On the Nilpotency Class of Lie Rings With Fixed-Point-Free Automorphisms

Pavel Shumyatsky

Abstract

Let L be a solvable Lie ring with derived length s. Assume that L admits an automorphism ϕ of prime order $p \geq 11$ such that $C_{L}(\phi)=0$. It is proved that the class of L is less than $\frac{(p-2)^{s+1}}{(p-3)^{2}}$.

Key words and phrases: automorphisms, Lie rings

1. Introduction

An automorphism ϕ of a Lie ring L is called fixed-point-free if $C_{L}(\phi)=0$. Here, as usual, $C_{L}(\phi)$ denotes the set $\left\{x \in L ; x^{\phi}=x\right\}$. In [1] Higman showed that there exists a function $h(p)$ depending only on p such that if L is any Lie ring admitting a fixed-pointfree automorphism ϕ of prime order p, then L is nilpotent and the nilpotency class of L is at most $h(p)$. He also showed that the class of a nilpotent group with a fixed-point-free automorphism of order p is at most $h(p)$. The minimal function satisfying the above condition is now called the Higman function. It is well-known elementary results that $h(2)=1$ and $h(3)=2$. Higman proved that $h(p) \geq \frac{p^{2}-1}{4}$ for $p>2$ and that $h(5)=6$. Scimemi showed that $h(7)=12$. The question about exact values of $h(p)$ for $p \geq 11$ still is open.

[^0]
SHUMYATSKY

An upper bound for $h(p)$ was given by Kreknin and Kostrikin in [3]. They showed that

$$
h(p) \leq \frac{(p-1)^{2^{p-1}-1}-1}{p-2} .
$$

One of the crucial steps in the result of Kreknin and Kostrikin is the following theorem.
Theorem 1.1 Let L be a solvable Lie ring with derived length s. Assume that L admits an automorphism ϕ of prime order p such that $C_{L}(\phi)=0$. Then L is nilpotent and the class of L is at most $\frac{(p-1)^{s}-1}{p-2}$.

In [5] Meixner strengthened Theorem 1.1 by showing that under the above hypothesis L is of class at most $(p-1)^{s-1}$. Our goal in the present paper is to obtain a further improvement of Theorem 1.1. Since the precise values of $h(p)$ with $p \leq 7$ are known, we consider the case $p \geq 11$. It will be shown (see Theorem 3.7) that in this case the class of L is less than $\frac{(p-2)^{s+1}}{(p-3)^{2}}$. Combining this with Kreknin's theorem [4], that says that the derived length of a Lie ring with a fixed-point-free automorphism of finite order is bounded by a function of the order of the automorphism, it is immediate that

$$
h(p) \leq \frac{(p-2)^{2^{p-1}}-1}{(p-3)^{2}} .
$$

A yet better bound for $h(p)$ can be obtained by analysing the proof of Kreknin's theorem, but this is beyond the purpose of the paper.

2. Some elementary lemmas

Given elements $l_{1}, l_{2}, \ldots, l_{m}$ of a Lie ring L, we denote by $\left[l_{1}, l_{2}, \ldots, l_{m}\right]$ the element $\left[\ldots\left[\left[l_{1}, l_{2}\right], \ldots, l_{m-1}\right], l_{m}\right]$. Let $L_{i_{1}}, \ldots, L_{i_{m}}$ be some not necessarily distinct subsets of L. We denote by $\left[L_{i_{1}}, \ldots, L_{i_{m}}\right]$ the subgroup of the additive group of L generated by all elements of the form $\left[l_{1}, l_{2}, \ldots, l_{m}\right]$, where each l_{j} belongs to $L_{i_{j}}$. The symbols $L^{(k)}$ and $\gamma_{k}(L)$ denote the k th term of the derived series of L and the k th term of the lower central series of L. As usual, we write L^{\prime} in place of $L^{(1)}$. The centralizer $C_{L}(R)$ of a subset R in L is defined by $C_{L}(R)=\{x \in L ;[R, x]=0\}$.

Throughout the paper \mathbb{Z}_{p} denotes the additively written cyclic group of prime order $p \geq 11$. Let t, i_{1}, \ldots, i_{k} be not necessarily distinct non-zero elements in \mathbb{Z}_{p}. We say that

SHUMYATSKY

i_{1}, \ldots, i_{k} produce t if there exists a subset S of $\{1,2, \ldots, k\}$ such that $t=\sum_{j \in S} i_{j}$. We assume here that the sum of the empty set of elements of \mathbb{Z}_{p} is zero. Our first lemma is taken from [3]. For the reader's convenience we include the proof.

Lemma 2.1 Let i_{1}, \ldots, i_{k} be not necessarily distinct non-zero elements of \mathbb{Z}_{p} (p a prime). Then either they produce at least $k+1$ pairwise distinct elements of \mathbb{Z}_{p} or else they produce all elements of \mathbb{Z}_{p}.
Proof. Let M_{s} denote the set of all elements produced by i_{1}, \ldots, i_{s}. We prove the lemma by induction on k. If $k=1$ then M_{k} consists of two elements, namely 0 and i_{1}. Thus in the case $k=1$ the lemma is true. Assume that $k \geq 2$. Note that $M_{k}=M_{k-1} \cup M_{k-1}+i_{k}$. By induction, M_{k-1} either consists of at least k elements or $M_{k-1}=\mathbb{Z}_{p}$. Clearly the lemma fails to be true if and only if $\left|M_{k-1}\right|=k<p$ and $M_{k-1}+i_{k}=M_{k-1}$. The condition $M_{k-1}+i_{k}=M_{k-1}$ implies that M_{k-1} contains the subgroup of \mathbb{Z}_{p} generated by i_{k}. Therefore $M_{k-1}=\mathbb{Z}_{p}$, a contradiction against the assumption that $\left|M_{k-1}\right|=k<p$.

Lemma 2.2 Let i_{1}, \ldots, i_{k} be non-zero elements of \mathbb{Z}_{p} which produce exactly $k+1<p$ pairwise distinct elements of \mathbb{Z}_{p}. Then for any $j \in\{1, \ldots, k\}$ we have either $i_{j}=i_{1}$ or $i_{j}=-i_{1}$.

Proof. We use induction on k. Let $k=2$. If $i_{2} \neq \pm i_{1}$, then the elements $0, i_{1}, i_{2}, i_{1}+i_{2}$ are pairwise distinct. Hence i_{1}, i_{2} produce at least $k+2=4$ elements. Therefore, if $k \leq 2$, the lemma holds.

Assume that $k \geq 3$. As in the proof of Lemma 2.1 let M_{s} denote the set of all elements produced by i_{1}, \ldots, i_{s}. We have $M_{k}=M_{k-1} \cup M_{k-1}+i_{k}$.

By Lemma 2.1 M_{k-1} contains at least k elements and, certainly, our hypothesis implies that M_{k-1} contains at most $k+1$ elemens. If $\left|M_{k-1}\right|=k+1$ then $M_{k-1}=M_{k}$ and therefore M_{k-1} contains the subgroup of \mathbb{Z}_{p} generated by i_{k}. In this case $\left|M_{k-1}\right|=p$ which, contradicts the assumption that $k+1<p$. Thus, $\left|M_{k-1}\right|=k$ and we are in a position to apply the induction hypothesis. So for each $j \in\{1, \ldots, k-1\}$ we have either $i_{j}=i_{1}$ or $i_{j}=-i_{1}$.

We certainly can reverse the rôles of i_{k} and of i_{k-1}. Since $k \geq 3$, we obtain that either $i_{k}=i_{1}$ or $i_{k}=-i_{1}$. The lemma follows.

SHUMYATSKY

Lemma 2.3 Let $t, i_{1}, \ldots, i_{p-1}$ be not necessarily distinct non-zero elements of \mathbb{Z}_{p} such that i_{1}, \ldots, i_{p-2} do not produce $-t$. Then for any $j=1, \ldots, p-2$, satisfying the condition that $i_{j}+i_{p-1} \neq 0$, the elements $i_{1}, \ldots, i_{j-1}, i_{j}+i_{p-1}, i_{j+1}, \ldots, i_{p-2}$ produce $-t$.
Proof. Since the ordering of i_{1}, \ldots, i_{p-2} plays no rôle, it suffices to prove the lemma only for $j=p-2$. We have to show that $i_{1}, \ldots, i_{p-3}, i_{p-2}+i_{p-1}$ produce $-t$. Let M_{s} denote the set of all elements produced by $i_{1}, \ldots, i_{s-1}, i_{s}$. Then

$$
M_{p-2}=M_{p-3} \cup M_{p-3}+i_{p-2}
$$

Also, if M^{*} is the set of all elements produced by $i_{1}, \ldots, i_{p-3}, i_{p-2}+i_{p-1}$, then

$$
M^{*}=M_{p-3} \cup M_{p-3}+i_{p-2}+i_{p-1}
$$

By Lemma 2.1 M_{p-3} contains at least $p-2$ elements. Since

$$
-t \notin M_{p-2}=M_{p-3} \cup M_{p-3}+i_{p-2}
$$

we conclude that $-t-i_{p-2} \notin M_{p-3}$. Hence, $M_{p-3}=\mathbb{Z}_{p} \backslash\left\{-t,-t-i_{p-2}\right\}$. Now the assumption that $i_{p-2}+i_{p-1} \neq 0$ implies that $-t-i_{p-2} \in M_{p-3}$. We see that

$$
-t \in M_{p-3}+i_{p-2}+i_{p-1} \subseteq M^{*}
$$

The proof is complete.

3. \mathbb{Z}_{p}-graded Lie rings

Recall that, for an additively written abelian group A, a Lie ring L is said to be A-graded if the additive group of L is presented as a sum $L=\sum_{i \in A} L_{i}$ of subgroups L_{i} indexed by elements of A in such a way that $\left[L_{i}, L_{j}\right] \leq L_{i+j}$ for all $i, j \in A$. Given an A-graded Lie ring $L=\sum_{i \in A} L_{i}$, an ideal N of L is called homogeneous if $N=\sum_{i \in A} N_{i}$, where $N_{i}=N \cap L_{i}$. It is easy to see that the members of the derived series and the members of the lower central series of an A-graded Lie ring are homogeneous.

SHUMYATSKY

Lemma 3.1 Let $L=\sum L_{i}$ be a \mathbb{Z}_{p}-graded Lie ring with $L_{0}=0$. Let t, i_{1}, \ldots, i_{k} be not necessarily distinct non-zero elements in \mathbb{Z}_{p} such that i_{1}, \ldots, i_{k} produce $-t$. Assume $R_{i_{1}}, \ldots, R_{i_{k}}$ are subsets of $L_{i_{1}}, \ldots, L_{i_{k}}$ respectively, and denote by R the subring generated by the $R_{i_{j}}$. Let $M=L_{t} \cap C_{L}\left(R^{\prime}\right)$. Then $\left[M, R_{i_{1}}, \ldots, R_{i_{k}}\right]=0$.
Proof. Let us choose arbitrary elements $m \in M$ and $l_{j} \in R_{i_{j}} ; j=1, \ldots, k$. Since for any $x \in C_{L}\left(R^{\prime}\right)$ and any $a, b \in R$ we have $[x, a, b]=[x, b, a]$, it follows that

$$
\left[m, l_{1}, l_{2}, \ldots, l_{j}, l_{j+1}, \ldots, l_{k}\right]=\left[m, l_{1}, l_{2}, \ldots, l_{j+1}, l_{j}, \ldots, l_{k}\right]
$$

Thus the above commutator does not change under any permutation of the the l_{j}. By the hypothesis there exist several indices $i_{a_{1}}, i_{a_{2}}, \ldots, i_{a_{r}}$, among the i_{1}, \ldots, i_{k}, whose sum equals $-t$. Then

$$
\left.\left[m, l_{1}, \ldots, l_{k}\right]=\underline{\left[m, l_{a_{1}}, \ldots, l_{a_{r}}\right.}, l_{b_{1}}, \ldots, l_{b_{r_{1}}}\right], \quad\left(r+r_{1}=k\right) .
$$

The underlined subcommutator lies in $L_{0}=0$ so the commutator $\left[m, l_{1}, \ldots, l_{k}\right.$] is zero as well. Since $\left[M, R_{i_{1}}, \ldots, R_{i_{k}}\right]$ is generated by commutators of the form $\left[m, l_{1}, \ldots, l_{k}\right]$, the lemma follows.

Lemma 3.2 Let $L=\sum L_{i}$ be a \mathbb{Z}_{p}-graded Lie ring such that $L_{0}=0$. Let $r \in \mathbb{Z}_{p}$ and $H=\left\langle L_{r}, L_{-r}\right\rangle$. Then $[L, \underbrace{H, \ldots, H}_{p-1}]=0$.

Proof. Since $L=\sum L_{i}$, it is sufficient to show that for any $t \in \mathbb{Z}_{p}$ and any $i_{1}, \ldots, i_{p-1}= \pm r$ we have

$$
\left[L_{t}, L_{i_{1}} \ldots L_{i_{p-1}}\right]=0
$$

By Lemma $2.1 i_{1}, \ldots, i_{p-1}$ produce p elements. In particular, they produce $-t$. Let J be some minimal subset of $\{1, \ldots, p-1\}$ such that $-t=\sum_{j \in J} i_{j}$. We claim that either $i_{j}=r$ for any $j \in J$ or $i_{j}=-r$ for any $j \in J$. Indeed, suppose $i_{j_{1}}=r$ and $i_{j_{2}}=-r$. Then $i_{j_{1}}+i_{j_{2}}=0$. Put $J_{1}=J \backslash\left\{j_{1}, j_{2}\right\}$. Obviously we have $-t=\sum_{j \in J_{1}} i_{j}$. This contradicts the minimality of J.

Thus without any loss of generality we may assume that $i_{j}=r$ for any $j \in J$. So if $s=$ $|J|$, then $-t=s \cdot r$. Since $\left[L_{-r}, L_{r}\right] \leq L_{0}=0$, it is clear that $\left[L, L_{-r}, L_{r}\right]=\left[L, L_{r}, L_{-r}\right]$.

SHUMYATSKY

We now easily derive that $\left[L_{t}, L_{i_{1}}, \ldots, L_{i_{p-1}}\right]=[L_{t}, \underbrace{L_{r}, \ldots, L_{r}}_{s}, L_{k_{1}}, \ldots, L_{k_{p-1-s}}]$, where $\left\{k_{1}, \ldots, k_{p-1-s}\right\}=\left\{i_{1}, \ldots, i_{p-1}\right\} \backslash J$. Since $[L_{t}, \underbrace{L_{r}, \ldots, L_{r}}_{s}] \leq L_{0}=0$, it follows that $\left[L_{t}, L_{i_{1}} \ldots L_{i_{p-1}}\right]=0$.

The next theorem was first proved by Meixner [5]. Our proof is quite different, though.

Theorem 3.3 Let $L=\sum L_{i}$ be a \mathbb{Z}_{p}-graded Lie ring such that $L_{0}=0$. Assume L is metabelian. Then L is nilpotent of class at most $p-1$.
Proof. It suffices to show that for any $i_{1}, \ldots, i_{p} \in \mathbb{Z}_{p} \backslash\{0\}$ and any $l_{k} \in L_{i_{k}}, k=$ $1, \ldots, p$, we have $\left[l_{1}, l_{2}, \ldots, l_{p}\right]=0$. If i_{3}, \ldots, i_{p} produce $-i_{1}-i_{2}$ then, since $\left[l_{1}, l_{2}\right] \in$ $L_{i_{1}+i_{2}}$, Lemma 3.1 tells that $\left[l_{1}, l_{2}, \ldots, l_{p}\right]=0$. Suppose that i_{3}, \ldots, i_{p} do not produce $-i_{1}-i_{2}$. In this case by Lemma 2.2 there exists $r \in \mathbb{Z}_{p}$ such that $i_{j}= \pm r$ for any $j=3, \ldots, p$. Set $H=\left\langle L_{r}, L_{-r}\right\rangle$. If one of i_{1}, i_{2} equals $\pm r$ then obviously

$$
\left[l_{1}, \ldots, l_{p}\right] \in[L, \underbrace{H, \ldots, H}_{p-1}]
$$

and it follows from Lemma 3.2 that $\left[l_{1}, l_{2}, \ldots, l_{p}\right]=0$.
Thus, assume that none of i_{1}, i_{2} equals $\pm r$ and write

$$
\left[l_{1}, \ldots, l_{p}\right]=\left[l_{1}, l_{3}, l_{2}, l_{4}, \ldots, l_{p}\right]-\left[l_{2}, l_{3}, l_{1}, l_{4}, \ldots, l_{p}\right] .
$$

Since $i_{2} \neq \pm r$, Lemmas 2.1 and 2.2 yield that $i_{2}, i_{4}, \ldots, i_{p}$ produce any element in \mathbb{Z}_{p}. In particular they produce $-\left(i_{1}+i_{3}\right)$. Note that $\left[l_{1}, l_{3}\right] \in L^{\prime} \cap L_{i_{1}+i_{3}}$. As L^{\prime} is abelian, Lemma 3.1 implies that $\left[l_{1}, l_{3}, l_{2}, l_{4}, \ldots, l_{p}\right]=0$. Similarly, one can derive that $\left[l_{2}, l_{3}, l_{1}, l_{4}, \ldots, l_{p}\right]=0$. This shows that $\left[l_{1}, l_{2}, \ldots, l_{p}\right]=0$ for any $l_{k} \in L_{i_{k}} ; k=1, \ldots, p$. The lemma follows.

Lemma 3.4 Let $L=\sum L_{i}$ be a \mathbb{Z}_{p}-graded Lie ring with $L_{0}=0$. Let M and N be homogeneous ideals of L such that $M \leq C_{L}\left(N^{\prime}\right)$. Then

$$
[M, \underbrace{N, \ldots, N}_{p-2}] \leq Z(L) .
$$

SHUMYATSKY

Proof. For any $i \in \mathbb{Z}_{p}$ we let $M_{i}=M \cap L_{i}$ and $N_{i}=N \cap L_{i}$. Choose arbitrary elements

$$
m \in M_{t}, n_{k} \in N_{i_{k}} ; k=1, \ldots, p-2, \quad l \in L_{i_{p-1}}
$$

Since $M=\sum M_{i}$ and $N=\sum N_{i}$, it suffices to show that

$$
\left[m, n_{1}, \ldots, n_{p-2}, l\right]=0
$$

If i_{1}, \ldots, i_{p-2} produce $-t$, then $\left[m, n_{1}, \ldots, n_{p-2}, l\right]=0$ by Lemma 3.1. Assume that i_{1}, \ldots, i_{p-2} do not produce $-t$. We have

$$
\left[m, n_{1}, \ldots, n_{p-2}, l\right]=\left[m, n_{1}, \ldots, n_{p-3}, l, n_{p-2}\right]+\left[m, n_{1}, \ldots, n_{p-3},\left[n_{p-2}, l\right]\right]
$$

Note that $\left[n_{p-2}, l\right] \in N_{i_{p-2}+i_{p-1}}$. Lemmas 3.1 and 2.3 now tell us that if $i_{p-2}+i_{p-1} \neq 0$ then

$$
\left[m, n_{1}, \ldots, n_{p-3},\left[n_{p-2}, l\right]\right]=0
$$

Obviously this is true also when $i_{p-2}+i_{p-1}=0$ because, in this case, $\left[n_{p-2}, l\right]=0$. Therefore we can conclude that

$$
\left[m, n_{1}, \ldots, n_{p-2}, l\right]=\left[m, n_{1}, \ldots, n_{p-3}, l, n_{p-2}\right]
$$

The above argument allows us to transfer l in the commutator $\left[m, n_{1}, \ldots, n_{p-3}, l, n_{p-2}\right.$] further on the left, so we obtain

$$
\left[m, n_{1}, \ldots, n_{p-2}, l\right]=\left[m, l, n_{1}, \ldots, n_{p-2}\right] .
$$

Note that $[m, l] \in M_{t+i_{p-1}}$ and, since $i_{p-1} \neq 0$, it follows that $t+i_{p-1} \neq t$. Taking into account that i_{1}, \ldots, i_{p-2} do not produce $-t$ and using Lemma 2.1 we conclude that i_{1}, \ldots, i_{p-2} produce any element of \mathbb{Z}_{p} except $-t$. In particular, they produce $-t-i_{p-1}$. Now the equality $\left[m, n_{1}, \ldots, n_{p-2}, l\right]=0$ follows from Lemma 3.1. The lemma is established.

Let for the rest of the paper $\sigma(s)$ stand for the number

$$
\frac{(p-2)^{s}-1}{p-3}
$$

We denote by $Z_{i}(L)$ the i th term of the upper central series of L.

SHUMYATSKY

Lemma 3.5 Let $L=\sum L_{i}$ be a \mathbb{Z}_{p}-graded Lie ring with $L_{0}=0$. Suppose that M is a homogeneous ideal of L such that $L / C_{L}(M)$ is solvable of derived length s. Then $M \leq Z_{\sigma(s+1)}(L)$.
Proof. We will use induction on s, the case $s \leq 1$ being obvious from Lemma 3.4. Assume that $s \geq 2$. Let $N=L^{(s-1)}$. Then N is a homogeneous ideal of L and $M \leq C_{L}\left(N^{\prime}\right)$. By Lemma 3.4,

$$
[M, \underbrace{N, \ldots, N}_{p-2}] \leq Z(L)
$$

Let $\bar{L}=L / Z(L)$, and let \bar{X} denote the image in \bar{L} of a subset X of L. Set $K=$ $[M, \underbrace{N, \ldots, N}_{p-3}]$. Then $\bar{L} / C_{\bar{L}}(\bar{K})$ is of derived length at most $s-1$ and so, by the induction hypothesis,

$$
\bar{K} \leq Z_{\sigma(s)}(\bar{L})
$$

Considering now $\bar{L} / Z_{\sigma(s)}(\bar{L})$ and repeating the argument, we obtain

$$
[\bar{M}, \underbrace{\bar{N}, \ldots, \bar{N}}_{p-4}] \leq Z_{2 \sigma(s)}(\bar{L})
$$

and, more generally,

$$
[\bar{M}, \underbrace{\bar{N}, \ldots, \bar{N}}_{p-i}] \leq Z_{(i-2) \sigma(s)}(\bar{L})
$$

It becomes clear that $\bar{M} \leq Z_{(p-2) \sigma(s)}(\bar{L})$. Therefore $M \leq Z_{(p-2) \sigma(s)+1}(L)$. Remark that $(p-2) \sigma(s)+1=\sigma(s+1)$. The lemma follows.

Theorem 3.6 Let $L=\sum L_{i}$ be a \mathbb{Z}_{p}-graded Lie ring such that $L_{0}=0$. If L is of derived length s then L is nilpotent and the class of L is at most $1+(p-2) \sum_{i=0}^{s-1} \sigma(i)$. In particular, the class of L is less than $\frac{(p-2)^{s+1}}{(p-3)^{2}}$.

Proof. Assume that $s \geq 2$ and use induction on s. Let N be the metabelian term of the derived series of L and let $M=N^{\prime}$. The induction hypothesis will be that L / M

SHUMYATSKY

is nilpotent and the class of L / M is at most $1+(p-2) \sum_{i=0}^{s-2} \sigma(i)$. Theorem 3.3 tells us that $M \leq Z_{p-2}(N)$. Set $M_{i}=[M, \underbrace{N, \ldots, N}_{p-2-i}]$. Then $M_{i} \leq Z_{i}(N)$ and $M_{p-2}=M$. Since $M_{1} \leq Z(N)$, it follows that the derived length of $L / C_{L}\left(M_{1}\right)$ is at most $s-2$. Now Lemma 3.5 yields $M_{1} \leq Z_{\sigma(s-1)}(L)$. Considering $L / Z_{\sigma(s-1)}(L)$ and applying Lemma 3.5 again we obtain

$$
M_{2} \leq Z_{2 \sigma(s-1)}
$$

Eventually, we derive

$$
M=M_{p-2} \leq Z_{(p-2) \sigma(s-1)}(L)
$$

Therefore, L is of class at most

$$
1+(p-2) \sum_{i=0}^{s-2} \sigma(i)+(p-2) \sigma(s-1)=1+(p-2) \sum_{i=0}^{s-1} \sigma(i)
$$

A direct calculation shows that

$$
1+(p-2) \sum_{i=0}^{s-1} \sigma(i)=1-\frac{(p-2)}{(p-3)^{2}}-\frac{(p-2)(s-1)}{(p-3)}+\frac{(p-2)^{s+1}}{(p-3)^{2}}
$$

which is less than $\frac{(p-2)^{s+1}}{(p-3)^{2}}$.

Theorem 3.7 Let L be a solvable Lie ring with derived length s. Assume that L admits an automorphism ϕ of prime order p such that $C_{L}(\phi)=0$. Then L is nilpotent and the class of L is less than $\frac{(p-2)^{s+1}}{(p-3)^{2}}$.
Proof. Let ω be a primitive nth root of unity, and let us set $K=L \otimes \mathbb{Z}[\omega]$. Then, in a natural way, ϕ can be regarded as an automorphism of K with the property that $C_{K}(\phi)=0$. Put $K_{i}=\left\{l \in K \mid l^{\phi}=\omega^{i} l\right\}$ and $R=\sum_{i \in \mathbb{Z}_{p}} K_{i}$. Then $\left[K_{i}, K_{j}\right] \leq K_{i+j}$ for any $i, j \in \mathbb{Z}_{p}$. Thus, the ring R (viewed as an algebra over $\mathbb{Z}[\omega]$) becomes \mathbb{Z}_{p}-graded. Since $C_{K}(\phi)=0$, it is clear that $K_{0}=0$. Furthermore, the derived length of K equals that of L so that R is solvable and has derived length at most s. Set $f=\frac{(p-2)^{s+1}}{(p-3)^{2}}$. Now Theorem 3.6 tells us that R is nilpotent with class at most f.

SHUMYATSKY

On the other hand, the subring R contains $p K$ [2, Lemma 4.1.1] so it follows that $\gamma_{f+1}(p K)=0$. However $\gamma_{f+1}(p K)$ is the same as $p^{f+1} \gamma_{f+1}(K)$. It follows that the additive group of $\gamma_{f+1}(K)$ is a p-group. Since $\gamma_{f+1}(K)$ admits a fixed-point-free automorphism of order p, we conclude that $\gamma_{f+1}(K)=0$, as required.

References

[1] G. Higman, Groups and Lie rings having automorphisms without non-trivial fixed points, J. London Math. Soc. 32 (1957), 321-334.
[2] E.I. Khukhro, "Nilpotent Groups and their Automorphisms", de Gruyter-Verlag, Berlin, 1993.
[3] V.A. Kreknin, A.I. Kostrikin, Lie algebras with regular automorphisms, Soviet Math. Dokl, 4(1963), 355-358.
[4] V.A. Kreknin, Solvability of Lie algebras with a regular automorphism of finite period, Soviet Math. Dokl, 4(1963), 683-685.
[5] Th. Meixner, Über endliche Gruppen mit Automorphismen, deren Fixpunktgruppen beschränkt sind, Dissertation, Univ. Erlangen-Nürnberg, 1979.

Pavel SHUMYATSKY
Received 03.10.2003
Department of Mathematics,
University of Brasilia,
Brasilia-DF, 70910-900 BRAZIL
e-mail: pavel@mat.unb.br

[^0]: 1991 Mathematics Subject Classification: 17B70.
 The author was supported by CNPq-Brazil

