Turk J Math 29 (2005) , 39 – 51. © TÜBİTAK

On δ -I-Continuous Functions

S. Yüksel, A. Açıkgöz and T. Noiri

Abstract

In this paper, we introduce a new class of functions called δ -I-continuous functions. We obtain several characterizations and some of their properties. Also, we investigate its relationship with other types of functions.

Key words and phrases: δ -I-cluster point, R-I-open set, δ -I-continuous, strongly θ -I-continuous, almost-I-continuous, SI-R space, AI-R space.

1. Introduction

Throughout this paper Cl(A) and Int(A) denote the closure and the interior of A, respectively. Let (X,τ) be a topological space and let I an ideal of subsets of X. An ideal is defined as a nonempty collection I of subsets of X satisfying the following two conditions: (1) If A \in I and B \subset I, then B \in I ; (2) If A \in I and B \in I, then A \cup B \in I. An ideal topological space is a topological space (X,τ) with an ideal I on X and is denoted by (X,τ,I) . For a subset A \subset X, $A^*(I) = \{x \in X \mid U \cap A \notin I \text{ for each neighborhood U of x}\}$ is called the local function of A with respect to I and τ [4]. We simply write A^* instead of $A^*(I)$ to be brief. X^* is often a proper subset of X. The hypothesis $X = X^*[1]$ is equivalent to the hypothesis $\tau \cap I = \emptyset$ [5]. For every ideal topological space (X,τ,I) , there exists a topology $\tau^*(I)$, finer than τ , generated by $\beta(I,\tau) = \{U \setminus I: U \in \tau \text{ and } I \in I\}$, but in general $\beta(I,\tau)$ is not always a topology [2]. Additionally, $Cl^*(A) = A \cup (A)^*$ defines a Kuratowski closure operator for $\tau^*(I)$.

AMS Mathematics Subject Classification: 54C10.

In this paper, we introduce the notions of δ -I-open sets and δ -I-continuous functions in ideal topological spaces. We obtain several characterizations and some properties of δ -I-continuous functions. Also, we investigate the relationships with other related functions.

2. δ -I-open sets

In this section, we introduce δ -I-open sets and the δ -I-closure of a set in an ideal topological space and investigate their basic properties. It turns out that they have similar properties with δ -open sets and the δ -closure due to Veličko [6].

Definition 2.1 A subset A of an ideal topological space (X,τ,I) is said to be an R-I-open (resp. regular open) set if $Int(Cl^*(A)) = A$ (resp. Int(Cl(A)) = A). We call a subset A of X R-I-closed if its complement is R-I-open.

Definition 2.2 Let (X,τ,I) be an ideal topological space, S a subset of X and x a point of X.

(1) x is called a δ -I-cluster point of S if $S \cap Int(Cl^*(U)) \neq \emptyset$ for each open neighborhood x;

(2) The family of all δ -I-cluster points of S is called the δ -I-closure of S and is denoted by $[S]_{\delta-I}$ and

(3) A subset S is said to be δ -I-closed if $[S]_{\delta-I} = S$. The complement of a δ -I-closed set of X is said to be δ -I-open.

Lemma 2.1 Let A and B be subsets of an ideal topological space (X,τ,I) . Then, the following properties hold:

- (1) $Int(Cl^*(A))$ is R-I-open;
- (2) If A and B are R-I-open, then $A \cap B$ is R-I-open;
- (3) If A is regular open, then it is R-I-open;
- (4) If A is R-I-open, then it is δ -I-open and
- (5) Every δ -I-open set is the union of a family of R-I-open sets.

Proof. (1) Let A be a subset of X and V = $Int(Cl^*(A))$. Then, we have $Int(Cl^*(V))$ = $Int(Cl^*(Int(Cl^*(A)))) \subset Int(Cl^*(Cl^*(A))) = Int(Cl^*(A)) = V$ and also V = $Int(V) \subset Int(Cl^*(V))$. Therefore, we obtain $Int(Cl^*(V)) = V$. (2) Let A and B be R-I-open. Then, we have $A \cap B = Int(Cl^*(A)) \cap Int(Cl^*(B)) = Int(Cl^*(A) \cap Cl^*(B)) \supset Int(Cl^*(A \cap B)) \supset Int(A \cap B) = A \cap B$. Therefore, we obtain $A \cap B = Int(Cl^*(A \cap B))$. This shows that $A \cap B$ is R-I-open.

(3) Let A be regular open. Since $\tau^* \supset \tau$, we have $A = Int(A) \subset Int(Cl^*(A)) \subset Int(Cl(A))$ = A and hence $A = Int(Cl^*(A))$. Therefore, A is R-I-open.

(4) Let A be any R-I-open set. For each $x \in A$, $(X-A) \cap A = \emptyset$ and A is R-I-open. Hence $x \notin [X - A]_{\delta - I}$ for each $x \in A$. This shows that $x \notin (X-A)$ implies $x \notin [X - A]_{\delta - I}$. Therefore, we have $[X - A]_{\delta - I} \subset (X-A)$. Since in general, $S \subset [S]_{\delta - I}$ for any subset S of X, $[X - A]_{\delta - I} = (X-A)$ and hence A is δ -I-open.

(5) Let A be a δ -I-open set. Then (X-A) is δ -I-closed and hence (X-A) = $[X - A]_{\delta - I}$. For each $x \in A$, $x \notin [X - A]_{\delta - I}$ and there exists an open neighborhood V_x such that $\operatorname{Int}(Cl^*(V_x)) \cap (X-A) = \emptyset$. Therefore, we have $x \in V_x \subset \operatorname{Int}(Cl^*(V_x)) \subset A$ and hence $A = \cup \{\operatorname{Int}(Cl^*(V_x)) \mid x \in A\}$. By (1), $\operatorname{Int}(Cl^*(V_x))$ is R-I-open for each $x \in A$.

Lemma 2.2 Let A and B be subsets of an ideal topological space (X,τ,I) . Then, the following properties hold:

- (1) $A \subset [A]_{\delta I};$
- (2) If $A \subset B$, then $[A]_{\delta I} \subset [B]_{\delta I}$;

(3) $[A]_{\delta-I} = \cap \{F \subset X \mid A \subset F \text{ and } F \text{ is } \delta\text{-I-closed}\};$

- (4) If A is a δ -I-closed set of X for each $\alpha \in \Delta$, then $\cap \{A_{\alpha} \mid \alpha \in \Delta\}$ is δ -I-closed;
- (5) $[A]_{\delta-I}$ is δ -I-closed.

Proof. (1) For any $x \in A$ and any open neighborhood V of x, we have $\emptyset \neq A \cap V \subset A \cap$ Int $(Cl^*(V))$ and hence $x \in [A]_{\delta-I}$. This shows that $A \subset [A]_{\delta-I}$.

(2) Suppose that $x \notin [B]_{\delta-I}$. There exists an open neighborhood V of x such that $\emptyset = \operatorname{Int}(Cl^*(V)) \cap B$; hence $\operatorname{Int}(Cl^*(V)) \cap A = \emptyset$. Therefore, we have $x \notin [A]_{\delta-I}$.

(3) Suppose that $x \in [A]_{\delta-I}$. For any open neighborhood V of x and any δ -I-closed set F containing A, we have $\emptyset \neq A \cap Int(Cl^*(V)) \subset F \cap Int(Cl^*(V))$ and hence $x \in [F]_{\delta-I} = F$. This shows that $x \in \cap \{F \subset X \mid A \subset F \text{ and } F \text{ is } \delta$ -I-closed}. Conversely, suppose that $x \notin [A]_{\delta-I}$. There exists an open neighborhood V of x such that $Int(Cl^*(V)) \cap A = \emptyset$. By Lemma 2.1, X-Int($Cl^*(V)$) is a δ -I-closed set which contains A and does not contain x. Therefore, we obtain $x \notin \cap \{F \subset X \mid A \subset F \text{ and } F \text{ is } \delta$ -I-closed}. This completes the proof. \Box

(4) For each $\alpha \in \Delta$, $[\bigcap_{\alpha \in \Delta} A_{\alpha}]_{\delta - I} \subset [A_{\alpha}]_{\delta - I} = A_{\alpha}$ and hence $[\bigcap_{\alpha \in \Delta} A_{\alpha}]_{\delta - I} \subset [\bigcap_{\alpha \in \Delta} A_{\alpha}]$. By (1), we obtain $[\bigcap_{\alpha \in \Delta} A_{\alpha}]_{\delta - I} = [\bigcap_{\alpha \in \Delta} A_{\alpha}]$. This shows that $\bigcap_{\alpha \in \Delta} A_{\alpha}$ is δ -I-closed.

(5) This follows immediately from (3) and (4).

A point x of a topological space (X,τ) is called a δ -cluster point of a subset S of X if Int $(Cl(V)) \cap S \neq \emptyset$ for every open set V containing x. The set of all δ -cluster points of S is called the δ -closure of S and is denoted by $Cl_{\delta}(S)$. If $Cl_{\delta}(S) = S$, then S is said to be δ -closed [6]. The complement of a δ -closed set is said to be δ -open. It is well-known that the family of regular open sets of (X,τ) is a basis for a topology which is weaker than τ . This topology is called the *semi-regularization* of τ and is denoted by τ_S . Actually, τ_S is the same as the family of δ -open sets of (X,τ) .

Theorem 2.1 Let (X,τ,I) be an ideal topological space and $\tau_{\delta-I} = \{A \subset X \mid A \text{ is a } \delta \text{-}I \text{-} open set of } (X,\tau,I)\}$. Then $\tau_{\delta-I}$ is a topology such that $\tau_S \subset \tau_{\delta-I} \subset \tau$.

Proof. By Lemma 2.1, we obtain $\tau_S \subset \tau_{\delta-I} \subset \tau$. Next, we show that $\tau_{\delta-I}$ is a topology. (1) It is obvious that \emptyset , $X \in \tau_{\delta-I}$.

(2) Let $V_{\alpha} \in \tau_{\delta-I}$ for each $\alpha \in \Delta$. Then X- V_{α} is δ -I-closed for each $\alpha \in \Delta$. By Lemma 2.2, $\bigcap_{\alpha \in \Delta} (X - V_{\alpha})$ is δ -I-closed and $\bigcap_{\alpha \in \Delta} (X - V_{\alpha}) = X - \bigcup_{\alpha \in \Delta} V_{\alpha}$. Hence $\bigcup_{\alpha \in \Delta} V_{\alpha}$ is δ -I-open.

(3) Let $A, B \in \tau_{\delta-I}$. By Lemma 2.1, $A = \bigcup_{\alpha \in \Delta_1} A_{\alpha}$ and $B = \bigcup_{\beta \in \Delta_2} B_{\beta}$, where A_{α} and B_{β} are R-I-open sets for each $\alpha \in \Delta_1$ and $\beta \in \Delta_2$. Thus $A \cap B = \bigcup \{A_{\alpha} \cap B_{\beta} \mid \alpha \in \Delta_1, \beta \in \Delta_2\}$. Since $A_{\alpha} \cap B_{\beta}$ is R-I-open, $A \cap B$ is a δ -I-open set by Lemma 2.1.

Example 2.1 Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $I = \{\emptyset, \{a\}\}$. Then $A = \{a, c\}$ is a δ -I-open set which is not R-I-open. Since $\{a\}$ and $\{c\}$ are regular open sets, A is a δ -open set and hence δ -I-open. But A is not R-I-open. Because $A^* = \{b, c, d\}$ and $Cl^*(A) = A \cup A^* = X$. Therefore, we have $Int(Cl^*(A)) = X \neq A$.

For some special ideals, we have the following properties.

Proposition 2.1 Let (X, τ, I) be an ideal topological space.

(1) If $I = \{\emptyset\}$ or the ideal N of nowhere dense sets of (X,τ) , then $\tau_{\delta-I} = \tau_S$. (2) If I = P(X), then $\tau_{\delta-I} = \tau$.

Proof. (1) Let $I = \{\emptyset\}$, then $S^* = Cl(S)$ for every subset S of X. Let A be R-I-open. Then $A = Int(Cl^*(A)) = (A \cup A^*) = Int(Cl(A))$ and hence A is regular open. Therefore, every δ -I-open set is δ -open and we obtain $\tau_{\delta-I} \subset \tau_S$. By Theorem 2.1, we obtain $\tau_{\delta-I} = \tau_S$. Next, Let I = N. It is well-know that $S^* = Cl(Int(Cl(S)))$ for every subset S of X. Let A be any R-I-open set. Then since A is open, $A = Int(Cl^*(A)) = Int(A \cup A^*)$ $= Int(A \cup Cl(Int(Cl(A)))) = Int(Cl(Int(Cl(A)))) = Int(Cl(A))$. Hence A is regular open. Similarly to the case of $I = \{\emptyset\}$, we obtain $\tau_{\delta-I} = \tau_S$.

(2) Let I = P(X). Then $S^* = \emptyset$ for every subset S of X. Now, let A be any open set of X. Then $A = Int(A) = Int(A \cup A^*) = Int(Cl^*(A))$ and hence A is R-I-open. By Theorem 2.1, we obtain $\tau_{\delta-I} = \tau$.

3. δ -I-continuous functions

Definition 3.1 A function $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$ is said to be δ -*I*-continuous if for each $x \in X$ and each open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(Int(Cl^*(U))) \subset Int(Cl^*(V))$.

Theorem 3.1 For a function $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$, the following properties are equivalent: (1) f is δ -I-continuous:

(2) For each $x \in X$ and each R-I-open set V containing f(x), there exists an R-I-open set containing x such that $f(U) \subset V$;

(3) $f([A]_{\delta-I}) \subset [f(A)]_{\delta-I}$ for every $A \subset X$;

(4) $[f^{-1}(B)]_{\delta-I} \subset f^{-1}([B]_{\delta-I})$ for every $B \subset Y$;

- (5) For every δ -I-closed set F of Y, $f^{-1}(F)$ is δ -I-closed in X;
- (6) For every δ -I-open set V of Y, $f^{-1}(V)$ is δ -I-open in X;
- (7) For every R-I-open set V of Y, $f^{-1}(V)$ is δ -I-open in X;

(8) For every R-I-closed set F of Y, $f^{-1}(F)$ is δ -I-closed in X.

Proof. $(1) \Rightarrow (2)$: This follows immediately from Definition 3.1.

(2)⇒(3): Let x∈X and A⊂X such that $f(x) \in f([A]_{\delta-I})$. Suppose that $f(x) \notin [f(A)]_{\delta-I}$. Then, there exists an R-I-open neighborhood V of f(x) such that $f(A) \cap V = \emptyset$. By (2), there exists an R-I-open neighborhood U of x such that $f(U) \subset V$. Since $f(A) \cap f(U) \subset f(A) \cap V = \emptyset$, $f(A) \cap f(U) = \emptyset$. Hence, we get that $U \cap A \subset f^{-1}(f(U)) \cap f^{-1}(f(A)) = f^{-1}(f(U) \cap f(A))$

= \emptyset . Hence we have $U \cap A = \emptyset$ and $x \notin [A]_{\delta - I}$. This shows that $f(x) \notin f([A]_{\delta - I})$. This is a contradiction. Therefore, we obtain that $f(x) \in [f(A)]_{\delta - I}$.

(3) ⇒(4): Let B⊂Y such that A = $f^{-1}(B)$. By (3), $f([f^{-1}(B)]_{\delta-I}) \subset$

 $[f(f^{-1}B))]_{\delta-I} \subset [B]_{\delta-I}$. From here, we have $[f^{-1}(B)]_{\delta-I} \subset$

 $f^{-1}([f(f^{-1}(B))]_{\delta-I}) \subset f^{-1}([B]_{\delta-I})$. Thus we obtain that $[f^{-1}(B)]_{\delta-I} \subset f^{-1}([B]_{\delta-I})$.

(4) \Rightarrow (5): Let F \subset Y be δ -I-closed. By (4), $[f^{-1}(F)]_{\delta-I} \subset f^{-1}([F]_{\delta-I}) = f^{-1}(F)$ and always $f^{-1}(F) \subset [f^{-1}(F)]_{\delta-I}$. Hence we obtain that $[f^{-1}(F)]_{\delta-I} = f^{-1}(F)$. This shows that $f^{-1}(F)$ is δ -I-closed.

(5)⇒(6): Let V⊂Y be δ-I-open. Then Y-V is δ-I-closed. By (5), f^{-1} (Y-V) = X- f^{-1} (V) is δ-I-closed. Therefore, f^{-1} (V) is δ-I-open.

(6) \Rightarrow (7): Let V \subset Y be R-I-open. Since every R-I-open set is δ -I-open, V is δ -I-open, By (6), $f^{-1}(V)$ is δ -I-open.

(7)⇒(8): Let F⊂Y be an R-I-closed set. Then Y-F is R-I-open. By (7), $f^{-1}(Y-F) = X-f^{-1}(F)$ is δ -I-open. Therefore, $f^{-1}(F)$ is δ -I-closed.

(8)⇒(1): Let x∈X and V be an open set containing f(x). Now, set $V_o = \text{Int}(Cl^*(V))$, then by Lemma 2.1 Y- V_o is an R-I-closed set. By (8), $f^{-1}(Y-V_o) = X-f^{-1}(V_o)$ is a δ-I-closed set. Thus we have $f^{-1}(V_o)$ is δ-I-open. Since $x \in f^{-1}(V_o)$, by Lemma 2.1, there exists an open neighborhood U of x such that $x \in U \subset \text{Int}(Cl^*(U)) \subset f^{-1}(V_o)$. Hence we obtain that $f(\text{Int}(Cl^*(U))) \subset \text{Int}(Cl^*(V))$. This shows that f is a δ-I-continuous function.

Corollary 3.1 A function $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$ is δ -*I*-continuous if and only if $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$ is continuous.

Proof. This is an immediate consequence of Theorem 2.1.

The following lemma is known in [3, as Lemma 4.3].

Lemma 3.1 Let (X, τ, I) be an ideal topological space and A, B subsets of X such that $B \subset A$. Then $B^*(\tau/A, I/A) = B^*(\tau, I) \cap A$.

Proposition 3.1 Let (X,τ,I) be an ideal topological space, A, X_o subsets of X such that $A \subset X_o$ and X_o is open in X.

(1) If A is R-I-open in (X,τ,I) , then A is R-I-open in $(X_o,\tau/X_o,I/X_o)$,

(2) If A is δ -I-open in (X, τ, I) , then A is δ -I-open in $(X_o, \tau/X_o, I/X_o)$.

Proof. (1) Let A be R-I-open in (X,τ,I) . Then $A = Int(Cl^*(A))$ and $Cl^*_{X_o}(A) = A \cup A^*(\tau/X_o, I/X_o) = A \cup [A^*(\tau,I) \cap X_o] = (A \cap X_o) \cup (A^* \cap X_o) = (A \cup A^*) \cap X_o = Cl^*(A) \cap X_o$. Hence we have $Int_{X_o}(Cl^*_{X_o}(A)) = Int(Cl^*_{X_o}(A)) = Int((Cl^*(A) \cap X_o) = Int((Cl^*(A)) \cap X_o) = A$. Therefore, A is R-I-open in $(X_o, \tau/X_o, I/X_o)$.

(2) Let A be a δ -I-open set of (X,τ,I) . By Lemma 2.1, $A = \bigcup_{\alpha \in \Delta} A_{\alpha}$, where A_{α} is R-I-open set of (X,τ,I) for each $\alpha \in \Delta$. By (1), A is R-I- open in $(X_o,\tau/X_o,I/X_o)$ for each $\alpha \in \Delta$ and hence A is δ -I-open in $(X_o,\tau/X_o,I/X_o)$.

Theorem 3.2 If $f:(X,\tau,I) \to (Y,\Phi,J)$ is a δ -*I*-continuous function and X_o is a δ -*I*-open set of (X,τ,I) , then the restriction $f/X_o:(X_o,\tau/X_o,I/X_o) \to (Y,\Phi,J)$ is δ -*I*-continuous.

Proof. Let V be any δ -I-open set of (Y, Φ, J) . Since f is δ -I-continuous, $f^{-1}(V)$ is δ -I-open in (X, τ, I) . Since X_o is δ -I-open, by Theorem 2.1 $X_o \cap f^{-1}(V)$ is δ -I-open in (X, τ, I) and hence $X_o \cap f^{-1}(V)$ is δ -I-open in $(X_o, \tau/X_o, I/X_o)$ by Proposition 3.1. This shows that $(f/X_o)^{-1}(V)$ is δ -I-open in $(X_o, \tau/X_o, I/X_o)$ and hence f/X_o is δ -I-continuous. \Box

Theorem 3.3 If $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$ and $g:(Y,\Phi,J) \rightarrow (Z,\varphi,K)$ are δ -I-continuous, then so is $gof:(X,\tau,I) \rightarrow (Z,\varphi,K)$.

Proof. It follows immediately from Cor. 3.1.

Theorem 3.4 If $f,g:(X,\tau,I) \to (Y,\Phi,J)$ are δ -I-continuous functions and Y is a Hausdorff space, then $A = \{x \in X : f(x) = g(x)\}$ is a δ -I-closed set of (X,τ,I) .

Proof. We prove that X-A is δ -I-open set. Let $x \in X$ -A. Then, $f(x) \neq g(x)$. Since Y is Hausdorff, there exist open sets V_1 and V_2 containing f(x) and g(x), respectively, such that $V_1 \cap V_2 = \emptyset$. From here we have $Int(Cl(V_1)) \cap Int(Cl(V_2)) = \emptyset$. Thus, we obtain that $Int(Cl^*(V_1)) \cap Int(Cl^*(V_2)) = \emptyset$. Since f and g are δ -I-continuous, there exists an open

neighborhood U of x such that $f(\operatorname{Int}(Cl^*(U)))\subset \operatorname{Int}(Cl^*(V_1))$ and $g(\operatorname{Int}(Cl^*(U)))\subset \operatorname{Int}(Cl^*(V_2))$. Hence we obtain that $\operatorname{Int}(Cl^*(U))\subset f^{-1}(\operatorname{Int}(Cl^*(V_1)))$ and $\operatorname{Int}(Cl^*(U))\subset g^{-1}(\operatorname{Int}(Cl^*(V_2)))$. Moreover $f^{-1}(\operatorname{Int}(Cl^*(V_1)))\cap g^{-1}(\operatorname{Int}(Cl^*(V_2)))\cap A = \emptyset$. Suppose that $f^{-1}(\operatorname{Int}(Cl^*(V_2)))$. $\cap g^{-1}(\operatorname{Int}(Cl^*(V_2)))\cap A \neq \emptyset$. Hence there exists a point z such that $z \in f^{-1}(\operatorname{Int}(Cl^*(V_1)))\cap g^{-1}(\operatorname{Int}(Cl^*(V_1))) \cap g^{-1}(\operatorname{Int}(Cl^*(V_2))) \cap A \neq \emptyset$. Therefore, we have $f(z)\in\operatorname{Int}(Cl^*(V_1))\cap\operatorname{Int}(Cl^*(V_2))$ and $\operatorname{Int}(Cl^*(V_1))\cap \operatorname{Int}(Cl^*(V_2)) \neq \emptyset$. This is a contradiction to $\operatorname{Int}(Cl^*(V_1))\cap\operatorname{Int}(Cl^*(V_2)) = \emptyset$. Hence we obtain that $f^{-1}(\operatorname{Int}(Cl^*(V_1)))\cap g^{-1}(\operatorname{Int}(Cl^*(V_2)))\cap A = \emptyset$. Thus $f^{-1}(\operatorname{Int}(Cl^*(V_1)))\cap g^{-1}(\operatorname{Int}(Cl^*(V_2))) \cap A = \emptyset$. Therefore, X-A is a δ -I-open set. This shows that A is δ -I-closed. \Box

4. Comparisons

Definition 4.1 A function $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$ is said to be strongly θ -I-continuous (resp. θ -I-continuous, almost I-continuous) if for each $x \in X$ and each open neighborhood V of f(x), there exists an open neighborhood U of x such that $f(Cl^*(U)) \subset V$ (resp. $f(Cl^*(U)) \subset Cl^*(V)$, $f(U) \subset Int(Cl^*(V))$.

Definition 4.2 A function $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$ is said to be almost-I-open if for each *R*-I-open set U of X, f(U) is open in Y.

Theorem 4.1 (1) If $f:(X,\tau,I) \to (Y,\Phi,J)$ is strongly θ -I-continuous and $g:(Y,\Phi,J) \to (Z,\varphi,K)$ is almost I-continuous, then $gof:(X,\tau,I) \to (Z,\varphi,K)$ is δ -I-continuous. (2) The following implications hold:

strongly $\theta - I - \text{continuous} \Rightarrow \delta - I - \text{continuous} \Rightarrow \text{almost} - I - \text{continuous}.$ (4.1)

Proof. (1) Let $x \in X$ and W be any open set of Z containing (gof)(x). Since g is almost I-continuous, there exists an open neighborhood $V \subset Y$ of f(x) such that $g(V) \subset Int(Cl^*(W))$.

Since f is strongly θ -I-continuous, there exists an open neighborhood U \subset X of x such that $f(Cl^*(U))\subset V$. Hence we have $g(f(Cl^*(U)))\subset g(V)$ and $g(f(Int(Cl^*(U))))\subset g(f(Cl^*(U)))\subset g(V) \subset Int(Cl^*(W))$. Thus, we obtain $g(f(Int(Cl^*(U))))\subset Int(Cl^*(W))$. This shows that gof is δ -I-continuous.

(2) Let f be strongly θ -I-continuous. Let $x \in X$ and V be any open neighborhood of f(x). Then, there exists an open neighborhood $U \subset X$ of x such that $f(Cl^*(U)) \subset V$. Since always $f(Int(Cl^*(U))) \subset f(Cl^*(U))$, $f(Int(Cl^*(U))) \subset V$. Since V is open, we have $f(Int(Cl^*(U))) \subset Int(Cl^*(V))$. Thus, f is δ -I-continuous. Let f be δ -I-continuous. Now we prove that f is almost I-continuous. Then, for each $x \in X$ and each open neighborhood $V \subset Y$ of f(x), there exists an open neighborhood $U \subset X$ of x such that $f(Int(Cl^*(U))) \subset Int(Cl^*(V))$. Since $U \subset Int(Cl^*(U))$, $f(U) \subset Int(Cl^*(V))$. Thus, f is almost I-continuous. \Box

Remark 4.1 The following examples enable us to realize that none of these implications in Theorem 4.1 (2) is reversible.

Example 4.1 Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, c\}\}, I = \{\emptyset, \{c\}\}, \Phi = \{\emptyset, X, \{a, b\}\}$ and $J = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$. The identity function $f:(X, \tau, I) \rightarrow (X, \Phi, J)$ is δ -I-continuous but it is not strongly θ -I-continuous.

(i) Let $a \in X$ and $V = \{a,b\} \in \Phi$ such that $f(a) \in V$. $V^* = (\{a,b\})^* = \{a,b,c\} = X$, $Cl^*(V) = V \cup V^* = X$ and $Int(Cl^*(V)) = Int(X) = X$. Then, there exists an open $U = \{a,c\} \subset X$ such that $a \in U$. We have $U^* = (\{a\})^* = \{a,b,c\}$, $Cl^*(U) = U \cup U^* = \{a,b,c\}$ and $Int(Cl^*(U)) = \{a,c\}$. Since $f(Int(Cl^*(U))) = f(\{a,c\}) = \{a,c\}$ and $\{a,c\} \subset Int(Cl^*(V)) = X$.

(ii) Let $b \in X$ and $V = \{a, b\} \in \Phi$ such that $f(b) \in V$. $V^* = (\{a, b\})^* = \{a, b, c\} = X$, $Cl^*(V) = V \cup V^* = X$ and $Int(Cl^*(V)) = Int(X) = X$. Then, there exists an open U = X such that $b \in U$. We have $Cl^*(U) = Cl^*(X) = X$ and $Int(Cl^*(U)) = Int(X)$. Since $f(Int(Cl^*(U))) = f(X) = X$ and $X \subset Int(Cl^*(V)) = X$.

(iii) Let x = a, b or c and $V = X \in \Phi$ such that $f(x) \in V$. $Cl^*(V) = V \cup V^* = X$ and $Int(Cl^*(V)) = Int(X) = X$. Then, there exists an open U = X such that $x \in U$. We have $Cl^*(U) = Cl^*(X) = X$ and $Int(Cl^*(U)) = Int(X)$. Since $f(Int(Cl^*(U))) = f(X) = X$ and $X \subset Int(Cl^*(V)) = X$. By (i), (ii) and (iii), f is δ -I-continuous. On the other hand by (i), since $f(Cl^*(U)) = f(Cl^*(\{a\}) = f(\{a,b,c\})) = \{a,b,c\}$ is not subset of $V = \{a,b\}$, f is not strongly θ -I-continuous.

Example 4.2 Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a, c\}, \{d\}, \{a, b, c\}, \{a, c, d\}\}, I = \{\emptyset, \{d\}\} and J = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}.$ The identity function $f:(X, \tau, I)$ (X, τ, J) is almost I-continuous but it is not δ -I-continuous. (i) Let x = a or $c \in X$ and $V = \{a, c\} \in \Phi = \tau$ such that $f(x) \in V$. $V^* = (\{a, c\})^* = \{a, b, c\}, Cl^*(V) = V \cup V^* = \{a, b, c\} and Int(Cl^*(V)) = \{a, c\}.$ Then, there exists an open $U = \{a, c\} \subset X$ such that $x \in U$. We have $U^* = (\{a, c\})^* = \{a, b, c\}$ and $Int(Cl^*(U)) = Int(\{a, b, c\}) = \{a, b, c\}.$ Since $f(U) = f(\{a, c\}) = \{a, c\} \subset Int(Cl^*(V)) = \{a, c\}.$

(ii) Let x = a, c or $d \in X$ and $V = \{a, c, d\} \in \Phi = \tau$ such that $f(x) \in V$. $V^* = (\{a, c, d\})^* = \{a, b, c\}$ and $Cl^*(V) = V \cup V^* = \{a, b, c, d\}$ and $Int(Cl^*(V)) = X$. Then, there exists an open $U = \{a, c, d\} \subset X$ such that $x \in U$. We have $U^* = (\{a, c, d\})^* = \{a, b, c, d\} = X$ and $Int(Cl^*(U)) = Int(X) = X$. Since $f(U) = f(\{a, c, d\}) = \{a, c, d\} \subset Int(Cl^*(V)) = \{a, b, c, d\}$.

(iii) Let $x = a, b \text{ or } c \in X \text{ and } V = \{a, b, c\} \in \Phi = \tau \text{ such that } f(x) \in V. V^* = (\{a, b, c\})^* = \{a, b, c\} \text{ and } Cl^*(V) = V \cup V^* = \{a, b, c\} \text{ and } Int(Cl^*(V)) = \{a, b, c\}.$ Then, there exists an open $U = \{a, b, c\} \subset X$ such that $x \in U$. We have $U^* = (\{a, b, c\})^* = \{a, b, c\}$ and $Int(Cl^*(U)) = \{a, b, c\}.$ Since $f(U) = f(\{a, b, c\}) = \{a, b, c\} \subset Int(Cl^*(V)) = \{a, b, c\}.$

(iv) Let $d \in X$ and $V = \{d\} \in \Phi = \tau$ such that $f(d) \in V$. $V^* = (\{d\})^* = \emptyset$ and $Cl^*(V) = V \cup V^* = \{d\}$ and $Int(Cl^*(V)) = \{d\}$. Then, there exists an open $U = \{d\} \subset X$ such that $d \in U$. We have $U^* = (\{d\})^* = \emptyset$ and $Int(Cl^*(U)) = \{d\}$. Since $f(U) = f(\{d\}) = \{d\} \subset Int(Cl^*(V)) = \{d\}$. By (i), (ii), (iii) and (iv), f is almost I-continuous. On the other hand by (i), since $f(Int(Cl^*(U))) = f(\{a,b,c\}) = \{a,b,c\}$ is not subset of $Int(Cl^*(V))$ and $Int(Cl^*(V)) = \{a,c\}$, f is not δ -I-continuous.

Definition 4.3 An ideal topological space (X, τ, I) is said to be an SI-R space if for each $x \in X$ and each open neighborhood V of x, there exists an open neighborhood U of x such that $x \in U \subset Int(Cl^*(U)) \subset V$.

Theorem 4.2 For a function $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$, the following are true:

(1) If Y is an SI-R space and f is δ -I-continuous, then f is continuous.

(2) If X is an SI-R space and f is almost I-continuous, then f is δ -I-continuous.

Proof. (1) Let Y be an SI-R space. Then, for each open neighborhood V of f(x), there exists an open neighborhood V_o of f(x) such that $f(x) \in V_o \subset \operatorname{Int}(Cl^*(V_o)) \subset V$. Since f is δ -I-continuous, there exists an open neighborhood U_o of x such that $f(\operatorname{Int}(Cl^*(U_o))) \subset \operatorname{Int}(Cl^*(V_o))) \subset \operatorname{Int}(Cl^*(V_o))$. Since U_o is an open set, $f(U_o) \subset f(\operatorname{Int}(Cl^*(U_o))) \subset \operatorname{Int}(Cl^*(V_o)) \subset V$. Thus, $f(U_o) \subset V$ and hence f is continuous.

(2) Let $x \in X$ and V be an open neighborhood of f(x). Since f is almost I-continuous, there exists an open neighborhood U of x such that $f(U) \subset Int(Cl^*(V))$. Since X is an SI-R space, there exists an open neighborhood U_1 of x such that $Int(Cl^*(U_1)) \subset U$. Thus $f(Int(Cl^*(U_1))) \subset f(U) \subset Int(Cl^*(V))$. Therefore f is δ -I-continuous.

Corollary 4.1 If (X,τ,I) and (Y,Φ,J) are SI-R spaces, then the following concepts on a function $f:(X,\tau,I) \rightarrow (Y,\Phi,J): \delta$ -I-continuity, continuity and almost I-continuity are equivalent.

Definition 4.4 An ideal topological space (X,τ,I) is said to be an AI-R space if for each R-I-closed set $F \subset X$ and each $x \notin F$, there exist disjoint open sets U and V in X such that $x \in U$ and $F \subset V$.

Theorem 4.3 An ideal topological space (X,τ,I) is an AI-R space if and only if each $x \in X$ and each R-I-open neighborhood V of x, there exists an R-I-open neighborhood U of x such that $x \in U \subset Cl^*(U) \subset Cl(U) \subset V$.

Proof. Necessity. Let $x \in V$ and V be R-I-open. Then $\{x\} \cap (X-V) = \emptyset$. Since X is an AI-R space, there exist open sets U_1 and U_2 containing x and (X-V), respectively, such that $U_1 \cap U_2 = \emptyset$. Then $\operatorname{Cl}(U_1) \cap U_2 = \emptyset$ and hence $\operatorname{Cl}^*(U_1) \subset \operatorname{Cl}(U_1) \subset (X-U_2) \subset V$. Thus $x \in U_1 \subset \operatorname{Cl}^*(U_1) \subset \operatorname{Cl}(U_1) \subset V$ and we obtain that $U_1 \subset \operatorname{Int}(\operatorname{Cl}^*(U_1)) \subset \operatorname{Cl}^*(U_1)$. Let $\operatorname{Int}(\operatorname{Cl}^*(U_1)) = U$. Thus, we have $\operatorname{Cl}(U) = \operatorname{Cl}(\operatorname{Int}(\operatorname{Cl}^*(U_1))) \subset \operatorname{Cl}(\operatorname{Cl}(U_1)) = \operatorname{Cl}(U_1) \subset \operatorname{Cl}^*(U_1) \subset \operatorname{Cl}^*(U_1) \subset \operatorname{Cl}^*(U_1) \subset \operatorname{Cl}^*(U_1) = \operatorname{Cl}(U_1) \subset \operatorname{Cl}^*(U_1)

Sufficiency. Let $x \in X$ and an R-I-closed set F such that $x \notin F$. Then, X-F is an R-I-open neighborhood of x. By hypothesis, there exists an R-I-open neighborhood V of x such that $x \in V \subset Cl^*(V) \subset Cl(V) \subset X$ -F. From here we have $F \subset X$ -Cl(V) $\subset (X - Cl^*(V))$, where X-Cl(V) is an open set. Moreover, we have that $V \cap (X - Cl(V)) = \emptyset$ and V is open. Therefore, X is an AI-R space.

Theorem 4.4 For a function $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$, the following are true: (1) If Y is an AI-R space and f is θ -I-continuous, then f is δ -I-continuous.

(2) If X is an AI-R space, Y is an SI-R space and f is δ -I-continuous, then f is strongly θ -I-continuous.

Proof. (1) Let Y be an AI-R space. Then, for each $x \in X$ and each R-I-open neighborhood V of f(x), there exists an R-I-open neighborhood V_o of f(x) such that $f(x) \in V_o \subset Cl^*(V_o) \subset V$. Since f is θ -I-continuous, there exists an open neighborhood U_o of x such that $f(Cl^*(U_o)) \subset Cl^*(V_o)$. Hence, we obtain that $f(Int(Cl^*(U_o))) \subset Cl^*(V_o) \subset Cl^*(V_o) \subset V$ and thus $f(Int(Cl^*(U_o))) \subset V$. By Theorem 3.1, f is δ -I-continuous.

(2) Let X be an AI-R space and Y an SI-R space. For each $x \in X$ and each open neighborhood V of f(x), there exists an open set V_o such that $f(x) \in V_o \subset Int(Cl^*(V_o)) \subset V$ since Y is an SI-R space. Since f is δ -I-continuous, there exists an open set U containing x such that $f(Int(Cl^*(U))) \subset Int(Cl^*(V_o))$. By Lemma 2.1, $Int(Cl^*(U))$ is R-Iopen and since X is AI-R, by Theorem 4.3 there exists an R-I-open set U_o such that $x \in V_o \subset Cl^*(U_o) \subset Int(Cl^*(U))$. Every R-I-open set is open and hence U_o is open. Moreover, we have $f(Cl^*(U_o)) \subset V$. This shows that f is strongly θ -I-continuous.

Theorem 4.5 If a function $f:(X,\tau,I) \rightarrow (Y,\Phi,J)$ is θ -*I*-continuous and almost-*I*-open, then it is δ -*I*-continuous.

Proof. Let $x \in X$ and V be an open neighborhood of f(x). Since f is θ -I-continuous, there exists an open neighborhood of x such that $f(Cl^*(U)) \subset Cl^*(V)$; therefore, $f(Int(Cl^*(U))) \subset Cl^*(V)$. Since f is almost-I-open, we have $f(Int(Cl^*(U))) \subset Int(Cl^*(V))$. This shows that f is δ -I-continuous.

References

- [1] E. Hayashi, Topologies defined by local properties, Math. Ann., 156(1964), 205-215.
- [2] D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [3] D. Janković and T.R. Hamlett, Compatible extensions of ideals, Boll. Un. Mat. Ital.(7), 6-B (1992), 453-465.
- [4] K. Kuratowski, Topology Vol. 1 (transl.), Academic Press, New York, 1966.

- [5] P. Samuels, A topology formed from a given topology and ideal, J. London Math. Soc. (2),10 (1975), 409-416.
- [6] N.V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. (2), 78 (1968), 103-118.

S. YÜKSEL, A. AÇIKGÖZ
Department of Mathematics,
University of Selçuk,
42079 Konya-TURKEY
e-mail: syuksel@selcuk.edu.tr.
T. NOIRI
Department of Mathematics,
Yatsushiro College of Technology,
Yatsushiro, Kumamoto,
866-8501 JAPAN
e-mail: noiri@as.yatsushiro-nct.ac.jp

Received 03.09.2003