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Weighted Boundedness for a Rough Homogeneous

Singular Integral

Hussain Al-Qassem

Abstract

A weighted norm inequality for a homogeneous singular integral with a kernel
belonging to a certain block space is proved. Also, some applications of this in-
equality are obtained. Our results are essential improvements as well as extensions

of some known results on the weighted boundedness of singular integrals.
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1. Introduction

Let S™~! denote the unit sphere in R™ (n > 2) equipped with the normalized Lebesgue
measure do = do(-). Throughout this paper, p’ will denote the dual exponent to p, that
is1/p+1/p’ = 1. Also, we shall let  be a homogeneous function of zero which satisfies
Qe LY(S" 1) and

/ Q(u)do (u) = 0. (1.1)
Snfl

For v > 1, let A (R™) denote the set of all measurable functions » on R* such that

R

1
sup — |h(t)|7 dt < oco.
r>0 IR
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Let I'(t) be a C! function on the interval (0,00). We define the singular integral

operator Tt p,o and its truncated maximal operator 17 j, o, by

Ty o f(x) = pv. / £ @~ T(uy) lol ™" Q)h(lyl)dy (1.2)
Rn
and
Tisaf(@) =sw| [ £~ Loy ol Ahul)dy). (1.3
ly|>e

where v = y/ |y| € S"7!, and f € S(R"), the space of Schwartz functions.

If T'(t) = t, we shall denote Tt p,0 by Th,o and 11 ), o by T} o. Also, we denote Tt .0
by To and Tt ), o by T¢; when h =1 and I'(t) = t.

The study of the LP(1 < p < oo) boundedness of the operators T and T began
with Calderén-Zygmund in [6] under the condition Q € Llog™ L (S"‘l). Some years
later, Connett [10] and Coifman-Weiss [9] obtained an improvement over the result of
Calderén and Zygmund by considering the Hardy space H' (S"‘l) . The study of the
LP(1 < p < o0) boundedness of the more general class of operators T}, o and T} o began
in R. Fefferman in [16] if h € L> (R™) and Q satisfies some Lipschitz condition of positive
order on S™"~! and subsequently by many authors under various conditions on € and h
(see for example, [25], [7], [11], [13], [14], [22], [4]). In the meantime, the study of the
weighted L? boundedness of T} o and T, o has also attracted the attention of many
authors ([5], [11], [12], [18], [20], [24], [28], [15]).

In 1993, J. Duoandikoetxea [12] proved the following two results:

Theorem A. Suppose that h € L* (R') and Q € LI(S"™1) for some q > 1. Then
Th,o is bounded on LP(w) if ¢ < p < oo, p# 1 and w € A, g, where A,(R") is the
Muckenhoupt weight class (see [17] for the definition) and LP(w) = LP(R™, w(x)dx),
w > 0, is defined by

1/p
LV (R w(r)dr) = {f Wl = ([ 1P st@ras) < oo}.

For a special class of radial weights AP(R+), Duoandikoetxea proved the following

sharper result:
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Theorem B. If w € A,(Ry) for 1 < p < oo, then Tq is bounded on LP(w) provided
that Q € Llog" L (S"71).

We point out the class of weights A, (R ) was introduced by Duoandikoetxea [12] and
its definition will be reviewed in Section 2.

In 1999, Fan-Pan-Yang in [15] improved the result in Theorem B and obtained the
following;:
Theorem C. If he€ A (RY) for some v > 2 and Q € H! (S"‘l) , then

(i) Thq is bounded on LP(w) for v/ <p < oo and w € 1211[7/7, (Ry);

(ii) Tj;  is bounded on LP(w) for o' <p < oo and w € 1211[7/7, (Ry),

where 1211[7/7, (Ry) is a subclass of Ay (Ry) (which will be recalled in Section 2).

On the other hand, Jiang and Lu introduced a special class of block spaces Bé'w) (S"‘l)
with respect to the study of the mapping properties of singular integral operators T} o
(see [22]). In fact, they obtained the following L? boundedness result.

Theorem D ([22]). Let Ty and Ty o be given as above. Then we have
(i) if Qe Béo’o)(Sn_l) and h € L, T,q is a bounded operator on L* (R™);

(i) if Qe Béo’l)(Sn_l) and h € L, Ty  is a bounded operator on L* (R").

Some years later, the L” boundedness of the operators 7}, o and T} o, were proved for

allp € (1, 00) under the conditions € Béo’o)(Sn_l) and h € A_ (RY) for some 7 > 1 (see

for example, [1], [2], [4]). Also, it was proved in [3] that the condition € Béo’o)(S"_l)
is the best possible for the LP boundedness of T to hold. Namely, the LP boundedness
of T may fail for any p if it is replaced by a weaker condition 2 € Béo’v)(S"_l) for any
—1 <wv < 0and g > 1. The definition of the block space Bém’v) (S"‘l) will be recalled in

Section 2.

The primary concern of this paper is studying the LP(w) boundedness of the operators

Th,o and Tj; , for w € 1211[7/7, R,), Qe B (S7=1) for some ¢ > 1 and h € A (RT) for
some v > 1. The main results of this paper are the following:

Theorem 1.1. Let h € A (RY) with v > 1. Let T be in C*([0,00)), convez, and an
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increasing function with T'(0) = 0. If Q € Béo’o)(Sn_l) for some g > 1, then Tr pq is
bounded on LP(R™) for 1 < p < co.

Theorem 1.2. Let h € A (R") with v > 2 and 1 < p < oo. Let T' be in C*([0,0)),
convex, and an increasing function with T'(0) =0. If Q € Béo’o)(S"_l) for some q > 1,
and w € 1211[7/7, (Ry) with p >+, then Tr jq is bounded on LP(w).

As for the maximal truncated singular integral 77" , , we have the following results.

Theorem 1.3. Let T be in C%([0,00)), convexr, and an increasing function with
r0)=0.1If Qe Béo’o)(Sn_l) for some ¢ >1and h € A (R™) with v > 1, then

(i) T} }, q s bounded on LP(R") for 1 <p < oo;

(ii) Tt j, o 18 bounded on LP(w) for o <p < oo,y >2 and w € 1211[7/ (R4).

,y/
Remark. Obviously, Theorems 1.1-1.3 extend and improve (in the weighted case) the
results in [1], [2] and [4]. Also, one observes that Theorems 1.2 and 1.3 (b) represent an

improvement and extension over Theorem A in the case w € flé(RJr) because {2 is allowed

to be in the space Béo’o)(S"_l); and bearing in mind the relation, for any fixed ¢ > 1,
LS 1 ¢ BéO’O)(S"_l) for all d > 1. With regard to the relation between BéO’O)(S"_l)

and Llog™ L (S™~!) remains open, as pointed out in [21].

In order to prove our results, we use the machinery developed by Duoandikoetxea and
Rubio de Francia in [11] and we follow some ideas employed in [15] and [4]. We shall
now point out some of the main differences between the proofs in this paper and the

ones in [15]: (i) To treat the operators under consideration with kernels given by Q’s in

the space Béo’o)(Sn_l) for some ¢ > 1, we shall first make an appropriate decomposition

o0

Q=53 c, BM and then we make further appropriate decomposition to each 1}, ; and
= b,
T; ni These decompositions, together with a specially constructed partition of unity
by,

on (0,00) and keeping track of certain constants allow us to obtain our results. (ii) We
notice that the results in [15] are proved under the condition h € A (R™T) with v > 2,
but the case 1 < v < 2 was left open, whereas in this paper we are able to obtain (in the
unweighted case) some results under the condition h € A_ (R") with v > 1. (For more

details, see Theorem 1.1 and Theorem 1.3 (i) in this paper).
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Throughout this paper, the letter C' will stand for a positive constant that may vary

at each occurrence. However, C' does not depend on any of the essential variables.

2. Some Definitions and Lemmas

We start this section recalling the definition of some special classes of weights and

some of their important properties relevant to our current study.

Definition 2.1. Let w(t) > 0 and w € L}, (R4). For 1 < p < oo, we say that
w € A,(Ry) if there is a positive constant C' such that for any interval I C Ry,

<|1r|—1 /Iw(t)dt> (|I|_1/Iw(t)_l/(p_l)dt>p_l <0<

A1 (Ry) is the class of weights w for which My, satisfies a weak-type estimate in L'(w),
where My (f) is the Hardy-Littlewood mazimal function of f.

It is well-known that the class A;(R) is also characterized by all weights w for which
Mprw(t) < Cw(t) for a.e. t € R4 and for some positive constant C.

Definition 2.2. Let 1 < p < co. We say that w € A,(Ry) if w(z) = v1(|z|)ve(|z])' 7,
where either v; € A1(Ry) is decreasing or v? € A1(Ry), i=1,2.

Let AZI)(R") be the weight class defined by exchanging the cubes in the definitions

of A, for all n-dimensional intervals with sides parallel to coordinate axes (see [19]).
Let flé = A, N Al Tfw e A,, it follows from [12] that the classical Hardy-Littlewood
maximal function My f is bounded on LP(R"™, w(|z|)dx). Therefore, if w(t) € A,(Ry),
then w(]z|) € A,(R™).

By following the same argument as in the proof of the elementary properties of A4,
weight class (see for example [17]) we get the following lemma.
Lemma 2.3. If 1 <p < oo, then the weight class AZI)(RJF) has the following properties:

(4) fl{n - flz[)l,ifl <p1 < P2 < 00

(#7) For any w € flz[), there exists an & > 0 such that w!*c € flz[);

(iit) For any w € flé and p > 1,there exists an € > O such that p—¢ > l and w €

p—e’
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Definition 2.4. (1) For z{, € S"™! and 0 < 6y < 2, the set B(z(,0y) = {2’ € S"71:

x' —x)| <6} is called a cap on S™1.
0
(2) For 1 < q < oo, a measurable function b is called a g-block on S™~' if b is a

function supported on some cap I = B(xq, 6p) with ||b|| . < |I|_1/q,, where |I| = o(I).

(3) BV (8n1) = {Q € LY(S" 1) Q = >one1 b, where each c, is a complex

number; each b, is a g-block supported on a cap I, on S"~'; and Mé”’v) ({e, 1 {1.})
o 1 1k v —
=3, e, | (14 ¢rw(|1,]) < 00}, where ¢ w (£) = x(0,1)(t) f; w1 "log (u!) du.
One observes that

Grw (t) ~ t"log (t71) ast—0for k> 0,0 €R,
doo(t) ~ log'tt (t7') ast—0forv > —1.

The following properties of Bém’v) can be found in [21]:
(7) Bé’“’z) - Bé’“’l) ifvg > v > —1and k > 0;
(ii) BY=Y) . BUEY i1 < g1 < o
(i) LY(S"™") < B(S"7!) for v > —1 and k > 0.
In their investigations of block spaces, Keitoku and Sato showed in [21] that these
spaces enjoy the following properties.

Lemma 2.5.

(1) If 1 <p < q< o0, then for k > ]% we have Bé”’v)(S"_l) C Lr(S™ 1) for any v >
—1;

(i1) Bé&v)(an) = L4(S"71) if and only if x > % and v > 0;

(iii) for any v > —1, we have |J 451 B (871 ZU g>1L1(S™7).
Definition 2.6. Let I'(t) be a C! function on the interval (0,00) and for p € N, let l;u
be a function on S"! satisfying the conditions:

I

n

bH

IN

. for some q > 1 and for some cap I, on S (2.1)

b

IN
—_
—~
o
[\
~—

"

1
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Define the sequence of measures {o,rk : k € Z} and their corresponding mazimal

operator O'ZI on R™ by

_ / b, (/)
fdoprk = FEyDy)R(yl) ~—m=dy,
Pl <|yl<phtl [yl

R"

onrf (@) = supllonrkl = f(z),
keZ

where |0, 1| is defined in the same way as o,r, but with hl;M replaced by ‘hi)u

)

p, = 28 and

1 Jif L =et

B = 10g(|IM|_1) if |I,] <e ™ (2:3)

Lemma 2.7. Let p € N and h € A (RT) for some v,1 < v < 2. Let l;u be a
function on S"~1 satisfying (2.1)—(2.2) and (1.1) with 2 replaced by BH. Suppose that

T is in C%([0,00)), convex, and an increasing function with T'(0) = 0. Then there exist
constants C and 0 < o < 1/¢' such that for all k € Z and £ € R™ we have

Mkl < CB, (2.4)
Gur k(@ < CB, T(pﬁ)é‘_w; (2.5)
6 n€)l < CB, [D(PHhe| 7 (2.6)

The constant C' is independent of k, I, § and T (-).

Proof. It is easy to verify that (2.4) holds with a constant C' independent of I,. We
prove the inequalities (2.5)~(2.6) only for the case |I,| < e™!, because the proof of these

inequalities for the case |IH| > e~ ! can be dealt with quite similarly and more easily.

k41

1/~ %
Pu ~ dt Pu ~ dt
|&u,r,k<s>|s(/k (e 7) ([ o $)
P

"
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where
Hy ()= / e_ir(pﬁt)g'%u (x)do (x).
Sn—l

Since |Hy,, (t)] <1 we immediately get

og|T, | 11 e AR N
R © ¥ ® 2
sl <c| X [ mer F ([T i §)
s=1 pﬁ23*1 1
_1\\\ /7 - — 1/9
< (oe(1 )7 ([ @R G e @ o))
where

p“ —i k (xrx— dt
Ju,k(f»w,y)z/ e, 1)E:( y)?
1

We now show that
-1 —« —a
(& 29)| < Cllog || [T 1€ (@ =) (2.7)

for some 0 < aq’ < 1. To this end, we notice that
P dt K —1 w)€-(x—
Ju k(& z,y) :/ ' G'(t)?, where G(t) :/ ¢ TP wIE Viw, 1<t < P,
1 1

By the assumptions on I'" and the mean value theorem we have

d L(phw) _ T(p)
o (P( ’ij)) = P (pfw) > —2— > o for LS w <t <p,.

-1
Thus by van der Corput’s lemma, |G(t)| < ‘F(p’:)f‘ 1€ (x—y)|  t for 1 <t < P,

Hence by integration by parts,

| Ju k(& 2,y)| < Clog (IIM|_1) ‘F(p’j)é‘_l € (@ —y)|

Now combining this bound with the trivial bound |J, (¢, 2, y)| < (log2)log(|Z, |_1) and
choosing « so that 0 < ag’ < 1, yields the assertion of (2.7). Therefore, by Holder’s
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inequality

|6M7F7k(§)| <

2/»)/’ {/ | | aq, ( ) ( )}1/’\"11
1 — N do (x)do Yy y
La(Sn—1) Sn—1xS§n—1

where © = (21, xp) and y = (y1,...,yn). Since the last integral is finite, by (2.1) we

’
—a/y 1/~

Clog (|1, (ot )e] b, ()b, ()] €+ (2 = )| do (@) do(y)

—a/y

< Clog (|1,]7") (e

"

obtain

—a/y

|6M7F,k(§)| S ClOg (|IH |_1) |IH |—2/’Y’q/

T(ph)¢

By interpolation between this estimate and the trivial estimate

Gura(€)] < Clog (|1, ™)

we get the estimate in (2.5). To get the estimate (2.6), we use the mean zero property
(1.1) of BM to get

@< [ /

Gura(©l < Clog (|1,]7") |0(E )¢

—i kEVé.x ~ dt
e P e _ 1‘ ‘h(p’:t)bu (w)‘ ?do(x).

Hence,

which, when combined with the trivial estimate |6, ()| < Clog (|IM |_1) , yields the
estimate in (2.6). This completes the proof of the lemma. O
By the same argument as in [27, p. 57] we get

Lemma 2.8. Let ¢ be a nonnegative, decreasing function on [0, 00) with f[o 50) p(t)dt = 1.

Then

< My/f(.%'),

/ fl@ =ty )p(t)dt
[0,00)

83



AL-QASSEM

where

1 R
M, f(x) = sup = |f(x — sy')|ds
Rrer R J

is the Hardy-Littlewood mazimal function of f in the direction of y'.

Lemma 2.9. Let y € N, h € A (R™") for some v > 1 and w € Ay (RT). Let l;u
be a function on S"1 satisfying (2.1)—(2.2) and let T be in C?([0,0)), convex, and an
increasing function with T'(0) = 0. Then

||0;7F(f)||Lp(w) S CPBM HfHLP(w) (28)

for v/ < p < o0, where C), is independent of u and f.

Proof. As above, we prove (2.8) only for the case that |IH| < e~!. By Hélder’s

, 1/
v odt
t

inequality and (2.2), we have

k41 k41

i AN
(/pz ol 7) (/p

IN

|O-N’F’k * f($)|

o W)@ =Ty )

1/~
|f@ =Ty do(y) %)

k+1
< o) (7 o B
< c(oe (1) (L o) Mr,u,yfufw’)(:c)do(y’))w , (2.9)
where
na dt

Mr 4 f(x) = sup

keZ

flr— F(f)yl)? :

k
pH

By a change of variable we have

D(ok+) , dt
Mr o f(2) < sup (/FW @ =t r—l(t)r'(F—l(t))> '

Without loss of generality, we may assume that I'(¢) > 0 for all ¢ > 0. Since the function

m is nonnegative, decreasing and its integral over [F(pllj ) I‘(pf“)] is equal
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to (log2)log(|I, |_1), by Lemma 2.8 we have
-1
Mr . f(z) < Clog (|IH| ) M, f(z). (2.10)

By (2.9)—(2.10) and Minkowski’s inequality for integrals we get

/4
* -1 P v ’
< ’ . .
oot = o8 (1217) ([ | ], ao)) - )
By (8) in [12] and since w € A,/ (R*) we have
HMy’fHLp/w’(w) <C HfHLP/w’(w) (2.12)

with C independent of /. By (2.2) and (2.11)—(2.12) we get (2.8) which finishes the proof
of the lemma. O
Lemma 2.10. Let € Nand h € A_ (R™) for some v > 1. Let l;u be a function on S™~!
satisfying (2.1)—(2.2) and let T be in C?([0,0)), convex, and an increasing function with
I'(0) =0. Then

||UZ,F(f)||Lp(Rn) < CpB, 1l o) (2.13)

for 1 <p < oo, where C, is independent of p and f.

Before presenting a proof of Lemma 2.10, it is worth pointing out that Lemma 2.10
gives the boundedness of o, . on LP(R") for the full range 1 < p < oo, which is much

better than the range v/ < p < co (when v — 1) if we apply Lemma 2.9 for w = 1.
Our proof of Lemma 2.10 will rely on the following result (see also Theorem B in [11]):

Lemma 2.11. Let {\, : k € Z, n € N} be a sequence of Borel measures on R™. Let
T be in C?([0,00)), conver, and increasing function with T'(0) = 0. Suppose that for all
keZ, e R, for some a,C > 0 and py > 2 we have

[Auill < CB,s (2.14)

Mr©] <08, [rehe] (2.15)

Sk©)] < 0B, |reEe (2.16)
O g < B[O lal? (2.17)
kez o kez o
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for arbitrary functions {gr},cy on R™. Then for any p € (py,po), there exists a positive
constant Cp such that

Sdkxfl| <GB Ifl (2.18)
keZ P
O = f1DE| < GBI/, (2.19)
keZ P

hold for all f in LP(R™). The constant C,, is independent of 3, .

A proof of Lemma 2.11 can be obtained by the same proof (with only minor modifi-
cations) as that of Lemma 3.2 in [4]. We omit the details.

Proof of Lemma 2.10. Choose and fix a ¢ € S (R") such that ¢(§) =1 for |{] <1

and $(€) = 0 for |€] > 2. Let (x)(€) = @(F(pl’j)f). Define the sequence of measures
{)‘mk} by

Nk (€) = (16,0r.k]) (€) = ([50,0.1) (0) (22) (6). (2.20)

By Lemma 2.7 and the choice of ¢ we find that A, satisfies (2.4)(2.6) for some constants
C and o.

Now let
12
Sulf) = (Zlm*fF) :
keZ
N flx) = 21612||)w,k|*f(f”)|-
Thus we have
M) < S (f)+CB, MuL(f); (2.21)
o,r(f) < Su(f)+208,MuL(f). (2.22)

By (2.5)~(2.6) and using Plancherel’s theorem we get
15 (Dl < CB, (1 £l - (2.23)

By the boundedness of My, on L? (1 < p < 0),(2.21) and (2.23) we get
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A (D, <CBL Sl (2.24)

Now, by (2.4), (2.24) and using the lemma and its proof in ([11], p. 544) with pg = 4 and
q = 2, we find that

[V

< (B, (Z |gkl2> (2.25)

keZ 4

<Z R 9k|2>

keZ 4

for arbitrary functions {g},., on R™. By (2.4)-(2.6), (2.25) and applying Lemma 2.11

we get
156 (N, < CoB, M1, (2.26)

for all p satisfying p € (4/3,4) and L?(R").
By replacing p = 2 with p = 4/3 + ¢ (¢ — 07) in (2.23) and repeating the preceding
arguments, we get (2.26) for every p satisfying p € (8/7,8) and L?(R™). By continuing

this process we ultimately get

15 (NI, < CoB, 1111, (2.27)
for all p € (1,00) and LP(R™). Therefore, by (2.22) and (2.27), we obtain (2.13) to
complete the proof of the lemma. O

Lemma 2.12. Let h € A (RT) for some v > 2 and let BH be a function on S™!
satisfying (2.1)-(2.2). Let T be in C?%([0,00)), convex, and an increasing function with
I'(0) = 0. Then for v/ <p < 00 and w € flp/v/ (RT), there exists a positive constant C),

which is independent of BM such that

1/2 1/2
(Z |y e * 9k|2> < CpB, (Z |9k|2> (2.28)

keZ Lo(w) k€Z Lo(w)
holds for arbitrary functions {gr},cy on R™.
Proof. Let 7 < p < oo. By Holder’s inequality and following a similar argument as

in the proof of (2.9) we get

k+1
PLss

s a@l <@y [T ]
Sn—l

Pu

gu(e ~ T doy) . (2:29)

b, (/)
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Let d = p/~'. By duality, there is a nonnegative function f € L% (w'~% R") satisfying
HfHLd’(wl—d’) < 1 such that

"

= / § Z |0,k * gl f(2)de. (2.30)

Lo(w) k€Z

1/~
(Z |0,k % gl )

keZ

Therefore, by (2.29) and a change of variable we get

Y ||
<Z Iou,r,k*gm,) SC(BM)VH/”ZWWCW’ M, f(x)dz,

k€Z Lo(w) k€Z
where
M, 1) =sup [ o+ (o)) o, )] )™ d.
k€Z Jpk <|ly|<pit?
By Holder’s inequality, we obtain
yaalka yealka
(Srareeat) | <o (S )| P
k€Z Lo(w) k€Z Lo(w)

It is easy to verify that w € Ag(R*) if and only if w'=% € Ay (R*). By the same

argument as in the proof of Lemma 2.9, we have
||Muf||Ld'(w1*d') < Cpﬁu

which in turn implies

1/4' 1/
(Z |y, ke * gkl ) < CpB, (Z lgx|” ) . (2.31)

kEZ Lr(w) kEZ Lr(w)

Moreover, again by Lemma 2.9 we have

<

LP(w)

<GB,
LP(w)

(sup [gl) (2.32)

o7, r(sup |gx|) s
keZ

sup |%,r,k * gk|
keZ keZ

LP(w)

By using the operator interpolation theorem between (2.31) and (2.32) and since
v € [1,2] we get (2.28) which concludes the proof if the lemma. O

We now have everything we need to prove our main theorems.
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3. Proofs of Main Results

The proof of our results will be based on a technique developed by Duoandikoetxea

and Rubio de Francia in [11]. Now, we shall introduce certain notations and prove some

estimates that will be needed in our proofs. Assume that Q € BéO’O)(S"_l) for some
q > 1 and satisfies (1.1). Thus 2 can be written as Q@ = >~ ¢, b, where ¢, € C, b, isa
pu=1
g-block supported on a cap I, on S”~! and
-1
MO0 ({e, 3 ALY = D fe, | (1+ (og ] ™)) < oo. (3.1)

p=1

To each block function b, (-), let BM() be a function defined by

bo(x)=b (x) - /S b, (w)do(u). (3.2)
Then we can easily see that the following inequalities hold for all u:

/ b, (w)do(u) = 0, (3.3)
Sn—l

21,77, (3.4)

IN

“ 1 pa

IN

2. (3.5)

I

Ll
Using the assumption that ) has the mean zero property (1.1), and the definition of Bw

o) N
we deduce that Q can be written as Q@ = » ¢, b, which in turn gives
pu=1

Trnalf) =) ¢, Tr s, () (3.6)
pu=1

Since T' is convex and increasing in (0, co), we have T'(t)/t is also increasing for
t > 0. Therefore, for p € N, the sequence {I‘(pl’j) ke Z} is a lacunary sequence with

I‘(pllj-irl)/f‘(pl’j) > p,- As in [4], let {pg 0}~ be a smooth partition of unity in (0, oo)
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—1 -1
adapted to the interval Ej , r = [(F(pk“)) , (F(pk_l)]) . To be precise, we require

13 13

the following:

Okur € C?, 0<pur <1, Z (k1 () =1,
k

)

ds(pk:,u,l—‘ (t)‘ < Cs

supp @k,ur & Ekpr, ‘ dts = s

where C; is independent of the lacunary sequence {F(pf) : k € Z}. Define the multiplier
operators S, in R"™ by

S HE) = Prpr(€EDF ().

Define

Fiu(f) = Z Sktu(Tp,0 e * S )-
keZ

Then it is easy to see that the following identity

TFJLEH (f) = Z F’,u(f) (37)

JEZ

holds for f € S(R™). By Plancherel’s theorem we have

1B <> [ |FO] ourn@P e

kEZAkﬂm

where

A= {ee R (PA) < lel < (Pt )

m

By a straightforward computations and (2.5)—(2.6) we get
1Eju (Pl 2 < CB,27 VL fll 2. (3.8)

Proof of Theorem 1.1. Since A (R*) C A, (R") when v > 2, we may assume that
1 < v < 2. Now we need to compute the L” estimate F} ,(f).
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For 1 < p < 0o, we have

IF DN, = 1D Sktsin(Omrn % Skajuf)
kez »
< G (Z |UM7FJ€ * Sk+j,uf|2>
kez »
< OB, (Z |Sk+j7uf|2>
keZ p
< GBSl (3.9)

where the second inequality follows from (2.4), Lemma 2.11 along with the lemma and its
proof in ([11], p. 544), while the first and the last inequalities follow by Littlewood-Paley
theory. The constant C), may depend on the dimension n, the constants Cs, and p, but
it is independent of {I‘(pllj) 1k € Z}, and 3, (for more details see [26]).

Now by an interpolation between (3.8) and (3.9), we get

1Esu(Dll o < CB27 N £l (3.10)

for 1 < p < oo. Therefore, the proof of Theorem 1.1 is completed by (3.1), (3.6)—~(3.7)
and (3.10).

Proof of Theorem 1.2. Let us first consider the case p > 7. Then

3
HF}M(f)HLp(w) < G (Z |00,k * Sk+j7uf|2>
kez Lo(w)
3
< G (X 1skesntl?)
kez Lo(w)
< Cpﬁu HfHLp(w) ) (3.11)

where the first and the last inequalities follow by the weighted Littlewood-Paley theory
since w € flp /v (Ry) C Ap(R4), whereas the second inequality follows by Lemma 2.12.

By Lemma 2.3, for any w € Aé/v,(R_k), there is an € > 0 such that wl*c € 1211[7/7, (R4).
Therefore by (3.11) we have

HFm(f)HLp(st) < Cpﬁu HfHLP(wHe) for p > ’YI- (3-12)
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Thus by using Stein-Weiss’s interpolation theorem with change of measures [28] between
(3.10) and (3.12) we get

1Ey ()l iy < €8, 275 |l o (3.13)

for some &, > 0 which in turn implies

()

iy S FanD| <o Ml forp > (3.14)
JEZ

T ~
755,

Lr(w)

Thus by (3.1), (3.6) and (3.14) we get that Tt ;.o is bounded on LP(w) for p > + and
w e Ap /(R4). Now, let us prove the LP(w) boundedness of Tt 5, whenever p = " and
w € A;(Ry). To this end we notice by Lemma 2.3 (i) that Tt 5. is bounded on L’ (w)
for any w € A;(Ry) and v > /. Also, by Theorem 1.1, Tt . is bounded on L* for
1 < p < «'. Therefore, by interpolating with change of measures we get that Tt 5 o is
bounded on L7 (w) for any w € A;(R.y). This concludes the proof of Theorem 1.2. O

Proof of Theorem 1.3. We shall only present the proof of part (ii) of this theorem
and the proof for part (i) will be much the same. So assume that p > 4/ and w €

Aé/’)” (R+) Since Q = Mgl CH El“ we ha,ve

Ty po(f <Z|C | T} ,hb, (3.15)
Thus, as above it suffices to establish appropriate L?(w) bounds for T T b, w > 1. For
any € > 0 there is an integer k such that pl <e< pl“. So we have

Tlfhb (f) SU;,F(f)—i_gH(f)v (316)

where g, (f) = supyez | X5 (f)| and Xy (f) = 3272, 0p,r,j % f. By Lemma 2.9, it suffices to
show that

||gu(f)||LP(w) < CpB, 1fll 1oy forp> 7 and w € flp/vr(RJr). (3.17)

We follow a similar argument employed in the unweighted case in the proof of Lemma
6.3 in [14]. Let ¢ € S(R™) be such that ¢(§) =1 for |£] < 1 and ¢(&) = 0 for |¢| > 2.
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Define ¢, ¢ by (¢) = ¢ and ¢x(§) =

{vej:keZ,j>0} by

1
(reek)

Vk,j = (ORn — k) * Op T ks — Pk * Op T k—j—1-

Then
Xpf =xf - xPy,

where

XV F =Y vy fand X7 f = oy + Trns, (F)-

Jj=0

By (3.14) and since w € flp/v, (Ry) € Ap(R4) we get immediately

sup X,g2)f‘
keZ

<C HMHL(TF,h,E )‘
Lr(w) .

Lr(w) —

for p >+ and w € 4, /- (R4). It remains now to show that

< Cpl, 1l o)
Lr(w)

sup X,gl)f‘
keZ

forp >+ and w € flp/v/ (R4 ). By definition of X,(Cl)f we get
sup | X(V f(@)| < 37 sup v+ f(2)].
keZ ‘o kez

By definition of v ; and Lemma 2.9 we have

< Cpf, £l o)
Lr(w)

sup |vg,; * fl
keZ

forp >+ and w € flp/vr(RJr). For j > 0, we let

Ri(f) = O ey = f17)7.

keZ

< CplB, 11l o ()

K o F(ﬁ,’i ) ). Define the sequence of measures

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Then by Plancherel’s theorem and Lemma 2.7 we have

IR = [ Ios(@P 10" d

keZ
2 ) UL REPUNE:
</ {\1— OE)| 160045 + (01O 16ur8—i-1(0) } GIES
R" Lez
< 8277 f1I3- (3.24)
By (2.23)—(2.24) and interpolation with w =1 we get
sup [ g+ fI|| - < CB, 279 |1, (3.25)
keZ

p

for v/ < p < oo, f € LP(R"), and for some a(p) > 0. By interpolating between (3.23)
and (3.25) we find § such that

<CB27° |1 fll o) - (3.26)

sup |vg,; * f]
keZ LP(w)

Hence (3.20)—(3.21) we obtain (3.17). The theorem is proved. O

4. Power Weights |x|a

One of the important special classes of radial weights is the power weights |x|a ,a € R.

It is know that |x|a € A,(R™) ifand only if —n < o < n(p—1). Let us recall the following
result:

Theorem E. Let 1 < ¢ < oo and 1 < p < co. Let T and T, be the operators defined
as in Section 1 with Q € L9(S"~1) satisfying (1.1). Then T and Tg, are bounded on

Le(|2|") it
max(—n, —1— (n —1)p/q¢’) < a <min(n(p —1),p— 1+ (n — )p/q’). (4.1)

Moreover, the range (4.1) is optimal.

This result was proved for T, by Muckenhoupt and Wheeden in [24] and for both
operators T and T using a different method by Duoandikoetxea [12]. We notice that
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in the limit case ¢ = 1, the range in (4.1) becomes a € (—1,p — 1). It is well-known that
the theorem fails for some € L'(S™~!), even in the unweighted case o = 0. However
Theorem E remains true if o € (=1,p — 1) and Q € Llog™ L as pointed out in ([12],

p. 880). In the ensuing development of this result, an improvement was obtained by
Fan-Pan-Yang in [15] who proved that Tq is bounded on Lp(|x|a) ifae (-1,p—1) and
Q € H'(S™1). Our result regarding this class of weights is the following:

Theorem 4.1. Let h € A (RY) with v > 2. Let T be in C?([0,00)), convez, and an
increasing  function with T'(0) = 0. If Q € Béo’o)(Sn_l) for some ¢ > 1, and p > «/,
then Tr p,o and Tt ), o are bounded on Lp(|x|a) if a€(=1,p/y —1).

A proof of this theorem can be obtained by Theorems 1.2 and 1.3 and noticing that

2" € AL(Ry) for a € (~1,p —1).
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