Spacelike Normal Curves in Minkowski Space \mathbb{E}_{1}^{3}

Kazım İlarslan
Dedicated to Professor Dr. H. Hilmi Hacısalihoğlu

Abstract

In the Euclidean space \mathbb{E}^{3}, it is well known that normal curves, i.e., curves with position vector always lying in their normal plane, are spherical curves [3]. Necessary and sufficient conditions for a curve to be a spherical curve in Euclidean 3-space are given in [10] and [11].

In this paper, we give some characterizations of spacelike normals curves with spacelike, timelike or null principal normal in the Minkowski 3 -space \mathbb{E}_{1}^{3}.

Key words and phrases: Normal Curves, Position Vector and Minkowski Space.

1. Introduction

In the Euclidean space \mathbb{E}^{3}, it is well-known that to each unit speed curve $\alpha: I \subset \mathbb{R} \rightarrow$ \mathbb{E}^{3} with at least four countinuous derivatives, one can associate three mutually ortogonal unit vector fields T, N and B, called respectively the tangent, the principal normal and the binormal vector fields. At each point $\alpha(s)$ of curve α, the planes spanned by $\{T, N\}$, $\{T, B\}$ and $\{N, B\}$ are known respectively as the osculating plane, the rectifying plane and the normal plane. The curves $\alpha: I \subset \mathbb{R} \rightarrow \mathbb{E}^{3}$ for wich the position vector α always lie in their rectifying plane, are for simplicity called rectifying curves, (see [3]). Similarly, the curves for which the position vector α always lie in their osculating plane, are for simplicity called osculating curves; and finally, the curves for which the position vector

[^0]
İLARSLAN

always lie in their normal plane, are for simplicity called normal curves. By definition, for a normal curve, the position vector α satisfies

$$
\alpha(s)=\lambda(s) N(s)+\mu(s) B(s)
$$

for some differentiable functions λ and μ of $s \in I \subset \mathbb{R}$.
Characterization of rectifying curves is given in [3] and these curves are studied in Minkowski space \mathbb{E}_{1}^{3} in [5]. In this paper, we characterize spacelike normal curves, lying fully in the Minkowski space \mathbb{E}_{1}^{3}.

2. Preliminaries

The Minkowski 3 -space \mathbb{E}_{1}^{3} is the Euclidean 3 -space \mathbb{E}^{3} provided with the standard flat metric given by

$$
g=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is a rectangular coordinate system of \mathbb{E}_{1}^{3}.
Since g is an indefinite metric, recall that a vector $v \in \mathbb{E}_{1}^{3}$ can have one of three Lorentzian causal characters: it can be spacelike if $g(v, v)>0$ or $v=0$, timelike if $g(v, v)<0$ and null (lightlike) if $g(v, v)=0$ and $v \neq 0$. Similarly, an arbitrary curve $\alpha=\alpha(s)$ in \mathbb{E}_{1}^{3} can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors $\alpha^{\prime}(s)$ are respectively spacelike, timelike or null (lightlike). Denote by $\{T, N, B\}$ the moving Frenet frame along the curve $\alpha(s)$ in the space \mathbb{E}_{1}^{3}. For an arbitrary curve $\alpha(s)$ in the space \mathbb{E}_{1}^{3}, the following Frenet formulae are given in $[4,9]$.

If α is a spacelike curve with a spacelike or timelike principal normal N, then the Frenet formulae read

$$
\left[\begin{array}{c}
T^{\prime} \tag{1}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
-\epsilon k_{1} & 0 & k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

where $g(T, T)=1, g(N, N)=\epsilon= \pm 1, g(B, B)=-\epsilon, g(T, N)=0, g(T, B)=0, g(N, B)=$ 0 .

If α is a spacelike curve with a null (lightlike) principal normal N, the Frenet formulae

İLARSLAN

are

$$
\left[\begin{array}{c}
T^{\prime} \tag{2}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
0 & k_{2} & 0 \\
-k_{1} & 0 & -k_{2}
\end{array}\right]\left[\begin{array}{c}
T \\
N \\
B
\end{array}\right]
$$

where $g(T, T)=1, g(N, N)=0, g(B, B)=0, g(T, N)=0, g(T, B)=0, g(N, B)=1$. In this case, k_{1} can take only two values: $k_{1}=0$ when α is a straight line; $k_{1}=1$ in all other cases.

Let m be a fixed point in \mathbb{E}_{1}^{3} and $r>0$ be a constant. The pseudo-Riemannian sphere is defined by

$$
\mathbb{S}_{1}^{2}(m, r)=\left\{u \in \mathbb{E}_{1}^{3}: g(u-m, u-m)=r^{2}\right\}
$$

the pseudo-Riemannian hyperbolical space is defined by

$$
\mathbb{H}_{0}^{2}(m, r)=\left\{u \in \mathbb{E}_{1}^{3}: g(u-m, u-m)=-r^{2}\right\}
$$

the pseudo-Riemannian lightlike cone (quadric cone) is defined by

$$
C(m)=\left\{u \in \mathbb{E}_{1}^{3}: g(u-m, u-m)=0\right\}
$$

3. The spacelike normal curves in \mathbb{E}_{1}^{3}

In this section, we give some characterization theorems for spacelike normal curves.
Theorem 3.1 Let $\alpha=\alpha(s)$ be a unit speed spacelike normal curve in \mathbb{E}_{1}^{3} with spacelike or timelike principal normal N and with curvatures $k_{1}(s)>0, k_{2}(s) \neq 0$ for each $s \in I \subset \mathbb{R}$. Then the following statements hold:
(i) The curvatures $k_{1}(s)$ and $k_{2}(s)$ satisfy the following equality

$$
\frac{1}{k_{1}(s)}=c_{1} \cosh \left(\int k_{2}(s) d s\right)+c_{2} \sinh \left(\int k_{2}(s) d s\right), \quad c_{1}, c_{2} \in \mathbb{R}
$$

(ii) The principal normal and binormal component of the position vector of the curve are given respectively by

$$
\begin{gathered}
g(\alpha(s), N)=a_{1} \cosh \left(\int k_{2}(s) d s\right)+a_{2} \sinh \left(\int k_{2}(s) d s\right) \\
g(\alpha(s), B)=a_{1} \sinh \left(\int k_{2}(s) d s\right)+a_{2} \cosh \left(\int k_{2}(s) d s\right), \quad a_{1}, a_{2} \in \mathbb{R}
\end{gathered}
$$

İLARSLAN

(iii) If the position vector of the curve is null vector, then α lies on pseudo-Riemannian lightlike cone $C(m)$ and the curvatures $k_{1}(s)$ and $k_{2}(s)$ satisfy

$$
\frac{1}{k_{1}(s)}=c_{1}\left[\cosh \left(\int k_{2}(s) d s\right) \pm \sinh \left(\int k_{2}(s) d s\right)\right]
$$

Conversely if $\alpha(s)$ is a unit speed spacelike curve in \mathbb{E}_{1}^{3} with spacelike or timelike principal normal N, the curvatures $k_{1}(s)>0, k_{2}(s) \neq 0$ for each $s \in I \subset \mathbb{R}$ and one of the statements (i), (ii) and (iii) hold, then α is a normal curve or congruent to a normal curve.

Proof. Let us first suppose that $\alpha(s)$ is a unit speed spacelike normal curve in \mathbb{E}_{1}^{3} with spacelike or timelike principal normal N, where s is pseudo arclength parameter. Then by definition we have

$$
\alpha(s)=\lambda(s) N(s)+\mu(s) B(s)
$$

Differentiating this with respect to s and using the corresponding Frenet equations (1), we find

$$
\begin{equation*}
\epsilon \lambda k_{1}=-1, \quad \lambda^{\prime}+\mu k_{2}=0, \quad \mu^{\prime}+\lambda k_{2}=0 \tag{3}
\end{equation*}
$$

From the first and second equation in (3), we get

$$
\begin{equation*}
\lambda=-\frac{\epsilon}{k_{1}}, \quad \mu=\frac{\epsilon}{k_{2}}\left(\frac{1}{k_{1}}\right)^{\prime} \tag{4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\alpha(s)=-\frac{\epsilon}{k_{1}} N+\frac{\epsilon}{k_{2}}\left(\frac{1}{k_{1}}\right)^{\prime} B \tag{5}
\end{equation*}
$$

Further, from the third equation in (3) and using (4), we find the following differential equation

$$
\begin{equation*}
\left[\frac{1}{k_{2}}\left(\frac{1}{k_{1}}\right)^{\prime}\right]^{\prime}-\frac{k_{2}}{k_{1}}=0 \tag{6}
\end{equation*}
$$

Putting $y(s)=\frac{1}{k_{1}}$ and $p(s)=\frac{1}{k_{2}}$, equation (6) can be written as

$$
\left(p(s) y^{\prime}(s)\right)^{\prime}-\frac{y(s)}{p(s)}=0
$$

İLARSLAN

If we change variables in the above equation as $t=\int \frac{1}{p(s)} d s$, then we get

$$
\frac{d^{2} y}{d t^{2}}-y=0
$$

The solution of the previous differential equation is

$$
y=c_{1} \cosh (t)+c_{2} \sinh (t)
$$

where $c_{1}, c_{2} \in \mathbb{R}$. Therefore,

$$
\begin{equation*}
\frac{1}{k_{1}(s)}=c_{1} \cosh \left(\int k_{2}(s) d s\right)+c_{2} \sinh \left(\int k_{2}(s) d s\right) \tag{7}
\end{equation*}
$$

Thus we have proved statement (i). Next, substituting (7) into (4) and (5), we get

$$
\begin{aligned}
\lambda & =-\epsilon\left[c_{1} \cosh \left(\int k_{2}(s) d s\right)+c_{2} \sinh \left(\int k_{2}(s) d s\right)\right] \\
\mu & =\epsilon\left[c_{1} \sinh \left(\int k_{2}(s) d s\right)+c_{2} \cosh \left(\int k_{2}(s) d s\right)\right]
\end{aligned}
$$

and

$$
\begin{align*}
\alpha & =-\epsilon\left(c_{1} \cosh \left(\int k_{2}(s) d s\right)+c_{2} \sinh \left(\int k_{2}(s) d s\right)\right) N \\
& +\epsilon\left(c_{1} \sinh \left(\int k_{2}(s) d s\right)+c_{2} \cosh \left(\int k_{2}(s) d s\right)\right) B \tag{8}
\end{align*}
$$

Therefore, from (8) we easily find that

$$
\begin{gather*}
g(\alpha, \alpha)=\epsilon\left(c_{1}^{2}-c_{2}^{2}\right) \tag{9}\\
g(\alpha, N)=a_{1} \cosh \left(\int k_{2}(s) d s\right)+a_{2} \sinh \left(\int k_{2}(s) d s\right), \tag{10}\\
g(\alpha, B)=a_{1} \sinh \left(\int k_{2}(s) d s\right)+a_{2} \cosh \left(\int k_{2}(s) d s\right), \tag{11}
\end{gather*}
$$

where $a_{1}=-c_{1} \in \mathbb{R}, a_{2}=-c_{2} \in \mathbb{R}$. Consequently, we have proved (ii).

İLARSLAN

Next, suppose that α is a normal curve with a null (lightlike) position vector. Then we have $g(\alpha, \alpha)=0$. Substituting this into equation (9), we obtain $c_{1}^{2}=c_{2}^{2}$. Then (7) becomes

$$
\begin{equation*}
\frac{1}{k_{1}(s)}=c_{1}\left[\cosh \left(\int k_{2}(s) d s\right) \pm \sinh \left(\int k_{2}(s) d s\right)\right] \tag{12}
\end{equation*}
$$

On the other hand, let us consider the vector

$$
m=\alpha(s)+\frac{\epsilon}{k_{1}} N-\frac{\epsilon}{k_{2}}\left(\frac{1}{k_{1}}\right)^{\prime} B .
$$

Differentiating this with respect to s and using corresponding Frenet equations (1), we find $m^{\prime}=0$, and therefore $m=$ constant. Then $g(\alpha-m, \alpha-m)=0$, which means that α lies on $C(m)$. Consequently, we have proved statement (iii).

Conversely, suppose that statement (i) holds. Then we have

$$
\frac{1}{k_{1}(s)}=c_{1} \cosh \left(\int k_{2}(s) d s\right)+c_{2} \sinh \left(\int k_{2}(s) d s\right)
$$

Differentiating this with respect to s, we get

$$
\left[\frac{1}{k_{2}}\left(\frac{1}{k_{1}}\right)^{\prime}\right]^{\prime}=\frac{k_{2}}{k_{1}} .
$$

By applying Frenet equations (1), we obtain

$$
\frac{d}{d s}\left[\alpha(s)+\frac{\epsilon_{1}}{k_{1}} N-\frac{\epsilon_{1}}{k_{2}}\left(\frac{1}{k_{1}}\right)^{\prime} B\right]=0
$$

Consequently, α is congruent to a normal curve. Next, assume that statement (ii) holds. Then the equations (9) and (10) are satisfied. Differentiating (9) with respect to s and using (10), we find $g(\alpha, T)=0$, which means that α is normal curve. Finally, assume that statement (iii) holds. Then α lies on light cone $C(m)$ with vertex at $m, m=\mathrm{constant}$ and curvatures $k_{1}(s)$ and $k_{2}(s)$ satisfy the equation (12). Hence we have

$$
g(\alpha-m, \alpha-m)=0
$$

İLARSLAN

Differentiating this four times with respect to s and using Frenet equations (1), we get

$$
\alpha(s)-m=-\frac{\epsilon}{k_{1}} N+\left(\frac{\epsilon}{k_{2}}\right)\left(\frac{1}{k_{1}}\right)^{\prime} B .
$$

This means that, up to a translation for vector m, curve α is congruent to a normal curve. Let us put $m=0$. Then using (12) we easily find $g(\alpha, \alpha)=0$, which proves the theorem.

Theorem 3.2 Let $\alpha=\alpha(s)$ be unit speed spacelike normal curve in \mathbb{E}_{1}^{3} with curvatures $k_{1}(s)>0, k_{2}(s) \neq 0$, non-null principal normal N and non-null position vector. Then:
(i) The position vector α is spacelike if and only if the curve α lies on the pseudoRiemannian sphere $\mathbb{S}_{1}^{2}(m, r)$ and there holds

$$
\begin{equation*}
\frac{1}{k_{1}(s)}= \pm \sqrt{c^{2}+\epsilon r^{2}} \cosh \left(\int k_{2}(s) d s\right)+c \sinh \left(\int k_{2}(s) d s\right), \quad c \in \mathbb{R}, \quad \epsilon= \pm 1 \tag{13}
\end{equation*}
$$

(ii) The position vector α is timelike if and only if the curve α lies on the pseudohyperbolical space $\mathbb{H}_{0}^{2}(m, r)$ and there holds

$$
\begin{equation*}
\frac{1}{k_{1}(s)}= \pm \sqrt{c^{2}-\epsilon r^{2}} \cosh \left(\int k_{2}(s) d s\right)+c \sinh \left(\int k_{2}(s) d s\right), \quad c \in \mathbb{R}, \quad \epsilon= \pm 1 \tag{14}
\end{equation*}
$$

Proof. Let us first assume that the position vector α is spacelike. Then $g(\alpha, \alpha)=r^{2}$, $r \in \mathbb{R}^{+}$. Substituting this into (9), we get $c_{1}= \pm \sqrt{c_{2}^{2}+\epsilon r^{2}}$. By using the last equation and (7), we obtain that (13) holds. Next, let us consider the vector

$$
m=\alpha+\left(\epsilon / k_{1}\right) N-\left(\epsilon / k_{2}\right)\left(1 / k_{1}\right)^{\prime} B
$$

Differentiating this and using the corresponding Frenet equations, we get $m^{\prime}=0$. Consequently, $m=$ constant. It follows that $g(\alpha-m, \alpha-m)=r^{2}$, which means that α lies on pseudo-Riemannian sphere $S_{1}^{2}(m, r)$ with center m and of radius r. Conversely, assume that (13) holds and that α lies on $\mathbb{S}_{1}^{2}(m, r)$. Then $g(\alpha-m, \alpha-m)=r^{2}$, where $r \in \mathbb{R}^{+}$. Differentiating this four times with respect to s and using Frenet equations, we find

$$
\alpha-m=-\left(\epsilon / k_{1}\right) N+\left(\epsilon / k_{2}\right)\left(1 / k_{1}\right)^{\prime} B
$$

İLARSLAN

Therefore, up to a translation for a vector m, α is congruent to a normal curve. In particular, let us put $m=0$. Then (13) implies that $g(\alpha, \alpha)=r^{2}$, which proves statement (i).

The proof of statement (ii) is analogous to the proof of statement (i).
Remark. The spacelike curves with a null principal normal N, in the space \mathbb{E}_{1}^{3} can have the first curvature $k_{1}=0$ or $k_{1}=1$ [7]. If $k_{1}=0$, then $\alpha(s)$ is straight line. Therefore $\alpha(s)$ is in direction of $T(s)$ for each s. For straight line we have $N=B=0$, so we do not have normal plane $\{N, B\}$. Therefore, if $k_{1}=0$ then $\alpha(s)$ can not be normal curve.

Theorem 3.3 Let $\alpha(s)$ be unit speed spacelike normal curve in \mathbb{E}_{1}^{3} with a null principal normal N and $k_{1}=1$. Then α is normal curve if and only if the principal normal and binormal component of the position vector are, respectively, $g(\alpha, N)=-1, g(\alpha, B)=$ $c, \quad c \in \mathbb{R}$.
Proof. Let us first assume that $\alpha(s)$ is normal curve. Then we have

$$
\begin{equation*}
\alpha(s)=\lambda(s) N(s)+\mu(s) B(s) \tag{15}
\end{equation*}
$$

Differentiating this with respect to s and using Frenet equations (2), we get

$$
\begin{equation*}
\mu=-1, \quad \lambda^{\prime}+\lambda k_{2}=0 \quad \text { and } \quad \mu^{\prime}-\mu k_{2}=0 \tag{16}
\end{equation*}
$$

We obtain from the third equation in (16) that $k_{2}=0$. Then the second equation in (16) implies $\lambda^{\prime}=0$. Thus $\lambda=c, \quad c \in \mathbb{R}$ and therefore

$$
\begin{equation*}
\alpha=c N-B . \tag{17}
\end{equation*}
$$

Finally, we obtain $g(\alpha, N)=-1, \quad g(\alpha, B)=c$.
Conversely, let $g(\alpha, N)=-1, g(\alpha, B)=c$. Then differentiating with respect to s, we find $k_{2}=0$ and $g(\alpha, T)=0$, which means that α is normal curve.

Theorem 3.4 Let $\alpha(s)$ be unit speed spacelike normal curve in \mathbb{E}_{1}^{3} with a null principal normal N and $k_{1}=1$. Then α lies on pseudo-Riemannian sphere $\mathbb{S}_{1}^{2}(m, r)$ if and only if α is plane normal curve with the equation $\alpha-m=-\frac{r^{2}}{2} N-B$.

İLARSLAN

Proof. Suppose that α lies on pseudo-Riemannian sphere $\mathbb{S}_{1}^{2}(m, r)$. Then we have

$$
g(\alpha-m, \alpha-m)=r^{2}, \quad r \in \mathbb{R}^{+}
$$

Differentiating this and applying Frenet formulae, we find

$$
k_{2} g(N, \alpha-m)=0
$$

Thus $k_{2}=0$, and α is plane curve. We will prove that it is normal curve. Decompose the vector $\alpha-m$ by

$$
\alpha-m=a T+b N+c B
$$

where $a=a(s), b=b(s), c=c(s)$ are arbitrary functions of s.
Then $g(\alpha-m, T)=0=a, g(\alpha-m, N)=c=-1, g(\alpha-m, B)=b$. Differentiating $g(\alpha-m, B)=b$, we get $b=b_{0}=$ constant. We obtain that

$$
\alpha-m=b_{0} N-B
$$

and since $g(\alpha-m, \alpha-m)=r^{2}$, we have $g(\alpha-m, \alpha-m)=-2 b_{0}=r^{2}$ and $b_{0}=-\frac{r^{2}}{2}$.
Finally, α has the equation

$$
\alpha-m=-\frac{r^{2}}{2} N-B
$$

and it is congruent to a normal curve.
Conversely, if α is plane normal curve with the equation $\alpha-m=-\frac{r^{2}}{2} N-B$ where $r \in \mathbb{R}^{+}$and $m=\left(m_{1}, m_{2}, m_{3}\right) \in \mathbb{E}_{1}^{3}$, then we have $k_{2}=0$. Next, we get that $m=\alpha+\frac{r^{2}}{2} N+B$ which differentiating in s gives $m^{\prime}=0$. Thus $m=$ constant $\in \mathbb{E}_{1}^{3}$, (i.e. m is constant vector). Therefore, α lies on $\mathbb{S}_{1}^{2}(m, r)$.

Theorem 3.5 Let $\alpha(s)$ be unit speed spacelike normal curve in \mathbb{E}_{1}^{3} with a null principal normal N and $k_{1}=1$. Then α lies on pseudo-Riemannian hyperbolical space $\mathbb{H}_{0}^{2}(m, r)$ if and only if α is plane normal curve with the equation $\alpha-m=\frac{r^{2}}{2} N-B$, where $r \in \mathbb{R}^{+}$

İLARSLAN

Proof. The proof is similar with the proof of theorem 3.4.

Theorem 3.6 Let $\alpha(s)$ be unit speed spacelike normal curve in \mathbb{E}_{1}^{3} with a null principal normal N and $k_{1}=1$. Then α lies on light cone $C(m)$ with vertex at m if and only if α is congruent to a normal curve with the equation $\alpha(s)=-B(s)$.

Proof. Suppose that α lies on light cone $C(m)$ with vertex at point $m \in \mathbb{E}_{1}^{3}$. Then

$$
g(\alpha-m, \alpha-m)=0
$$

Differentiating the previous equation and using Frenet equations (2), we get $g(\alpha-m, T)=$ $0, g(\alpha-m, N)=-1$ and $k_{2}=0$. Next, decompose the vector $\alpha-m$ by

$$
\alpha-m=a T+b N+c B,
$$

where $a=a(s), b=b(s), c=c(s)$ are arbitrary functions of s.
Then $g(\alpha-m, T)=0=a, g(\alpha-m, N)=c=-1, g(\alpha-m, B)=b$. Differentiating $g(\alpha-m, B)=b$, we get $b=b_{0}=$ constant. It follows that

$$
\alpha-m=b_{0} N-B .
$$

Since $g(\alpha-m, \alpha-m)=0=-2 b_{0}$, we get $b_{0}=0$. Thus $\alpha-m=-B$. Therefore, up to a translation for the vector m, α is congruent to a normal curve and $\alpha=-B$.

Conversely, assume that α is congruent to a normal curve with the equation $\alpha=-B$. Differentiating this we get $k_{2}=0$. Let us consider the vector $m=\alpha+B$. Taking the derivative of the last equation, we find $m=$ constant and finally $g(\alpha-m, \alpha-m)=0$, which means that α lies on the light cone $C(m)$.

Acknowledgements

I would like to express my hearty thanks to Dr. Emilija Nešović (from Kragujevac University - Serbia and Montenegro) for her encouragement during the preparation of this paper. Also I want to thank the referee for his valuable suggestions.

İLARSLAN

References

[1] Bonnor, W. B.: Null Curves in a Minkowski space-time, Tensor, 20, 1969, 229-242.
[2] Camcı, Ç., İlarslan, K. and Šućurović, E.: On pseudohyperbolic curves in Minkowski spacetime, Turkish Journal of Math., 27, 315-328, 2003.
[3] Chen, B. Y.: When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Mounthly, 110, 2003, 147-152.
[4] Ekmekci N. and İlarslan, K.: Higher Curvatures of a Regular Curve in Lorentzian Space, Journal of Institute of Math. and Comp. Sci., Vol. 11, No. 2, 1998, 97-102.
[5] İlarslan, K., Nešović, E. and Petrović-Torgašev, M.: Some Characterizations of Rectifying Curves in the Minkowski 3-space, Novi Sad J. Math. Vol 33, No. 2, 2003, 23-32.
[6] O‘Neill, B.: Semi - Riemannian geometry, with applications to relativity. Academic Press. New York, 1983.
[7] Petrović-Torgašev, M. and Šućurović,E.: Some characterizations of Lorentzian spherical spacelike curves with the timelike and null principal normal, Mathematica Moravica, 4, 2000, 83-92.
[8] Petrović-Torgašev, M. and Šućurović, E.: Some characterizations of curves lying on the pseudohyperbolic space \mathbb{H}_{0}^{2} in the Minkowski space \mathbb{E}_{1}^{3}, Kragujevac J. Math., 22, 2000, 7182.
[9] Walrave, J.: Curves and Surfaces in Minkowski Space, Ph.D. thesis, K. U. Leuven, Fac. of Science, Leuven, 1995.
[10] Wong, Y. C.: A global formulation of the condition for a curve to lie in a sphere, Monatschefte fur Mathematik, 67, 1963, 363-365.
[10] Wong, Y. C.: On a explicit characterization of spherical curves, Proceedings of the American Math. Soc., 34, 1972, 239-242.

Kazım İLARSLAN

Received 01.10.2003
Department of Mathematics,
Faculty of Sciences and Arts,
Kocatepe University,
A.N. Sezer Campus, Afyon-TURKEY
e-mail: kilarslan@aku.edu.tr

[^0]: 1991 Mathematics Subject Classification: 53C50, 53C40.

