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On δ-I-Continuous Functions
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Abstract

In this paper, we introduce a new class of functions called δ-I-continuous func-

tions. We obtain several characterizations and some of their properties. Also, we

investigate its relationship with other types of functions.
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1. Introduction

Throughout this paper Cl(A) and Int(A) denote the closure and the interior of A,
respectively. Let (X,τ ) be a topological space and let I an ideal of subsets of X. An

ideal is defined as a nonempty collection I of subsets of X satisfying the following two

conditions: (1) If A∈I and B⊂I, then B∈I ; (2) If A∈I and B∈I, then A∪B∈I. An ideal

topological space is a topological space (X,τ ) with an ideal I on X and is denoted by
(X,τ ,I ). For a subset A⊂X, A∗(I ) = {x∈X | U∩A/∈I for each neighborhood U of x} is

called the local function of A with respect to I and τ [4]. We simply write A∗ instead

of A∗(I ) to be brief. X∗ is often a proper subset of X. The hypothesis X = X∗[1] is

equivalent to the hypothesis τ∩I = ∅ [5]. For every ideal topological space (X,τ ,I ), there

exists a topology τ∗(I), finer than τ , generated by β(I,τ ) = {U\I: U∈τ and I∈I }, but
in general β(I,τ ) is not always a topology [2]. Additionally, Cl∗(A) = A∪(A)∗ defines a

Kuratowski closure operator for τ∗(I ).
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In this paper, we introduce the notions of δ-I-open sets and δ-I-continuous functions in

ideal topological spaces. We obtain several characterizations and some properties of δ-I-

continuous functions. Also, we investigate the relationships with other related functions.

2. δ-I-open sets

In this section, we introduce δ-I-open sets and the δ-I-closure of a set in an ideal

topological space and investigate their basic properties. It turns out that they have

similar properties with δ-open sets and the δ-closure due to Velic̆ko [6].

Definition 2.1 A subset A of an ideal topological space (X,τ ,I) is said to be an R-I-open
(resp. regular open) set if Int(Cl∗(A)) = A (resp. Int(Cl(A)) = A). We call a subset A

of X R-I-closed if its complement is R-I-open.

Definition 2.2 Let (X,τ ,I) be an ideal topological space, S a subset of X and x a point

of X.

(1) x is called a δ-I-cluster point of S if S∩Int(Cl∗(U))6=∅ for each open neighborhood
x;

(2) The family of all δ-I-cluster points of S is called the δ-I-closure of S and is denoted

by [S]δ−I and

(3) A subset S is said to be δ-I-closed if [S]δ−I = S. The complement of a δ-I-closed

set of X is said to be δ-I-open.

Lemma 2.1 Let A and B be subsets of an ideal topological space (X,τ ,I). Then, the
following properties hold:

(1) Int(Cl∗(A)) is R-I-open;

(2) If A and B are R-I-open, then A∩B is R-I-open;

(3) If A is regular open, then it is R-I-open;

(4) If A is R-I-open, then it is δ-I-open and

(5) Every δ-I-open set is the union of a family of R-I-open sets.

Proof. (1) Let A be a subset of X and V = Int(Cl∗(A)). Then, we have Int(Cl∗(V))

= Int(Cl∗(Int(Cl∗(A))))⊂ Int(Cl∗(Cl∗(A))) = Int(Cl∗(A)) = V and also V = Int(V) ⊂
Int(Cl∗(V)). Therefore, we obtain Int(Cl∗(V)) = V.
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(2) Let A and B be R-I-open. Then, we have A∩B = Int(Cl∗(A))∩Int(Cl∗(B)) =

Int(Cl∗(A)∩Cl∗(B)) ⊃ Int(Cl∗(A∩B)) ⊃ Int(A∩B) = A∩B. Therefore, we obtain A∩B

= Int(Cl∗(A∩B)). This shows that A∩B is R-I-open.
(3) Let A be regular open. Since τ∗ ⊃ τ , we have A = Int(A)⊂Int(Cl∗(A)) ⊂Int(Cl(A))

= A and hence A = Int(Cl∗(A)). Therefore, A is R-I-open.

(4) Let A be any R-I-open set. For each x∈A, (X-A)∩A = ∅ and A is R-I-open. Hence

x/∈[X −A]δ−I for each x∈A. This shows that x/∈(X-A) implies x/∈[X−A]δ−I . Therefore,
we have [X−A]δ−I⊂(X-A). Since in general, S⊂ [S]δ−I for any subset S of X, [X−A]δ−I
= (X-A) and hence A is δ-I-open.

(5) Let A be a δ-I-open set. Then (X-A) is δ-I-closed and hence (X-A) = [X−A]δ−I .

For each x∈A, x/∈[X − A]δ−I and there exists an open neighborhood Vx such that
Int(Cl∗(Vx))∩(X-A) = ∅. Therefore, we have x∈Vx⊂Int(Cl∗(Vx))⊂A and hence A =

∪{Int(Cl∗(Vx)) | x∈A}. By (1), Int(Cl∗(Vx)) is R-I-open for each x∈A. 2

Lemma 2.2 Let A and B be subsets of an ideal topological space (X,τ ,I). Then, the
following properties hold:

(1) A⊂[A]δ−I;

(2) If A⊂B, then [A]δ−I⊂[B]δ−I ;

(3) [A]δ−I = ∩{F⊂X | A⊂F and F is δ-I-closed};
(4) If A is a δ-I-closed set of X for each α∈∆, then ∩{Aα | α∈∆} is δ-I-closed;
(5) [A]δ−I is δ-I-closed.

Proof. (1) For any x∈A and any open neighborhood V of x, we have ∅6=A∩V⊂A∩
Int(Cl∗(V)) and hence x∈ [A]δ−I . This shows that A ⊂ [A]δ−I.

(2) Suppose that x/∈[B]δ−I .There exists an open neighborhood V of x such that ∅ =
Int(Cl∗(V))∩B; hence Int(Cl∗(V))∩A = ∅. Therefore, we have x/∈[A]δ−I .

(3) Suppose that x∈[A]δ−I. For any open neighborhood V of x and any δ-I-closed

set F containing A, we have ∅6=A∩Int(Cl∗(V))⊂F∩ Int(Cl∗(V)) and hence x∈[F ]δ−I =

F. This shows that x∈∩{F⊂X | A⊂F and F is δ-I-closed}. Conversely, suppose that x/∈
[A]δ−I . There exists an open neighborhood V of x such that Int(Cl∗(V))∩A = ∅. By

Lemma 2.1, X-Int(Cl∗(V))is a δ-I-closed set which contains A and does not contain x.

Therefore, we obtain x/∈∩ {F⊂X | A⊂F and F is δ-I-closed}. This completes the proof. 2
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(4) For each α∈∆, [
T

α∈∆Aα]δ−I⊂ [Aα]δ−I = Aα and hence [
T

α∈∆Aα]δ−I⊂ [
T

α∈∆Aα]. By

(1), we obtain [
T

α∈∆Aα]δ−I = [
T

α∈∆Aα]. This shows that
T

α∈∆Aα is δ-I-closed.

(5) This follows immediately from (3) and (4).

A point x of a topological space (X,τ ) is called a δ-cluster point of a subset S of X if

Int(Cl(V))∩S6=∅ for every open set V containing x. The set of all δ-cluster points of S is

called the δ-closure of S and is denoted by Clδ(S). If Clδ(S) = S, then S is said to be

δ-closed [6]. The complement of a δ-closed set is said to be δ-open. It is well-known that
the family of regular open sets of (X,τ ) is a basis for a topology which is weaker than τ .

This topology is called the semi-regularization of τ and is denoted by τS . Actually, τS is

the same as the family of δ-open sets of (X,τ ).

Theorem 2.1 Let (X,τ ,I) be an ideal topological space and τδ−I = {A⊂X | A is a δ-I-
open set of (X,τ ,I)}. Then τδ−I is a topology such that τS⊂τδ−I⊂τ .

Proof. By Lemma 2.1, we obtain τS⊂ τδ−I⊂τ . Next, we show that τδ−I is a topology.

(1) It is obvious that ∅, X∈τδ−I .
(2) Let Vα∈τδ−I for each α ∈∆. Then X-Vα is δ-I-closed for each α∈∆. By Lemma

2.2,
T

α∈∆(X-Vα) is δ-I-closed and
T

α∈∆(X-Vα) = X-
S

α∈∆Vα. Hence
S

α∈∆Vα is δ-I-open.

(3) Let A,B∈τδ−I . By Lemma 2.1, A =
S

α∈∆1
Aα and B =

S

β∈∆2
Bβ , where Aα and Bβ

are R-I-open sets for each α∈∆1 and β∈∆2. Thus A∩B = ∪{Aα∩Bβ | α∈∆1, β∈∆2}.
Since Aα∩Bβ is R-I-open, A∩B is a δ-I-open set by Lemma 2.1. 2

Example 2.1 Let X = {a,b,c,d}, τ = {∅,X,{a},{c} ,{a,c}} and I = {∅,{a}}. Then A

= {a,c} is a δ-I-open set which is not R-I-open. Since {a} and {c} are regular open sets,

A is a δ-open set and hence δ-I-open. But A is not R-I-open. Because A∗ = {b,c,d} and

Cl∗(A) = A∪A∗ = X. Therefore, we have Int(Cl∗(A)) = X 6=A.

For some special ideals, we have the following properties.

Proposition 2.1 Let (X,τ ,I) be an ideal topological space.

(1) If I = {∅} or the ideal N of nowhere dense sets of (X,τ), then τδ−I = τS.

(2) If I = P (X), then τδ−I = τ .
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Proof. (1) Let I = {∅}, then S∗ = Cl(S) for every subset S of X. Let A be R-I-open.

Then A = Int(Cl∗(A)) = (A∪A∗) = Int(Cl(A)) and hence A is regular open. Therefore,

every δ-I-open set is δ-open and we obtain τδ−I⊂τS . By Theorem 2.1, we obtain τδ−I

= τS . Next, Let I = N . It is well-know that S∗ = Cl(Int(Cl(S))) for every subset S of

X. Let A be any R-I-open set. Then since A is open, A = Int(Cl∗(A)) = Int(A∪A∗)
= Int(A∪Cl(Int(Cl(A)))) = Int(Cl(Int(Cl(A)))) = Int(Cl(A)). Hence A is regular open.

Similarly to the case of I = {∅}, we obtain τδ−I = τS .

(2) Let I = P (X). Then S∗ = ∅ for every subset S of X. Now, let A be any open set of
X. Then A = Int(A) = Int(A∪A∗) = Int(Cl∗(A)) and hence A is R-I-open. By Theorem

2.1, we obtain τδ−I = τ . 2

3. δ-I-continuous functions

Definition 3.1 A function f:(X,τ ,I)→(Y,Φ,J) is said to be δ-I-continuous if for each

x∈X and each open neighborhood V of f(x), there exists an open neighborhood U of x such
that f(Int(Cl∗(U)))⊂Int(Cl∗(V)).

Theorem 3.1 For a function f:(X,τ ,I)→(Y,Φ,J), the following properties are equivalent:

(1) f is δ-I-continuous;

(2) For each x∈X and each R-I-open set V containing f(x), there exists an R-I-open

set containing x such that f(U)⊂V;

(3) f([A]δ−I)⊂[f(A)]δ−I for every A⊂X;

(4) [f−1(B)]δ−I⊂f−1([B]δ−I) for every B⊂Y;

(5) For every δ-I-closed set F of Y, f−1(F) is δ-I-closed in X;
(6) For every δ-I-open set V of Y, f−1(V) is δ-I-open in X;

(7) For every R-I-open set V of Y, f−1(V) is δ-I-open in X;

(8) For every R-I-closed set F of Y, f−1(F) is δ-I-closed in X.

Proof. (1)⇒(2): This follows immediately from Definition 3.1.

(2)⇒(3): Let x∈X and A⊂X such that f(x)∈f([A]δ−I). Suppose that f(x)/∈ [f(A)]δ−I .
Then, there exists an R-I-open neighborhood V of f(x) such that f(A)∩V = ∅. By (2),

there exists an R-I-open neighborhood U of x such that f(U)⊂V. Since f(A)∩f(U)⊂f(A)∩V

= ∅, f(A)∩f(U) = ∅. Hence, we get that U∩A⊂f−1(f(U))∩f−1(f(A)) = f−1(f(U)∩f(A))
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= ∅. Hence we have U∩A = ∅ and x/∈[A]δ−I. This shows that f(x)/∈f([A]δ−I). This is a

contradiction. Therefore, we obtain that f(x)∈[f(A)]δ−I .

(3)⇒(4): Let B⊂Y such that A = f−1(B). By (3), f([f−1(B)]δ−I)⊂
[f(f−1B))]δ−I⊂[B]δ−I . From here, we have [f−1(B)]δ−I⊂
f−1([f(f−1(B))]δ−I )⊂ f−1([B]δ−I). Thus we obtain that [f−1(B)]δ−I⊂
f−1([B]δ−I).

(4)⇒(5): Let F⊂Y be δ-I-closed. By (4), [f−1(F )]δ−I⊂f−1([F ]δ−I) = f−1(F) and

always f−1(F)⊂[f−1(F )]δ−I . Hence we obtain that [f−1(F )]δ−I = f−1(F ). This shows

that f−1(F) is δ-I-closed.

(5)⇒(6): Let V⊂Y be δ-I-open. Then Y-V is δ-I-closed. By (5), f−1(Y-V) = X-

f−1(V) is δ-I-closed. Therefore, f−1(V) is δ-I-open.

(6)⇒(7): Let V⊂Y be R-I-open. Since every R-I-open set is δ-I-open, V is δ-I-open,
By (6), f−1(V) is δ-I-open.

(7)⇒(8): Let F⊂Y be an R-I-closed set. Then Y-F is R-I-open. By (7), f−1(Y-F) =

X-f−1(F) is δ-I-open. Therefore, f−1(F) is δ-I-closed.

(8)⇒(1): Let x∈X and V be an open set containing f(x). Now, set Vo = Int(Cl∗(V)),

then by Lemma 2.1 Y-Vo is an R-I-closed set. By (8), f−1(Y-Vo) = X-f−1(Vo) is a δ-
I-closed set. Thus we have f−1(Vo) is δ-I-open. Since x∈f−1(Vo), by Lemma 2.1, there

exists an open neighborhood U of x such that x∈U⊂Int(Cl∗(U))⊂f−1(Vo). Hence we

obtain that f(Int(Cl∗(U)))⊂Int(Cl∗(V)). This shows that f is a δ-I-continuous function.

2

Corollary 3.1 A function f:(X,τ ,I)→(Y,Φ,J) is δ-I-continuous if and only if f:(X,τ ,I)→
(Y,Φ,J) is continuous.

Proof. This is an immediate consequence of Theorem 2.1.

The following lemma is known in [3, as Lemma 4.3]. 2

Lemma 3.1 Let (X,τ ,I) be an ideal topological space and A,B subsets of X such that

B⊂A. Then B∗(τ/A,I/A) = B∗(τ ,I)∩A.
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Proposition 3.1 Let (X,τ ,I) be an ideal topological space, A, Xo subsets of X such that

A⊂Xo and Xo is open in X.

(1) If A is R-I-open in (X,τ ,I), then A is R-I-open in (Xo,τ/Xo,I/Xo),
(2) If A is δ-I-open in (X,τ ,I), then A is δ-I-open in (Xo,τ/Xo,I/Xo).

Proof. (1) Let A be R-I-open in (X,τ ,I). Then A = Int(Cl∗(A)) and Cl∗Xo(A) =

A∪A∗(τ/Xo,I/Xo) = A∪[A∗(τ ,I)∩Xo] = (A∩Xo) ∪(A∗∩Xo) = (A∪A∗)∩Xo =Cl∗(A)∩Xo.
Hence we have IntXo(Cl∗Xo(A)) = Int(Cl∗Xo(A)) = Int((Cl∗(A) ∩Xo) = Int((Cl∗(A))∩Xo
= A. Therefore, A is R-I-open in (Xo, τ/Xo,I/Xo).

(2) Let A be a δ-I-open set of (X,τ ,I). By Lemma 2.1, A =
S

α∈∆Aα, where Aα is

R-I-open set of (X,τ ,I) for each α∈∆. By (1), A is R-I- open in (Xo,τ/Xo,I/Xo) for each

α∈∆ and hence A is δ-I-open in (Xo,τ/Xo,I/Xo). 2

Theorem 3.2 If f:(X,τ ,I)→(Y,Φ,J) is a δ-I-continuous function and Xo is a δ-I-open

set of (X,τ ,I), then the restriction f/Xo:(Xo,τ/Xo,I/Xo)→ (Y,Φ,J) is δ-I-continuous.

Proof. Let V be any δ-I-open set of (Y,Φ,J). Since f is δ-I-continuous, f−1(V) is δ-I-

open in (X,τ ,I). Since Xo is δ-I-open, by Theorem 2.1 Xo∩f−1(V ) is δ-I-open in (X,τ ,I)

and hence Xo∩f−1(V) is δ-I-open in (Xo,τ/Xo,I/Xo) by Proposition 3.1. This shows
that (f/Xo)−1(V) is δ-I-open in (Xo,τ/Xo,I/Xo) and hence f/Xo is δ-I-continuous. 2

Theorem 3.3 If f:(X,τ ,I)→(Y,Φ,J) and g:(Y,Φ,J)→(Z,ϕ,K) are δ-I-continuous, then so
is gof:(X,τ ,I)→(Z,ϕ,K).

Proof. It follows immediately from Cor. 3.1. 2

Theorem 3.4 If f,g:(X,τ ,I)→(Y,Φ,J) are δ-I-continuous functions and Y is a Hausdorff

space, then A = {x∈X : f(x) = g(x)} is a δ-I-closed set of (X,τ ,I).

Proof. We prove that X-A is δ-I-open set. Let x∈X-A. Then, f(x)6=g(x). Since Y is
Hausdorff, there exist open sets V1 and V2 containing f(x) and g(x), respectively, such

that V1∩ V2 = ∅. From here we have Int(Cl(V1))∩Int(Cl(V2)) = ∅. Thus, we obtain that

Int(Cl∗(V1))∩Int(Cl∗(V2)) = ∅. Since f and g are δ-I-continuous, there exists an open
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neighborhood U of x such that f(Int(Cl∗(U)))⊂Int(Cl∗(V1)) and g(Int(Cl∗(U)))⊂Int(Cl∗

(V2)). Hence we obtain that Int(Cl∗(U))⊂f−1(Int(Cl∗(V1))) and Int(Cl∗(U))⊂g−1(Int

(Cl∗(V2))). From here we have Int(Cl∗(U))⊂f−1(Int(Cl∗(V1)))∩ g−1(Int(Cl∗(V2))).
Moreover f−1(Int(Cl∗(V1)))∩g−1(Int(Cl∗(V2)))∩A = ∅. Suppose that f−1(Int(Cl∗(V1)))

∩g−1(Int(Cl∗(V2)))∩A6=∅. Hence there exists a point z such that z∈f−1(Int(Cl∗(V1)))∩g−1

(Int(Cl∗(V2)))∩A. Thus, f(z)∈Int(Cl∗(V1)), g(z)∈Int(Cl∗(V2)) and z∈A. Since z∈A, f(z)

= g(z). Therefore, we have f(z)∈Int(Cl∗(V1))∩Int(Cl∗(V2)) and Int(Cl∗(V1))∩ Int(Cl∗

(V2))6= ∅. This is a contradiction to Int(Cl∗(V1)∩Int(Cl∗(V2) = ∅. Hence we obtain

that f−1(Int(Cl∗(V1)))∩g−1(Int(Cl∗(V2)))∩A = ∅. Thus f−1(Int(Cl∗(V1)))∩g−1(Int(Cl∗

(V2)))⊂X-A. Since Int(Cl∗(U))⊂f−1(Int(Cl∗(V1)))∩g−1(Int(Cl∗(V2)), we have that there

exists an open neighborhood of x such that x∈U Int(Cl∗(U))⊂X-A. Therefore, X-A is a
δ-I-open set. This shows that A is δ-I-closed. 2

4. Comparisons

Definition 4.1 A function f:(X,τ ,I)→(Y,Φ,J) is said to be strongly θ-I-continuous (resp.

θ-I-continuous, almost I-continuous) if for each x∈X and each open neighborhood V of

f(x), there exists an open neighborhood U of x such that f(Cl∗(U))⊂V (resp. f(Cl∗(U))⊂Cl∗
(V), f(U)⊂Int(Cl∗(V)).

Definition 4.2 A function f:(X,τ ,I)→(Y,Φ,J) is said to be almost-I-open if for each

R-I-open set U of X, f(U) is open in Y.

Theorem 4.1 (1) If f:(X,τ ,I)→(Y,Φ,J) is strongly θ-I-continuous and g:(Y,Φ,J)→(Z,ϕ,K)

is almost I-continuous, then gof:(X,τ ,I)→(Z,ϕ,K) is δ-I-continuous.

(2) The following implications hold:

strongly θ − I− continuous⇒ δ − I− continuous⇒ almost− I− continuous. (4.1)

Proof. (1) Let x∈X and W be any open set of Z containing (gof)(x). Since g is almost I-

continuous, there exists an open neighborhood V⊂Y of f(x) such that g(V)⊂Int(Cl∗(W)).
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Since f is strongly θ-I-continuous, there exists an open neighborhood U⊂X of x such that

f(Cl∗(U))⊂V. Hence we have g(f(Cl∗(U)))⊂g(V) and g(f(Int(Cl∗(U))))⊂g(f(Cl∗(U)))⊂g(V)

⊂Int(Cl∗(W)). Thus, we obtain g(f(Int(Cl∗(U))))⊂Int(Cl∗(W)). This shows that gof is
δ-I-continuous.

(2) Let f be strongly θ-I-continuous. Let x∈X and V be any open neighborhood

of f(x). Then, there exists an open neighborhood U⊂X of x such that f(Cl∗(U))⊂V.

Since always f(Int(Cl∗(U)))⊂f(Cl∗(U)), f(Int(Cl∗(U)))⊂V. Since V is open, we have
f(Int(Cl∗(U)))⊂Int(Cl∗(V)). Thus, f is δ-I-continuous. Let f be δ-I-continuous. Now we

prove that f is almost I-continuous. Then, for each x∈X and each open neighborhood V⊂Y

of f(x), there exists an open neighborhood U⊂X of x such that f(Int(Cl∗(U)))⊂Int(Cl∗(V)).

Since U⊂Int(Cl∗(U)), f(U)⊂Int(Cl∗(V)). Thus, f is almost I-continuous. 2

Remark 4.1 The following examples enable us to realize that none of these implications

in Theorem 4.1 (2) is reversible.

Example 4.1 Let X = {a,b,c}, τ = {∅,X,{a},{a,c}}, I = {∅,{c}}, Φ = {∅,X,{a,b}} and

J = {∅,{b},{c},{b,c}}. The identity function f:(X,τ ,I)→(X,Φ,J) is δ-I-continuous but it

is not strongly θ-I-continuous.
(i) Let a∈X and V = {a,b}∈Φ such that f(a)∈V. V ∗ = ({a, b})∗ = {a,b,c} = X,

Cl∗(V) = V∪V ∗ = X and Int(Cl∗(V)) = Int(X) = X. Then, there exists an open U =

{a,c}⊂X such that a∈U. We have U∗ = ({a})∗ = {a,b,c}, Cl∗(U) = U∪U∗ = {a,b,c} and

Int(Cl∗(U)) = {a,c}. Since f(Int(Cl∗(U))) = f({a,c}) = {a,c} and {a,c}⊂Int(Cl∗(V))
= X.

(ii) Let b∈X and V = {a,b}∈Φ such that f(b)∈V. V ∗ = ({a, b})∗ = {a,b,c} = X,

Cl∗(V) = V∪V ∗ = X and Int(Cl∗(V)) = Int(X) = X. Then, there exists an open U

= X such that b∈U. We have Cl∗(U) = Cl∗(X) = X and Int(Cl∗(U)) = Int(X). Since
f(Int(Cl∗(U))) = f(X) = X and X⊂Int(Cl∗(V)) = X.

(iii) Let x = a, b or c and V = X∈Φ such that f(x)∈V. Cl∗(V) = V∪V ∗ = X and

Int(Cl∗(V)) = Int(X) = X. Then, there exists an open U = X such that x∈U. We have

Cl∗(U) = Cl∗(X) = X and Int(Cl∗(U)) = Int(X). Since f(Int(Cl∗(U))) = f(X) = X and
X⊂Int(Cl∗(V)) = X. By (i), (ii) and (iii), f is δ-I-continuous. On the other hand by (i),

since f(Cl∗(U)) = f(Cl∗({a}) = f({a,b,c})) = {a,b,c} is not subset of V = {a,b}, f is not

strongly θ-I-continuous.
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Example 4.2 Let X = {a,b,c,d}, τ = {∅, X,{a,c},{d},{a,b,c},{a,c,d}}, I = {∅,{d}} and

J = {∅,{c},{d},{c,d}}. The identity function f:(X,τ ,I) (X,τ ,J) is almost I-continuous but

it is not δ-I-continuous. (i) Let x = a or c∈X and V = {a,c}∈Φ = τ such that f(x)∈V.
V ∗ = ({a, c})∗ = {a,b,c}, Cl∗(V) = V∪V ∗ = {a,b,c} and Int(Cl∗(V)) = {a,c}. Then,

there exists an open U = {a,c}⊂X such that x∈U. We have U∗ = ({a, c})∗ = {a,b,c}
and Int(Cl∗(U)) = Int({a,b,c}) = {a,b,c}. Since f(U) = f({a,c}) = {a,c}⊂Int(Cl∗(V))

= {a,c}.
(ii) Let x = a, c or d∈X and V = {a,c,d}∈Φ = τ such that f(x)∈V. V ∗ = ({a, c, d})∗

= {a,b,c} and Cl∗(V) = V∪V ∗ = {a,b,c,d} and Int(Cl∗(V)) = X. Then, there exists an

open U = {a,c,d}⊂X such that x∈U. We have U∗ = ({a, c, d})∗ = {a,b,c,d} = X and

Int(Cl∗(U)) = Int(X) = X. Since f(U) = f({a,c,d}) = {a,c,d} ⊂Int(Cl∗(V)) = {a,b,c,d}.
(iii) Let x = a, b or c∈X and V = {a,b,c}∈Φ = τ such that f(x)∈V. V ∗ = ({a, b, c})∗ =

{a,b,c} and Cl∗(V) = V∪V ∗ = {a,b,c} and Int(Cl∗(V)) = {a,b,c}. Then, there exists an

open U = {a,b,c}⊂X such that x∈U. We have U∗ = ({a, b, c})∗ = {a,b,c} and Int(Cl∗(U))

= {a,b,c}. Since f(U) = f({a,b,c}) = {a,b,c}⊂Int(Cl∗(V)) = {a,b,c}.
(iv) Let d∈X and V = {d}∈Φ = τ such that f(d)∈V. V ∗ = ({d})∗ = ∅ and Cl∗(V)

= V∪V ∗ = {d} and Int(Cl∗(V)) = {d}. Then, there exists an open U = {d}⊂X such

that d∈U. We have U∗ = ({d})∗ = ∅ and Int(Cl∗(U)) = {d}. Since f(U) = f({d}) =

{d}⊂Int(Cl∗(V)) = {d}. By (i), (ii), (iii) and (iv), f is almost I-continuous. On the other
hand by (i), since f(Int(Cl∗(U))) = f({a,b,c}) = {a,b,c} is not subset of Int(Cl∗(V)) and

Int(Cl∗(V)) = {a,c}, f is not δ-I-continuous.

Definition 4.3 An ideal topological space (X,τ ,I) is said to be an SI-R space if for each

x∈X and each open neighborhood V of x, there exists an open neighborhood U of x such
that x∈U⊂Int(Cl∗(U))⊂V.

Theorem 4.2 For a function f:(X,τ ,I)→(Y,Φ,J), the following are true:

(1) If Y is an SI-R space and f is δ-I-continuous, then f is continuous.
(2) If X is an SI-R space and f is almost I-continuous, then f is δ-I-continuous.

Proof. (1) Let Y be an SI-R space. Then, for each open neighborhood V of f(x), there

exists an open neighborhood Vo of f(x) such that f(x)∈Vo⊂Int(Cl∗(Vo))⊂V. Since f is δ-I-
continuous, there exists an open neighborhood Uo of x such that f(Int(Cl∗(Uo)))⊂Int(Cl∗

(Vo)). Since Uo is an open set, f(Uo)⊂f(Int(Cl∗(Uo)))⊂ Int(Cl∗(Vo))⊂V. Thus, f(Uo)⊂V

and hence f is continuous.
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(2) Let x∈X and V be an open neighborhood of f(x). Since f is almost I-continuous,

there exists an open neighborhood U of x such that f(U)⊂Int(Cl∗(V)). Since X is an

SI-R space, there exists an open neighborhood U1 of x such that Int(Cl∗(U1))⊂U. Thus
f(Int(Cl∗(U1)))⊂f(U)⊂Int(Cl∗(V)). Therefore f is δ-I-continuous. 2

Corollary 4.1 If (X,τ ,I) and (Y,Φ,J) are SI-R spaces, then the following concepts on a

function f:(X,τ ,I)→(Y,Φ,J): δ-I-continuity, continuity and almost I-continuity are equiv-

alent.

Definition 4.4 An ideal topological space (X,τ ,I) is said to be an AI-R space if for each

R-I-closed set F⊂X and each x/∈F, there exist disjoint open sets U and V in X such that

x∈U and F⊂V.

Theorem 4.3 An ideal topological space (X,τ ,I) is an AI-R space if and only if each

x∈X and each R-I-open neighborhood V of x, there exists an R-I-open neighborhood U of

x such that x∈U⊂Cl∗(U)⊂Cl(U)⊂V.

Proof. Necessity. Let x∈V and V be R-I-open. Then {x}∩(X-V) = ∅. Since X is

an AI-R space, there exist open sets U1 and U2 containing x and (X-V), respectively,

such that U1∩U2 = ∅. Then Cl(U1)∩U2 = ∅ and hence Cl∗(U1)⊂Cl(U1)⊂(X-U2)⊂V.
Thus x∈U1⊂Cl∗(U1)⊂Cl(U1)⊂V and we obtain that U1⊂ Int(Cl∗(U1))⊂Cl∗(U1). Let

Int(Cl∗(U1)) = U. Thus, we have Cl(U) = Cl(Int(Cl∗(U1)))⊂Cl(Cl∗(U1))⊂Cl(Cl(U1)) =

Cl(U1)⊂Cl(U) and U1⊂U⊂Cl∗(U)⊂Cl∗(U1)⊂Cl(U1)⊂V. Therefore, there exists an R-I-

open set U such that x∈U⊂Cl∗(U)⊂Cl(U)⊂V.

Sufficiency. Let x∈X and an R-I-closed set F such that x/∈F. Then, X-F is an R-I-open

neighborhood of x. By hypothesis, there exists an R-I-open neighborhood V of x such that

x∈V⊂Cl∗(V)⊂Cl(V)⊂X-F. From here we have F⊂X-Cl(V)⊂(X-Cl∗(V)), where X-Cl(V)
is an open set. Moreover, we have that V∩(X-Cl(V)) = ∅ and V is open. Therefore, X is

an AI-R space. 2

Theorem 4.4 For a function f:(X,τ ,I)→(Y,Φ,J), the following are true:

(1) If Y is an AI-R space and f is θ-I-continuous, then f is δ-I-continuous.
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(2) If X is an AI-R space, Y is an SI-R space and f is δ-I-continuous, then f is strongly

θ-I-continuous.

Proof. (1) Let Y be an AI-R space. Then, for each x∈X and each R-I-open

neighborhood V of f(x), there exists an R-I-open neighborhood Vo of f(x) such that

f(x)∈Vo⊂Cl∗(Vo)⊂V. Since f is θ-I-continuous, there exists an open neighborhood Uo of x
such that f(Cl∗(Uo))⊂Cl∗(Vo). Hence, we obtain that f(Int(Cl∗(Uo)))⊂f(Cl∗(Uo))⊂Cl∗(Vo)
⊂V and thus f(Int(Cl∗(Uo)))⊂V. By Theorem 3.1, f is δ-I-continuous.

(2) Let X be an AI-R space and Y an SI-R space. For each x∈X and each open

neighborhood V of f(x), there exists an open set Vo such that f(x)∈Vo⊂Int(Cl∗(Vo))⊂V
since Y is an SI-R space. Since f is δ-I-continuous, there exists an open set U con-

taining x such that f(Int(Cl∗(U)))⊂Int(Cl∗(Vo)). By Lemma 2.1, Int(Cl∗(U)) is R-I-

open and since X is AI-R, by Theorem 4.3 there exists an R-I-open set Uo such that

x∈Vo⊂Cl∗(Uo)⊂Int(Cl∗(U)). Every R-I-open set is open and hence Uo is open. More-
over, we have f(Cl∗(Uo))⊂V. This shows that f is strongly θ-I-continuous. 2

Theorem 4.5 If a function f:(X,τ ,I)→(Y,Φ,J) is θ-I-continuous and almost-I-open, then

it is δ-I-continuous.

Proof. Let x∈X and V be an open neighborhood of f(x). Since f is θ-I-continuous, there

exists an open neighborhood of x such that f(Cl∗(U))⊂Cl∗(V); therefore, f(Int(Cl∗(U)))⊂
Cl∗(V). Since f is almost-I-open, we have f(Int(Cl∗(U)))⊂Int(Cl∗(V)). This shows that f

is δ-I-continuous. 2
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