, +) is a group.

Let x, y, z ∈ M and α, β ∈ Γ. Now ((x+µ)+(y+µ))α(z+µ)

= ((x+y)+µ)α(z+µ)

= ((x+y)αz)+µ (by definition of multiplication)

= ((xαz)+(yαz))+µ (by right distributive law in M)

= ((xαz)+µ)+((yαz)+µ)

= (x+µ)α(z+µ)+(y+µ)α(z+µ).

Also ((x+µ)α(y+µ))β(z+µ) = ((xαy)+µ)β(z+µ) (by definition of addition)

= (xαy)β(z+µ) = xα(yβz)+µ = (x+µ)α(yβz+µ) = (x+µ)α((y+µ)β(z+µ)).

Hence M/µ is a Γ-nearring. 2

Notation 2.5 Let M be a fuzzy ideal. We define θµ: M/µ→ [0, 1] by θµ(x + µ) = µ(x)

for all x ∈ M.

Lemma 2.6 If µ is a fuzzy ideal, then θµ is a fuzzy ideal of M/µ.

Proof. Given that θµ(x+µ) = µ(x). Suppose x+µ = y+µ. Then µ(x−y) = µ(0). This

implies µ(x) = µ(y). That is, θµ(x+µ) = θµ(y+µ). Therefore θµ is well defined.

We verify that θµ is a fuzzy ideal of M/µ.
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(i) θµ((x+µ)+(y+µ)) = θµ(x+y+µ) = µ(x+y) (by definition of θµ)

≥ min {µ(x), µ(y)}(since µ is a fuzzy ideal of M)

= min{θµ(x+µ), θµ(y+µ)}.
Therefore θµ((x+µ)+(y+µ)) ≥ min {θµ(x+µ), θµ(y+µ)}.
(ii) θµ(x+µ) = µ(x) = µ(−x) (since µ is a fuzzy ideal of M) = θµ(−x+µ), by definition

of θµ.

(iii) θµ((y+µ)+(x+µ)−(y+µ)) = θµ((y+x–y)+µ) = µ(y+x–y) = µ(x)= θµ(x+µ)

(iv) θµ((x+µ)α(y+µ)) = θµ(xαy+µ) = µ(xαy) ≥ µ(x) = θµ(x+µ), by definition of

θµ.

(v) θµ{(x+µ)α((y+µ)+(z+µ))−(x+µ)α(y+µ)} = θµ{(x+µ)α((y+z)+µ)−
(x+ µ)α(y+µ)} = θµ{(xα(y+z)+µ))−(xαy+µ)}= θµ{(xα(y+ z)–(xαy)+µ)}
= µ{xα(y+z)–(xαy)} ≥ µ (z) = θµ(z+µ).

Hence θµ is a fuzzy ideal of M/µ. 2

3. Some Isomorphism Theorems

Theorem 3.1 (Jun, Sapanci and Ozturk [7]): If µ is a fuzzy (left, right) ideal of M then

the set Mµ= {x ∈ M / µ(x) = µ(0)} is a fuzzy (left, right) ideal of M.

Definition 3.2 Let M and N be Γ-nearrings. A map θ: M → N is called a Γ-nearring

homomorphism if θ(x + y) = θ(x) + θ(y) and θ(xαy) = θ(x)αθ(y) for all x, y ∈ M

and α ∈ Γ. Moreover if θ is one-one (onto, bijection, respectively) then θ is called as

monomorphism (epimorphism, isomorphism, respectively).

Now we prove the following theorem.

Theorem 3.3 If µ is a fuzzy ideal of M then the map θ: M → M/µ, defined by θ(x) =

x+µ, x ∈ M, is a Γ-near-ring epimorphism with kernel Mµwhere

Mµ = {x ∈ M/ µ(x) = µ(0)}. Moreover M/Mµ is isomorphic to M/µ (under the

mapping x+Mµ → x+µ).

Proof. θ(x+y) = θ(x) + θ(y) is clear.

Now θ(xαy) = (xαy)+µ (by definition of θ) = (x+µ)α(y+µ)

= θ(x)αθ(y). Therefore θ is a homomorphism.
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Now x ∈ kernel θ ⇔ θ(x) = 0 = 0+µ⇔ x+µ = 0+µ⇔ µ(x−0) = µ(0), (by Lemma

2.2(i)) ⇔ µ(x) = µ(0) ⇔ x ∈ Mµ. This shows that kernel θ = Mµ. 2

Notation 3.4 Let µ and σ be two fuzzy ideals of M such that µ ⊆ σ and σ(0) = µ(0).

Then we define a fuzzy set θσ: M/µ→ [0, 1] by θσ(x+µ) = σ(x) for all x+µ ∈ M/µ.

Lemma 3.5 θσ is a fuzzy ideal of M/µ such that θµ. ⊆ θσ where θσ and θµ are given by

the above notation. Also θµ(0) = θσ(0).

Proof. A direct verification shows that θσ is well-defined and is a fuzzy normal

subgroup of M/µ. Now we verify that θσ is a fuzzy ideal of M/µ.

θσ ((x+µ)α(y+µ)) = θσ(xαy+µ) = σ(xαy) (by definition of θσ) ≥ σ(x) = θσ(x+µ).

θσ {(x+µ)α((y+µ)+(z+µ))−(x+µ)α(y+µ)}
= θσ{(x+µ)α((y+z)+µ)−(xαy+µ)}
=θσ{(xα(y+z)+µ)−(xαy+µ)}
= θσ{(xα(y+z)−xαy)+µ}
= σ(xα(y+z)−xαy) (by definition of θσ)

≥ σ (z) (since σ is a fuzzy ideal of M)

= θσ(z+µ) (by definition of θσ).

Also θσ(x+µ) = σ(x) ≥ µ(x) = θµ(x+µ). Hence θµ ⊆ θσ. 2

Notation 3.6 (i) The fuzzy ideal θσ of M/µ is denoted by σ/µ. Note that µ ⊆ σ with

σ(0) = µ(0).

(ii) Let µ be a fuzzy ideal of M and θ a fuzzy ideal of M/µ such that θµ ⊆ θ and θµ(0)

= θ(0). Then we define σθ: M → [0, 1] by σθ(x) = θ(x+µ) for all x ∈ M.

Lemma 3.7 σθ (defined above in notation 3.6), is a fuzzy ideal of M such that µ ⊆ σθand

µ(0) = σθ(0).

Proof. It is easy to verify that σθ is a fuzzy normal subgroup of M. Now

σθ (xαy) = θ(xαy+µ) = θ((x+µ)α(y+µ)) ≥ θ(x+µ) (since θ is a fuzzy right ideal of

M/µ)

= σθ(x) (by definition of σθ).
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Therefore σθ is a fuzzy right ideal of M.

Also σθ{xα(y+z)−xαy} = θ{(xα(y+z)−xαy)+µ}
= θ{(x+µ)α((y+µ)+(z+µ))−(x+µ)α(y+µ)}
≥ θ (z+µ) (since θ is a fuzzy left ideal of M/µ)

= σθ(z) (by definition of σθ).

Therefore σθ is a fuzzy left ideal of M.

This shows that σθ is a fuzzy ideal of M.

Now we have σθ(x) = θ(x+µ) ≥ θµ(x+µ) (since θµ ⊆ θ) = µ(x)and so µ ⊆ σθ.
Also σθ(0) = θ(0+µ)= θ(0) = θµ(0) = θµ(0+µ) = µ(0). 2

Notation 3.8 Let µ be a fuzzy ideal of M. We write P = {σ/σ is a fuzzy ideal of M,

µ ⊆ σ, σ(0) = µ(0)} and Q = {θ / θ is a fuzzy ideal of M/µ, θµ ⊆ θ and θ(0) = θµ(0)}.

Theorem 3.9 Let µ be a fuzzy ideal of M. There exists an order preserving bijective

mapping between the sets P and Q.

Proof. Define η: P → Q by η(σ) = θσ. By the lemma 3.5, η(σ) = θσ is a fuzzy ideal

of M/µ such that θµ ⊆ θσand θµ(0) = θσ(0). By the definition of θσ , the mapping η is

well defined. Suppose η(σ) = η (β) ⇒ θσ= θβ .

Now σ(x) = θσ(x+µ) = θβ(x+µ) = β(x) for all x ∈ M. We have proved that η(σ) =

η(β) ⇒ σ = β . Therefore η is one-one.

Let θ ∈ Q. Consider σθ: M → [0, 1] defined in notation 3.6 (ii). By Lemma 3.7, σθ ∈
P. Now we have to show that η(σθ) = θ.

(η(σθ)) (x+µ) = σθ(x) (by definition of η and the definition of θσ in notation 3.4) =

θ(x+µ) (by the definition of σθ in notation 3.6 (ii)).

This is true for all x+µ ∈ M/µ. Hence η(σθ) = θ and so η is onto.

Thus η: P → Q is a bijection.

Let σ, β ∈ P such that σ ⊆ β. Now (η(σ)) (x+µ) = θσ(x+µ) (by the definition of η)

σ(x) ≤ β(x) (since σ ⊆ β) = θβ(x+µ) = (η(β)) (x+µ).

Since this is true for all x+µ ∈ M/µ, we have that η(σ) ⊆ η(β).

Thus η: P → Q is an order preserving bijection. 2
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Theorem 3.10 (Jun, Sapanci and Ozturk [7]) A Γ-nearing homomorphic pre-image of

a fuzzy (left, right) ideal is a fuzzy (left, right) ideal.

Theorem 3.11 Let h: M → M1 be an epimorphism, σ is a fuzzy ideal of M1 and µ =

h−1(σ). Then the map ψ: M/µ→ M1/σ defined by ψ(x+µ) = h(x) + σ is a Γ-near- ring

isomorphism.

Proof. First we show that the mapping ψ is well defined.

Let z1 ∈ M1. Since h is an epimorphism, h(z) = z1 for some z ∈ M.

Now x+µ = y+µ ⇒ (x+µ)(z) = (y+µ)(z) ⇒ µ(x–z) = µ(y–z) ⇒ (h−1(σ))(x–z) =

(h−1(σ))(y–z) ⇒ σ (h(x–z)) = σ(h(y–z)) ⇒ σ(h(x)–z1)) = σ(h(y)–z1))

⇒ (h(x)+σ)(z1) = (h(y)+σ)(z1)

This is true for all z1 ∈ M1. Hence h(x) + σ = h(y) + σ.

Now we proved that x+µ = y+µ⇒ ψ(x+µ) = ψ(y+µ). Thus ψ is well defined.

It is easy to verify that ψ((x+µ)+(y+µ)) = ψ(x+µ) + ψ(y+µ).

Now ψ((x+µ)α(y+µ)) = ψ(xαy+µ) = h(xαy)+σ, by definition of ψ. Since h is a

homomorphism, we have h(xαy)+σ = (h(x)αh(y))+σ = (h(x)+σ)α(h(y)+σ)

= ψ(x+µ)αψ(y+µ), by definition of ψ. Therefore ψ is a homomorphism.

Now we verify that ψ is one-one. Suppose h(x)+σ = h(y)+σ. Then σ[h(x)−h(y)]

= σ[h(0)], by definition. Since h is a homomorphism, σ[h(x−y)] = σ(h(0)). This im-

plies (h−1(σ))(x−y) = (h−1(σ))(0), which implies µ(x−y) = µ(0). By Lemma 2.2 (i),

x+µ = y+µ. This shows that ψ is one-one. Let y ∈ M1/µ. Then y = h(x)+σ for some

x ∈M. Now ψ(x + µ) = h(x) + σ = y. Therefore ψ is onto. Hence ψ is an isomorphism. 2

As a consequence of Theorem 3.11, we obtain the following corollary.

Corollary 3.12 Let µ and σ be two fuzzy ideals of M such that µ ⊆ σ and σ(0) = µ(0).

Then M/σ ∼= (M/µ)/(σ/µ).

Proof. Define ψ: M → M/µ by ψ(x) = x + µ for all x ∈ M.

By theorem 3.3, ψ is Γ-nearring epimorphism. From the notation 3.4 and 3.6 we have

θσ= σ/µ and by Lemma 3.5, σ/µ is a fuzzy ideal of M/µ such that θµ ⊆ θσ= σ/µ and

θµ(0) = θσ(0). Now ψ−1(σ/µ) is a fuzzy set in M and for any x ∈ M we have
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(ψ−1(σ/µ))(x) = ψ−1(θσ)(x) = θσ(ψ(x)) = θσ(x+µ) = σ(x). Therefore ψ−1(σ/µ) =

σ is a fuzzy ideal of M. Define ψ∗: M/ σ → (M/µ)/(σ/µ) by ψ∗(x+σ) = ψ(x) + (σ/µ).

By theorem 3.11, ψ∗ is a Γ- nearring isomorphism. This completes the proof. 2
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