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Spectrum

Jorge Aarão

Abstract

We prove existence and uniqueness of solutions for a class of forward-backward

diffusion equations via a representative example, where the second-order part has

continuous spectrum, and the initial and boundary data are suitably chosen.

1. Introduction

Consider the following problem: given f and g, find u = u(x, y) such that

xuy − yux − uxx = f, (1)

u(x, 1) = g(x), x < 0, and u(x,−1) = g(x), x > 0, (2)

where x ∈ R and y ∈ [−1, 1]. We prove existence and uniqueness of solutions for suitable

choices of functional spaces for u, f , and g. In particular we impose some restrictions of

the frequencies of f ; see Theorems 4 and 5 for precise statements.

The methods we employ here can be used to deal with equations of the form a(x)uy+

b(y)ux +Au = f (where A is a positive operator), with variations according to each case.

In [1], for example, we considered the case when A was of Sturm-Liouville type; here A

has continuous spectrum.
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Equation (1) is of mixed type. It behaves like a parabolic equation when x 6= 0,

except that the direction of diffusion changes with the sign of x. This is reflected in the

placement of the boundary conditions, and justifies that placement. Such equations are of

great interest in physics, and have been studied at least since the 1930s (see for instance

[5], [6]). The first rigorous mathematical treatment of this type of problem can be found

in [2], but there does not seem to be a general theory of existence and uniqueness for this

class of equations, and the literature mostly treats special cases ([4] is an exception).

2. Definitions and Results

All our functions are real-valued. We denote by S the Schwartz space in one variable,

that is, smooth functions whose derivatives of any order, when multiplied by any polyno-

mial, are bounded. In what follows we let I denote the interval [−1, 1], Ω = R × I, and

F = C∞(I,S), which is canonically identified with the space of smooth functions u in

the variables (x, y) ∈ Ω for which u(·, y) ∈ S for every y ∈ I. Given u ∈ F we define the

boundary operators B and B by setting

Bu(x) =

u(x, 1), if x < 0;

u(x,−1), if x > 0;
Bu(x) =

u(x, 1), if x > 0;

u(x,−1), if x < 0.
(3)

Definition 1 We say that v ∈ F0 if v ∈ F and Bv = 0.

If u, v ∈ F we denote the standard inner product of u and v by

(u, v) =
∫

Ω

u(x, y) v(x, y) dx dy. (4)

When we fix y ∈ I and integrate only in the variable x we will write

(u, v)y =
∫
R
u(x, y) v(x, y) dx, (5)

so that (u, v) =
∫
I
(u, v)y dy.
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Definition 2 The space F is defined to be the completion of F under the inner product

〈u, v 〉 = (u, v) + (ux, vx), (6)

where ux and uy are the partial derivatives of u with respect to x and y, respectively. We

set ‖u‖2F = 〈u, u 〉.
The space F ′, dual to F , is the completion of F under the norm given by

‖f‖F ′ = sup
‖u‖F=1

|(f, u)|. (7)

The space H is the completion of F0 under the inner product

[u, v] = 〈u, v 〉+
1
2

∫
R
Bu(x)Bv(x) |x| dx. (8)

Notice that we have the natural inclusions H ⊂ F ⊂ L2(Ω) ⊂ F ′.
We can be even more explicit in our description of F and F ′, as follows. Let

ĥ(ξ) =
∫
R h(x) e−iξx dx be the usual Fourier transform in one variable. The Sobolev

space Hs is defined to be the completion of Schwartz space S with respect to the norm

‖h‖2s =
∫
R
(1 + ξ2)s |ĥ(ξ)|2 dξ. (9)

It is well-known that h is in H1 if and only if both h and h′ are in L2. Moreover, H−1 is

the dual of H1. With that in mind we have the alternative descriptions

F = L2(I, H1), F ′ = L2(I, H−1). (10)

Moreover, the norm in F can be written as

‖u‖2F =
∫ 1

−1

∫
Rξ

(1 + ξ2) |û(ξ, y)|2 dξ dy, (11)

where the Fourier transform is taken over the first coordinate only. The symbol Rξ is

just a reminder that we are integrating over the frequency side.
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The weak formulation of our problem is obtained in the following way. Multiply

equation (1) by v ∈ F , and integrate over Ω; we obtain (formally)

(ux, vx) − (u, xvy) + (u, yvx) = (f, v) +
∫
R
BuBv |x| dx−

∫
R
BuBv |x| dx.

This suggests that f and g should be taken in F ′ and G = L2(|x| dx), respectively, and

u should be taken in H .

Statement of the Problem Given f ∈ F ′ and g ∈ G, find u ∈ H such that Lu = f

and Bu = g.

Definition 3 Given f ∈ F ′ and g ∈ G, we say that u ∈ H is a weak solution to the

problem Lu = f, Bu = g if, for all v ∈ F0,

(ux, vx)− (u, xvy) + (u, yvx) = (f, v) +
∫
R
g Bv |x| dx. (12)

We will show in Theorem 2 that if u is a weak solution, then Lu = f in the sense

of distributions, and that Bu = g. Moreover, in Theorem 4 we obtain our main result,

that if f ∈ F ′ only contains high frequencies (in the variable x), then we can find u ∈ H
solving our problem.

3. First Existence Result

Theorem 1 Let 0 < ε < 1. If f ∈ F ′ and g ∈ G, then there is a weak solution u ∈ H to

the problem Lu+ εu = f, Bu = g.

Proof. We want to find u ∈ H for which the equation

(ux, vx) − (u, xvy) + (u, yvx) + ε(u, v) = (f, v) +
∫
R
g Bv |x| dx (13)

holds for all v ∈ F0.
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The map v 7→ (f, v) +
∫
g Bv |x| dx is a bounded linear functional on F0, extending

uniquely to H , so there is a unique w ∈ H , depending only on f and g, such that

[w, v] = (f, v) +
∫
R
g Bv |x| dx. (14)

If we now fix v ∈ F0, then the left-hand-side of (13) is a bounded linear functional for

u ∈ H , and there is a unique element Tv ∈ H such that for all u ∈ H we have

[u, Tv] = (ux, vx) − (u, xvy) + (u, yvx) + ε(u, v). (15)

Setting u = v in the above equation we obtain

[v, Tv] = (vx, vx) + ε(v, v) +
1
2

∫
R
|Bv|2 |x| dx, (16)

from which we conclude that [v, Tv] ≥ ε[v, v]. Thus T : F0 → H is injective, with a

bounded inverse V : H → H . Let V ∗ be the adjoint of V , and define u = V ∗w. Then for

all v ∈ F0 we have

[u, Tv] = [V ∗w, Tv] = [w, V Tv] = [w, v], (17)

proving our claim. 2

4. Technical Lemmas

Lemma 1 Suppose u ∈ H and xuy ∈ F ′. Then we can find a family {vδ}δ>0, such that

vδ ∈ C∞(I, H), xvδy ∈ C∞(I, F ′), vδ approximates u in H, and xvδy approximates xuy in

F ′.

Proof. Let ψ = ψ(y) be compactly supported on the line, smooth, with ψ(y) ≡ 1

for y ∈ I. Given u ∈ F with xuy ∈ F ′, extend u to the real line in y by making even

extensions around the points y = 1 and y = −1, etc. Call this extension w, and define

v(x, y) = ψ(y)w(x, y). Then v ∈ L2(R, F ), xvy ∈ L2(R, F ′), both compactly supported

27



AARÃO

in the variable y, and coinciding with u and xuy, respectively, when y ∈ I. Let hδ be an

approximation of the identity, δ > 0; then

vδ(x, y) =
∫
R
v(x, y − s)hδ(s) ds; (18)

xvδy(x, y) =
∫
R
xvy(x, y− s)hδ(s) ds (19)

are such that vδ ∈ C∞(R, F ), and for y ∈ I it approximates u in F ; xvδy ∈ C∞(R, F ′),

and for y ∈ I it approximates xuy in F ′. 2

Lemma 2 If u ∈ H and xuy ∈ F ′, then u ∈ C(I, G), and there is a constant c

independent of u such that

sup
y

(|x| u, u)y ≤ c ‖xuy‖F ′ ‖u‖F +
∫
R
|Bu|2 |x| dx. (20)

Proof. We start with u ∈ C∞(I, H), let u+ be the restriction of u to x > 0, and

v = v(x, y) be the even extension of u+ to the whole line. Then∫ ∞
0

x u2(x, y) dx =
1
2

∫ ∞
−∞
|x| v2(x, y) dx (21)

=
1
4

∫ ∞
−∞

∫ y

−1

|x| vy(x, s) v(x, s) ds dx+
1
2

∫ ∞
−∞
|x| v2(x,−1) dx (22)

=
1
4

∫ y

−1

(|x|vy, v)s ds+
∫ ∞

0

|Bu|2 |x| dx (23)

≤ c‖xuy‖F ′ ‖u‖F +
∫ ∞

0

|Bu|2 |x| dx, (24)

where we have used the fact that |(|x|vy, v)s| ≤ c′|(xuy, u)s| for some constant c′ inde-

pendent of u.

Similarly we can obtain the inequality∫ 0

−∞
|x| u2(x, y) dx ≤ c‖xuy‖F ′ ‖u‖F +

∫ 0

−∞
|Bu|2 |x| dx, (25)
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and we put these together to obtain our inequality over the whole line in the case when u

is smooth in y. Now use Lemma 1 to approximate the general u by smooth functions vδ . 2

The next lemma is a standard result in vector-valued distributions; see [8] for a

reference.

Lemma 3 Let u ∈ H, xuy ∈ F ′, and v ∈ F . Then the function y 7→ (xu, v)y is absolutely

continuous, with derivative given by (xuy, v)y + (xu, vy)y.

Our final lemmas decompose F , F ′, and G into high and low frequency subspaces.

Let D : F → L2(Ω) denote the derivative operator in the x-variable; D is a bounded

operator. Let Mv(ξ) = iξv(ξ) denote multiplication by iξ, and let ∧ denote the Fourier

transform in the x-variable. The following diagram is commutative:

6 6

-

-

F L2(Ω).

L2(Ωξ)F̂
M

D

∧∧

Given α > 0, define the subspaces Kα and Kα of F by

h ∈ Kα ⇐⇒ ĥ(ξ, y) ≡ 0 for |ξ| > α (26)

h ∈ Kα ⇐⇒ ĥ(ξ, y) ≡ 0 for |ξ| ≤ α. (27)

These are the low- and high-frequency subspaces of F , and F = Kα⊕Kα. We denote

by Pα and Pα the projections onto Kα and Kα, respectively. We denote by χα the

function that is one if |ξ| ≤ α, and zero otherwise.
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Lemma 4 Given u ∈ F we have

u = Pαu+ Pαu = Pαu+ (M−1(1 − χα)D̂u)∨, (28)

where ∨ denotes the inverse Fourier transform. Moreover, ‖Pαu‖F ≤ c ‖Du‖ for some

constant c depending on α.

Proof. The norm of m ∈ F̂ is ‖m‖2
bF

=
∫

Ωξ
(1 + ξ2) |m(ξ, y)|2 dξ dy. Let g ∈ L2(Ωξ) be

such that g(ξ) ≡ 0 if |ξ| ≤ α. Then we can define m by setting g(ξ) = iξ m(ξ). We claim

that m is in F̂ :∫
Rξ

(1 + ξ2) |m|2 dξ =
∫
|ξ|>α

(1 + ξ2)
|g|2
ξ2

dξ ≤
(

1 +
1
α2

)∫
|ξ|>α

|g|2 dξ. (29)

Therefore ‖m‖
bF ≤ c ‖g‖L2(Ωξ), where c = α−1

√
1 + α2 depends only on α. Because the

Fourier transforms are isometries between the given spaces, we obtain our claim. 2

The constant c from the last lemma is of interest to us. Note that it behaves

asymptotically like 1/α as α becomes small.

The decomposition F = Kα⊕Kα induces a decomposition of F ′ into (F ′)α and (F ′)α,

where f ∈ (F ′)α if and only if (f, u) = 0 for all u ∈ Kα.

Likewise we have G = Gα ⊕Gα, where B(Kα) = Gα.

5. Weak Solutions

Theorem 2 Let 0 ≤ ε < 1. If u ∈ H is a weak solution to Lu + εu = f, Bu = g, with

f ∈ F ′ and g ∈ G, then

1. Lu + εu = f in the sense of distributions;

2. Bu = g;

3. limy→−1

∫∞
0
|u(x, y)− g(x)|2 |x| dx= 0;

4. limy→1

∫ 0

−∞ |u(x, y)− g(x)|2 |x| dx= 0.
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Proof. Let v be smooth and compactly supported in the interior of Ω. Since v is zero

at the boundary of Ω we have

(Lu+ εu, v) = (u, yvx) − (u, xvy) + (ux, vx) + ε(u, v) = (f, v), (30)

and so Lu + εu = f in the sense of distributions. But then Lu ∈ F ′, implying xuy ∈ F ′.
Lemma 2 implies that Bu ∈ G. Taking v ∈ F0 we can use Lemma 3 to obtain

−
∫
R
BuBv |x| dx = (xu, v)1 − (xu, v)−1 (31)

=
∫ 1

−1

(xuy, v)y + (xu, vy)y dy = (xuy, v) + (xu, vy).

Since u is a weak solution we obtain

(xuy, v)− (yux, v) − (uxx, v) + ε(u, v) = (f, v) +
∫
R
(g −Bu)Bv |x| dx, (32)

for all v ∈ F0. Since the left hand side of (32) is just (Lu+ εu, v), we conclude that

∫
R
(g − Bu)h |x| dx= 0 (33)

for all h ∈ G, and so Bu = g. The last two statements are a consequence of this fact,

and that u ∈ C(I, G). 2

We stress that in general Lu+εu = f in the sense of distributions, but since equation

(1) is hypoelliptic (it satisfies Hörmander’s criterion; see [7]), improved regularity in f

automatically gives improved regularity for u, and if u has two continuous derivatives,

then Lu+ εu = f in the strong sense.

6. Uniqueness

Uniqueness is a consequence of the following estimate.
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Theorem 3 (A priori estimate) Let u ∈ H, and Lu ∈ F ′. Then

(ux, ux) ≤ (Lu, u) +
1
2

∫
R
|Bu|2 |x| dx. (34)

Proof. Note that if u ∈ F , then Lu ∈ F ′ if and only if xuy ∈ F ′. Under our hypothesis

(Lu, u) = (xuy, u)− (yux, u) + (ux, ux) = (xuy, u) + (ux, ux), (35)

since for almost all y, (ux, u)y = 0. So we need only to prove

(xuy, u) ≥ −1
2

∫
R
|Bu|2 |x| dx. (36)

This is true if u ∈ C∞(I, H). Using now Lemma 1, we approximate u by smooth func-

tions vδ in such a way that xuy is approximated in F ′ by xvδy. 2

Corollary 1 Let 0 ≤ ε < 1. If u ∈ H is a weak solution to Lu+ εu = f, Bu = g, then

u is unique.

Proof. It is enough to consider the case f = 0, g = 0. From the previous theorem we

obtain ε(u, u) + (ux, ux) ≡ 0, which implies that ux ≡ 0, making u a function of y only.

As u is in L2(Ω), this implies u ≡ 0. 2

Note: In fact our proof of Theorem 3 establishes the identity

(ux, ux) +
1
2

∫
R
|Bu|2 |x| dx = (Lu, u) +

1
2

∫
R
|Bu|2 |x| dx. (37)

7. Existence

From our previous results we know that there is a unique weak solution in F to the

problem Lu+ εu = f , Bu = g, where 0 < ε < 1. For the moment let’s call this solution

uε. If we prove that ‖uε‖F is bounded as ε → 0, then there is u0 ∈ F , a weak limit of a
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subsequence uεn . Such u0 is a weak solution to Lu = f , Bu = g, since

(u0, yvx)− (u0, xvy) + (u0
x, vx) (38)

= lim
εn→0

{
(uεn , yvx) − (uεn , xvy) + (uεnx , vx) + (εnuεn , v)

}
(39)

= (f, v) +
∫

g Bv |x| dx. (40)

From now on, we write u = uε, dropping the superscript. Our a priori estimate reads

ε(u, u) + (ux, ux) ≤ (f, u) +
1
2

∫
g2 |x| dx. (41)

Our main theorem is the following.

Theorem 4 If g ∈ G and f ∈ (F ′)α for some α > 0, then there is a unique weak solution

u ∈ H to the problem Lu = f, Bu = g.

Proof As mentioned above, our strategy is to show that ‖u‖F is bounded as ε tends to

zero. We divide the proof of Theorem 4 into steps.

Step 1 As ε goes to zero, ‖ux‖ and ε‖u‖2 remain bounded.

Proof. Recall the notation from Lemma 4. Since f ∈ (F ′)α, we have that (f, u) =

(f, Pαu), and Lemma 4 implies that

|(f, u)| ≤ c ‖f‖F ′ ‖ux‖, (42)

with c as in Lemma 4.

Taken together with (41) this yields

‖ux‖2 + ε‖u‖2 ≤ c1 ‖ux‖+ c2, (43)

where 2c2 =
∫
g2 |x| dx, and c1 is a constant depending only on α and ‖f‖F ′ . In partic-

ular we find that ‖ux‖ ≤ 1
2(c1 +

√
c21 + 4c2), proving our claim. 2
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Step 2 The quantity ‖xuy‖F ′ remains bounded as ε goes to zero.

Proof. If v ∈ F , we have

|(xuy, v)| ≤ |(yux, v)|+ |(ux, vx)|+ ε|(u, v)|+ |(f, v)|. (44)

From Step 1 we conclude that there is some constant C independent of ε such that

|(xuy, v)| ≤ C‖v‖F , proving our claim. 2

Step 3 To prove the theorem it is enough to show that the solution to the problem

Lu + εu = 0, Bu = g is bounded in L2(Ω) as ε→ 0.

Proof. Let gα = B(Pαu) = B(uα) ∈ Gα, and gα = B(Pαu) = B(uα) ∈ Gα. Our

problem splits into Luα + εuα = f , B(uα) = gα, and Luα + εuα = 0, B(uα) = gα. The

boundedness of ux ensures the boundedness of uαx , uα, and (uα)x in L2, so all we need to

do is to bound uα in L2(Ω). 2

From now on we concentrate on the problem Lu + εu = 0, Bu = g.

For each a > 0 we break the L2 norm of u into two pieces:

‖u‖2>a =
∫
|x|>a

∫ 1

−1

u2(x, y) dy dx, ‖u‖2<a =
∫
|x|<a

∫ 1

−1

u2(x, y) dy dx.

Step 4 To bound ‖u‖ it is enough to bound the quantity ‖u‖<a.

Proof. As a consequence of (20) and steps 1 and 2 we have that∫ 1

−1

∫
R
u2(x, y) |x| dx dy ≤ d1‖u‖+ d2, (45)

where the constants d1 and d2 do not depend on ε. Therefore, for any fixed positive a we

have

a‖u‖2>a ≤
∫ 1

−1

∫
R
u2(x, y) |x| dx dy ≤ d3(‖u‖<a + ‖u‖>a) + d2, (46)
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with d3 also independent of ε, from which we see that if ‖u‖<a is bounded, then ‖u‖>a
will be bounded as well. 2

Step 5 If for some a > 0 the quantity ‖u‖>a is bounded in ε, then so is ‖u‖<a.

Proof. Fix z > 0, and let x ∈ [−z, z]. We have

u(x, y) = u(z, y) +
∫ x

z

ux(t, y) dt. (47)

Squaring this identity we obtain

u2(x, y) ≤ 2u2(z, y) + 2
(∫ x

z

ux(t, y) dt
)2

, (48)

and so

u2(x, y) ≤ 2u2(z, y) + 4z
∫ z

−z
u2
x(t, y) dt. (49)

Integrating over the rectangle [−z, z]× [−1, 1] gives us

‖u‖2<z ≤ 4z
∫ 1

−1

u2(z, y) dy + 8z2‖ux‖2. (50)

For a > 0, integrate the last inequality from z = a to z = a + 1, and use the fact that

‖u‖<z is a non-decreasing function of z to obtain

‖u‖2<a ≤ 4(a+ 1)
∫ a+1

a

∫ 1

−1

u2(z, y) dy dz + 8(a+ 1)2‖ux‖2 (51)

≤ 4(a+ 1)‖u‖2>a + 8(a+ 1)2‖ux‖2.

As a consequence we have

‖u‖<a ≤ C1‖u‖>a + C2‖ux‖, (52)

where C1 = 2
√
a+ 1 and C2 =

√
8(a + 1). This proves our claim. 2

The next step finishes the proof of Theorem 4.
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Step 6 For any a > 0 the quantity ‖u‖>a is bounded in ε.

Proof. Inequalities (46) and (52) give us

a‖u‖2>a ≤ C‖u‖>a + E, (53)

where C and E are constants that do not depend on ε, and consequently ‖u‖>a is bounded

as ε goes to zero. 2

This finishes the proof of Theorem 4. 2

From the proof of Theorem 4 we see that if f ∈ (F ′)α, then the solution u to the

problem Lu = f , Bu = 0 satisfies the estimate ‖u‖F ≤ Cα−1‖f‖F ′ , for some constant C

independent of α. This suggests an improvement in Theorem 4, as follows.

Theorem 5 If f ∈ F ′ is such that∫ 1

−1

∫
Rξ

|f̂(ξ, y)|2
ξ2

dξ dy <∞, (54)

then we can find u ∈ H solving Lu = f, Bu = 0.

Proof. Let αi = 2−i, and fi ∈ F ′ be the part of f with frequencies supported in

the set Ii = [−αi−1,−αi) ∪ (αi, αi−1]; alternatively, f̂i(ξ, y) = f̂(ξ, y) if ξ ∈ Ii, and zero

otherwise. Let ui ∈ H be the solution to the problem Lui = fi, Bui = 0. Then we know

that ‖ui‖2F ≤ Cα2
i ‖fi‖2F ′ , and that the ui are mutually orthogonal (since their frequencies

are supported on disjoint sets). Consequently, setting u =
∑

i ui, we find

‖u‖2F =
∑
i

‖ui‖2F ≤ C
∑
i

‖fi‖2F ′
α2
i

<∞, (55)

because the last sum is comparable to
∫ ∫
|f̂(ξ, y)|2/ξ2 dξ dy. 2

While the hypotheses of Theorem 5 may not be optimal, they should essentially be

optimal; after all, if we want some regularity of u when solving uxx = f (in one variable),

we need to impose the same type of restrictions on f .
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[2] Baouendi, M.S., Grisvard, P.: Sur une équation d’évolution changeant de type, J. of

Funct. Anal. 2, 352-367 (1968).

[3] Beals, R.: On an equation of mixed type from electron scattering, J. Math. Anal. Appl.

58, 32-45 (1977)

[4] Beals, R.: An abstract treatment of some forward-backward problems of transport and

scattering, J. of Funct. Anal. 34, 1-20 (1979).

[5] Bethe, H.A., Rose, M.E., Smith, L.P.: The multiple scattering of electrons, Proc. Amer.

Philos. Soc. 78, 573-585 (1938).

[6] Bothe, W.: Die Streuabsorption der Electronstrahlen, Z. Physik 54, 161-178 (1929).

[7] Kohn, J.J.: Pseudo-Differential operators and hypoellipticity. In: Partial Differential

Equations (Proc. Sympos. Pure Math., vol. XXIII, Univ. California, Berkeley, Calif.,

1971), 61-69, Amer. Math. Soc., Providence, R.I., 1973.
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