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On the Nilpotency Class of Lie Rings With

Fixed-Point-Free Automorphisms

Pavel Shumyatsky

Abstract

Let L be a solvable Lie ring with derived length s. Assume that L admits an

automorphism φ of prime order p ≥ 11 such that CL(φ) = 0. It is proved that the

class of L is less than (p−2)s+1

(p−3)2
.
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1. Introduction

An automorphism φ of a Lie ring L is called fixed-point-free if CL(φ) = 0. Here, as
usual, CL(φ) denotes the set {x ∈ L; xφ = x}. In [1] Higman showed that there exists a
function h(p) depending only on p such that if L is any Lie ring admitting a fixed-point-
free automorphism φ of prime order p, then L is nilpotent and the nilpotency class of L
is at most h(p). He also showed that the class of a nilpotent group with a fixed-point-free
automorphism of order p is at most h(p). The minimal function satisfying the above
condition is now called the Higman function. It is well-known elementary results that

h(2) = 1 and h(3) = 2. Higman proved that h(p) ≥ p2−1
4 for p > 2 and that h(5) = 6.

Scimemi showed that h(7) = 12. The question about exact values of h(p) for p ≥ 11 still
is open.
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An upper bound for h(p) was given by Kreknin and Kostrikin in [3]. They showed
that

h(p) ≤ (p − 1)2p−1−1 − 1
p− 2

.

One of the crucial steps in the result of Kreknin and Kostrikin is the following theorem.

Theorem 1.1 Let L be a solvable Lie ring with derived length s. Assume that L admits
an automorphism φ of prime order p such that CL(φ) = 0. Then L is nilpotent and the

class of L is at most (p−1)s−1
p−2 .

In [5] Meixner strengthened Theorem 1.1 by showing that under the above hypothesis
L is of class at most (p − 1)s−1. Our goal in the present paper is to obtain a further
improvement of Theorem 1.1. Since the precise values of h(p) with p ≤ 7 are known, we
consider the case p ≥ 11. It will be shown (see Theorem 3.7) that in this case the class

of L is less than (p−2)s+1

(p−3)2 . Combining this with Kreknin’s theorem [4], that says that

the derived length of a Lie ring with a fixed-point-free automorphism of finite order is
bounded by a function of the order of the automorphism, it is immediate that

h(p) ≤ (p− 2)2p−1 − 1
(p − 3)2

.

A yet better bound for h(p) can be obtained by analysing the proof of Kreknin’s theorem,
but this is beyond the purpose of the paper.

2. Some elementary lemmas

Given elements l1 , l2, . . . , lm of a Lie ring L, we denote by [l1, l2, . . . , lm] the element
[. . . [[l1, l2], . . . , lm−1], lm]. Let Li1 , . . . , Lim be some not necessarily distinct subsets of L.
We denote by [Li1 , . . . , Lim ] the subgroup of the additive group of L generated by all
elements of the form [l1, l2, . . . , lm], where each lj belongs to Lij . The symbols L(k) and
γk(L) denote the kth term of the derived series of L and the kth term of the lower central
series of L. As usual, we write L′ in place of L(1). The centralizer CL(R) of a subset R
in L is defined by CL(R) = {x ∈ L; [R, x] = 0}.

Throughout the paper Zp denotes the additively written cyclic group of prime order
p ≥ 11. Let t, i1, . . . , ik be not necessarily distinct non-zero elements in Zp. We say that
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i1, . . . , ik produce t if there exists a subset S of {1, 2, . . . , k} such that t =
∑
j∈S

ij . We

assume here that the sum of the empty set of elements of Zp is zero. Our first lemma is
taken from [3]. For the reader’s convenience we include the proof.

Lemma 2.1 Let i1, . . . , ik be not necessarily distinct non-zero elements of Zp (p a prime).
Then either they produce at least k+1 pairwise distinct elements of Zp or else they produce
all elements of Zp.

Proof. Let Ms denote the set of all elements produced by i1, . . . , is. We prove
the lemma by induction on k. If k = 1 then Mk consists of two elements, namely 0
and i1. Thus in the case k = 1 the lemma is true. Assume that k ≥ 2. Note that
Mk = Mk−1 ∪ Mk−1 + ik. By induction, Mk−1 either consists of at least k elements
or Mk−1 = Zp. Clearly the lemma fails to be true if and only if |Mk−1| = k < p and
Mk−1 + ik = Mk−1. The condition Mk−1 + ik = Mk−1 implies that Mk−1 contains the
subgroup of Zp generated by ik. Therefore Mk−1 = Zp, a contradiction against the as-
sumption that |Mk−1| = k < p. 2

Lemma 2.2 Let i1, . . . , ik be non-zero elements of Zp which produce exactly k + 1 < p

pairwise distinct elements of Zp. Then for any j ∈ {1, . . . , k} we have either ij = i1 or
ij = −i1.

Proof. We use induction on k. Let k = 2. If i2 6= ±i1, then the elements 0, i1, i2, i1 +i2
are pairwise distinct. Hence i1, i2 produce at least k+2 = 4 elements. Therefore, if k ≤ 2,
the lemma holds.

Assume that k ≥ 3. As in the proof of Lemma 2.1 let Ms denote the set of all elements
produced by i1, . . . , is. We have Mk = Mk−1 ∪Mk−1 + ik.

By Lemma 2.1Mk−1 contains at least k elements and, certainly, our hypothesis implies
that Mk−1 contains at most k + 1 elemens. If |Mk−1| = k + 1 then Mk−1 = Mk and
therefore Mk−1 contains the subgroup of Zp generated by ik. In this case |Mk−1| = p

which, contradicts the assumption that k + 1 < p. Thus, |Mk−1| = k and we are in a
position to apply the induction hypothesis. So for each j ∈ {1, . . . , k− 1} we have either
ij = i1 or ij = −i1 .

We certainly can reverse the rôles of ik and of ik−1. Since k ≥ 3, we obtain that either
ik = i1 or ik = −i1. The lemma follows. 2
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Lemma 2.3 Let t, i1, . . . , ip−1 be not necessarily distinct non-zero elements of Zp such
that i1, . . . , ip−2 do not produce −t. Then for any j = 1, . . . , p−2, satisfying the condition
that ij + ip−1 6= 0, the elements i1, . . . , ij−1, ij + ip−1, ij+1, . . . , ip−2 produce −t.
Proof. Since the ordering of i1, . . . , ip−2 plays no rôle, it suffices to prove the lemma
only for j = p − 2. We have to show that i1, . . . , ip−3, ip−2 + ip−1 produce −t. Let Ms

denote the set of all elements produced by i1, . . . , is−1, is. Then

Mp−2 = Mp−3 ∪Mp−3 + ip−2.

Also, if M∗ is the set of all elements produced by i1, . . . , ip−3, ip−2 + ip−1, then

M∗ = Mp−3 ∪Mp−3 + ip−2 + ip−1.

By Lemma 2.1 Mp−3 contains at least p− 2 elements. Since

−t 6∈Mp−2 = Mp−3 ∪Mp−3 + ip−2,

we conclude that −t − ip−2 6∈ Mp−3. Hence, Mp−3 = Zp\{−t,−t − ip−2}. Now the
assumption that ip−2 + ip−1 6= 0 implies that −t − ip−2 ∈Mp−3. We see that

−t ∈ Mp−3 + ip−2 + ip−1 ⊆M∗.

The proof is complete. 2

3. Zp-graded Lie rings

Recall that, for an additively written abelian group A, a Lie ring L is said to be
A-graded if the additive group of L is presented as a sum L =

∑
i∈A

Li of subgroups Li

indexed by elements of A in such a way that [Li, Lj] ≤ Li+j for all i, j ∈ A. Given an
A-graded Lie ring L =

∑
i∈A

Li, an ideal N of L is called homogeneous if N =
∑
i∈A

Ni, where

Ni = N ∩ Li. It is easy to see that the members of the derived series and the members
of the lower central series of an A-graded Lie ring are homogeneous.
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Lemma 3.1 Let L =
∑
Li be a Zp-graded Lie ring with L0 = 0. Let t, i1, . . . , ik be

not necessarily distinct non-zero elements in Zp such that i1, . . . , ik produce −t. Assume
Ri1 , . . . , Rik are subsets of Li1 , . . . , Lik respectively, and denote by R the subring generated
by the Rij. Let M = Lt ∩ CL(R′). Then [M,Ri1, . . . , Rik] = 0.

Proof. Let us choose arbitrary elements m ∈ M and lj ∈ Rij ; j = 1, . . . , k. Since for
any x ∈ CL(R′) and any a, b ∈ R we have [x, a, b] = [x, b, a], it follows that

[m, l1, l2, . . . , lj, lj+1, . . . , lk] = [m, l1, l2, . . . , lj+1, lj, . . . , lk].

Thus the above commutator does not change under any permutation of the the lj . By
the hypothesis there exist several indices ia1 , ia2 , . . . , iar , among the i1, . . . , ik, whose sum
equals −t. Then

[m, l1, . . . , lk] = [m, la1 , . . . , lar , lb1 , . . . , lbr1 ], (r + r1 = k).

The underlined subcommutator lies in L0 = 0 so the commutator [m, l1, . . . , lk] is zero as
well. Since [M,Ri1, . . . , Rik] is generated by commutators of the form [m, l1, . . . , lk], the
lemma follows. 2

Lemma 3.2 Let L =
∑
Li be a Zp-graded Lie ring such that L0 = 0. Let r ∈ Zp and

H = 〈Lr, L−r〉. Then [L,H, . . ., H︸ ︷︷ ︸
p−1

] = 0.

Proof. Since L =
∑
Li, it is sufficient to show that for any t ∈ Zp and any

i1, . . . , ip−1 = ±r we have

[Lt, Li1 . . . Lip−1 ] = 0.

By Lemma 2.1 i1, . . . , ip−1 produce p elements. In particular, they produce −t. Let J be
some minimal subset of {1, . . . , p− 1} such that −t =

∑
j∈J

ij . We claim that either ij = r

for any j ∈ J or ij = −r for any j ∈ J . Indeed, suppose ij1 = r and ij2 = −r. Then
ij1 + ij2 = 0. Put J1 = J\{j1, j2}. Obviously we have −t =

∑
j∈J1

ij . This contradicts the

minimality of J .

Thus without any loss of generality we may assume that ij = r for any j ∈ J . So if s =
|J |, then −t = s · r. Since [L−r, Lr] ≤ L0 = 0, it is clear that [L, L−r, Lr ] = [L, Lr, L−r].
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We now easily derive that [Lt, Li1 , . . . , Lip−1 ] = [Lt, Lr, . . . , Lr︸ ︷︷ ︸
s

, Lk1 , . . . , Lkp−1−s ], where

{k1, . . . , kp−1−s} = {i1, . . . , ip−1}\J. Since [Lt, Lr, . . . , Lr︸ ︷︷ ︸
s

] ≤ L0 = 0, it follows that

[Lt, Li1 . . .Lip−1 ] = 0. 2

The next theorem was first proved by Meixner [5]. Our proof is quite different, though.

Theorem 3.3 Let L =
∑
Li be a Zp-graded Lie ring such that L0 = 0. Assume L is

metabelian. Then L is nilpotent of class at most p− 1.

Proof. It suffices to show that for any i1, . . . , ip ∈ Zp\{0} and any lk ∈ Lik , k =
1, . . . , p, we have [l1, l2, . . . , lp] = 0. If i3, . . . , ip produce −i1 − i2 then, since [l1, l2] ∈
Li1+i2 , Lemma 3.1 tells that [l1, l2, . . . , lp] = 0. Suppose that i3, . . . , ip do not produce
−i1 − i2. In this case by Lemma 2.2 there exists r ∈ Zp such that ij = ±r for any
j = 3, . . . , p. Set H = 〈Lr , L−r〉. If one of i1, i2 equals ±r then obviously

[l1, . . . , lp] ∈ [L,H, . . . , H︸ ︷︷ ︸
p−1

]

and it follows from Lemma 3.2 that [l1, l2, . . . , lp] = 0.
Thus, assume that none of i1, i2 equals ±r and write

[l1, . . . , lp] = [l1, l3, l2, l4, . . . , lp]− [l2, l3, l1, l4, . . . , lp].

Since i2 6= ±r, Lemmas 2.1 and 2.2 yield that i2, i4, . . . , ip produce any element in
Zp. In particular they produce −(i1 + i3). Note that [l1, l3] ∈ L′ ∩ Li1+i3 . As L′ is
abelian, Lemma 3.1 implies that [l1, l3, l2, l4, . . . , lp] = 0. Similarly, one can derive that
[l2, l3, l1, l4, . . . , lp] = 0. This shows that [l1, l2, . . . , lp] = 0 for any lk ∈ Lik ; k = 1, . . . , p.
The lemma follows. 2

Lemma 3.4 Let L =
∑
Li be a Zp-graded Lie ring with L0 = 0. Let M and N be

homogeneous ideals of L such that M ≤ CL(N ′). Then

[M,N, . . . , N︸ ︷︷ ︸
p−2

] ≤ Z(L).
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Proof. For any i ∈ Zp we let Mi = M ∩ Li and Ni = N ∩ Li. Choose arbitrary
elements

m ∈Mt, nk ∈ Nik ; k = 1, . . . , p− 2, l ∈ Lip−1 .

Since M =
∑
Mi and N =

∑
Ni, it suffices to show that

[m, n1, . . . , np−2, l] = 0.

If i1, . . . , ip−2 produce −t, then [m, n1, . . . , np−2, l] = 0 by Lemma 3.1. Assume that
i1, . . . , ip−2 do not produce −t. We have

[m, n1, . . . , np−2, l] = [m, n1, . . . , np−3, l, np−2] + [m, n1, . . . , np−3, [np−2, l]].

Note that [np−2, l] ∈ Nip−2+ip−1 . Lemmas 3.1 and 2.3 now tell us that if ip−2 + ip−1 6= 0
then

[m, n1, . . . , np−3, [np−2, l]] = 0.

Obviously this is true also when ip−2 + ip−1 = 0 because, in this case, [np−2, l] = 0.
Therefore we can conclude that

[m, n1, . . . , np−2, l] = [m, n1, . . . , np−3, l, np−2].

The above argument allows us to transfer l in the commutator [m, n1, . . . , np−3, l, np−2]
further on the left, so we obtain

[m, n1, . . . , np−2, l] = [m, l, n1, . . . , np−2].

Note that [m, l] ∈ Mt+ip−1 and, since ip−1 6= 0, it follows that t + ip−1 6= t. Taking
into account that i1, . . . , ip−2 do not produce −t and using Lemma 2.1 we conclude that
i1, . . . , ip−2 produce any element of Zp except −t. In particular, they produce −t− ip−1.
Now the equality [m, n1, . . . , np−2, l] = 0 follows from Lemma 3.1. The lemma is estab-
lished. 2

Let for the rest of the paper σ(s) stand for the number

(p− 2)s − 1
p− 3

.

We denote by Zi(L) the ith term of the upper central series of L.
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Lemma 3.5 Let L =
∑
Li be a Zp-graded Lie ring with L0 = 0. Suppose that M

is a homogeneous ideal of L such that L/CL(M) is solvable of derived length s. Then
M ≤ Zσ(s+1)(L).

Proof. We will use induction on s, the case s ≤ 1 being obvious from Lemma 3.4.
Assume that s ≥ 2. Let N = L(s−1). Then N is a homogeneous ideal of L and
M ≤ CL(N ′). By Lemma 3.4,

[M,N, . . . , N︸ ︷︷ ︸
p−2

] ≤ Z(L).

Let L̄ = L/Z(L), and let X̄ denote the image in L̄ of a subset X of L. Set K =
[M,N, . . . , N︸ ︷︷ ︸

p−3

]. Then L̄/CL̄(K̄) is of derived length at most s−1 and so, by the induction

hypothesis,

K̄ ≤ Zσ(s)(L̄).

Considering now L̄/Zσ(s)(L̄) and repeating the argument, we obtain

[M̄, N̄ , . . . , N̄︸ ︷︷ ︸
p−4

] ≤ Z2σ(s)(L̄)

and, more generally,

[M̄, N̄, . . . , N̄︸ ︷︷ ︸
p−i

] ≤ Z(i−2)σ(s)(L̄).

It becomes clear that M̄ ≤ Z(p−2)σ(s)(L̄). Therefore M ≤ Z(p−2)σ(s)+1(L). Remark that
(p − 2)σ(s) + 1 = σ(s+ 1). The lemma follows. 2

Theorem 3.6 Let L =
∑
Li be a Zp-graded Lie ring such that L0 = 0. If L is of derived

length s then L is nilpotent and the class of L is at most 1+(p−2)
s−1∑
i=0

σ(i). In particular,

the class of L is less than (p−2)s+1

(p−3)2 .

Proof. Assume that s ≥ 2 and use induction on s. Let N be the metabelian term
of the derived series of L and let M = N ′. The induction hypothesis will be that L/M
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is nilpotent and the class of L/M is at most 1 + (p − 2)
s−2∑
i=0

σ(i). Theorem 3.3 tells us

that M ≤ Zp−2(N). Set Mi = [M,N, . . . , N︸ ︷︷ ︸
p−2−i

]. Then Mi ≤ Zi(N) and Mp−2 = M . Since

M1 ≤ Z(N), it follows that the derived length of L/CL(M1) is at most s−2. Now Lemma
3.5 yields M1 ≤ Zσ(s−1)(L). Considering L/Zσ(s−1)(L) and applying Lemma 3.5 again
we obtain

M2 ≤ Z2σ(s−1).

Eventually, we derive
M = Mp−2 ≤ Z(p−2)σ(s−1)(L).

Therefore, L is of class at most

1 + (p− 2)
s−2∑
i=0

σ(i) + (p− 2)σ(s− 1) = 1 + (p− 2)
s−1∑
i=0

σ(i).

A direct calculation shows that

1 + (p− 2)
s−1∑
i=0

σ(i) = 1− (p− 2)
(p− 3)2

− (p− 2)(s− 1)
(p − 3)

+
(p − 2)s+1

(p− 3)2
,

which is less than (p−2)s+1

(p−3)2 . 2

Theorem 3.7 Let L be a solvable Lie ring with derived length s. Assume that L admits
an automorphism φ of prime order p such that CL(φ) = 0. Then L is nilpotent and the

class of L is less than (p−2)s+1

(p−3)2 .

Proof. Let ω be a primitive nth root of unity, and let us set K = L ⊗ Z[ω]. Then,
in a natural way, φ can be regarded as an automorphism of K with the property that
CK(φ) = 0. Put Ki = {l ∈ K|lφ = ωil} and R =

∑
i∈Zp

Ki. Then [Ki, Kj] ≤ Ki+j for

any i, j ∈ Zp. Thus, the ring R (viewed as an algebra over Z[ω]) becomes Zp-graded.
Since CK(φ) = 0, it is clear that K0 = 0. Furthermore, the derived length of K equals

that of L so that R is solvable and has derived length at most s. Set f = (p−2)s+1

(p−3)2 . Now

Theorem 3.6 tells us that R is nilpotent with class at most f .
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On the other hand, the subring R contains pK [2, Lemma 4.1.1] so it follows that
γf+1(pK) = 0. However γf+1(pK) is the same as pf+1γf+1(K). It follows that the
additive group of γf+1(K) is a p-group. Since γf+1(K) admits a fixed-point-free auto-
morphism of order p, we conclude that γf+1(K) = 0, as required. 2
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