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On Marcinkiewicz Integrals along flat surfaces
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Abstract

In this paper, we study Marcinkiewicz integral operators with rough kernels

supported by surfaces given by flat curves. Under convexity assumptions on our

surfaces, we establish an Lp boundedness result of such operators. Moreover, we

obtain the Lp boundedness of the corresponding Marcinkiewicz integral operators

that are related to area integral and Littlewood-Paley g∗
λ

functions.
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1. Introduction and Statement of Results

Let Rn, n ≥ 2 be the n-dimensional Euclidean space and Sn−1 be the unit sphere in
Rn equipped with the induced Lebesgue measure dσ. Let Ω be a homogeneous function
of degree zero on Rn that is integrable on Sn−1 and satisfies∫

Sn−1
Ω(y

′
)dσ(y

′
) = 0, (1.1)

where y′ = y
|y| for y 6= 0.

For a smooth mapping Γ : Rn → Rd, consider the Marcinkiewicz integral operator

µΩ,Γf(x) =
(∫ ∞
−∞
|FΩ,Γ,t(x)|2 2−2tdt

) 1
2

, (1.2)
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where

FΩ,Γ,t(x) =
∫
|y|≤2t

f(x − Γ(y)) |y|−n+1 Ω(y)dy. (1.3)

The problem regarding the operator µΩ,Γ is that under what conditions on Γ and Ω,
the operator µΩ,Γ maps Lp(Rn) into Lp(Rd) for some 1 < p < ∞. It is known that if
Γ(y) = y and Ω ∈ Lip

α
(Sn−1), (0 < α ≤ 1), i.e., Ω in the Lipschitz function class of

degree α on the unit sphere, E. M. Stein ([10]) proved that µΩ,Γ is bounded on Lp for
all 1 < p ≤ 2. Subsequently, A. Benedek, A. Calderón, and R. Panzone proved the Lp

boundedness of µΩ,Γ, Γ(y) = y, for all 1 < p <∞ provided that Ω ∈ C1
(
Sn−1

)
([3]).

In their study of singular integral operators, Grafakos and Stefanov ([9]) introduced
the following condition:

sup
ξ∈Sn−1

∫
Sn−1

∣∣∣Ω(y
′
)
∣∣∣ (log

∣∣∣∣ 1
ξ · y′

∣∣∣∣)1+α

dσ(y
′
) <∞. (1.4)

For α > 0, let F
α
(Sn−1) be the space of all integrable functions on Sn−1 which satisfy

(1.4). Grafakos and Stefanov ([9]) showed that⋂
α>0

Fα(Sn−1) " H1(Sn−1) "
⋃
α>0

Fα(Sn−1)

and ⋂
α>0

Fα(Sn−1) " L log+ L(Sn−1),

where H1(Sn−1) is the Hardy space on Sn−1 (in the sense of Coifman and Weiss [5]) and
L log+ L(Sn−1) is the space of all functions Ω with |Ω| log+ (|Ω|) is integrable on Sn−1.

Recently, when Ω ∈ F
α
(Sn−1) for some α > 0 that satisfies (1.1) and ∂

γ
Γ

∂yγ
(0) 6= 0 for

some multi-index γ = (γ1 , γ2, . . . , γn), γ1, γ2, . . . , γn are non negative integers, there has
been a notable progress in obtaining Lp boundedness results of the operator µΩ,Γ (see
[1], [4], among others). In particular, Al-Qassem and Al-Salman ([1]) proved that µΩ,Γ

is bounded on Lp, 2α+2
2α+1 < p < 2 + 2α, provided that Ω is in a subspace of Fα(Sn−1) for

some α > 0 and Γ : Rn → Rd, d ≥ 1 is a polynomial mapping. Our main focus in this
paper is investigating the Lp boundedness of µΩ,Γ if Ω ∈ Fα(Sn−1) for some α > 0 and
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∂
γ

Γ
∂yγ (0) = 0 for all multi-indices γ. More specifically, we let Γ(y) = ϕ(|y|)y′, where ϕ is

a real valued function defined on R+. Here we allow ϕ to be flat at the origin. In what
follows we shall simply denote µΩ,Γ by µϕ . Also, in this paper, we shall establish an Lp

boundedness result of the corresponding Marcinkiewicz integral operators that are related
to area integral and Littlewood-Paley g∗

λ
functions. More specifically, let FΩ,ϕ,t = FΩ,Γ,t

be given by (1.3) with Γ(y) = ϕ(|y|)y′ and define the operators µ̃ϕ and µ∗
ϕ,λ

for λ > 1 by

µ̃ϕf(x) =

(∫
Υ(x)

|FΩ,ϕ,t(z)|2 2−(2+n)tdzdt

)1
2

, (1.5)

µ∗
ϕ,λ
f(x) =

(∫ ∫
Rn+1

(
2t

2t + |x− z|

)nλ
|FΩ,ϕ,t(z)|2 2−(2+n)tdzdt

)1
2

, (1.6)

where Υ(x) = {(z, t) ∈ Rn+1 : |x− z| < 2t}.
Throughout the rest of this paper, the functions ϕ in the statements of the results are

assumed to be second continuously differentiable, i.e., ϕ ∈ C 2. Our main results in this
paper are the following:

Theorem 1.1. Suppose that ϕ : R+ → R is an increasing convex function with ϕ(0) = 0.
If Ω ∈ Fα(Sn−1) for some α > 0 and satisfies (1.1), then µϕ is bounded on Lp(Rn) for
p ∈ (2α+2

2α+1
, 2 + 2α).

Theorem 1.2. Suppose that ϕ : R+ → R is an increasing convex function with ϕ(0) = 0,
Ω ∈ F

α
(Sn−1) for some α > 0 and satisfies (1.1). Then the operators µ̃

ϕ
and µ∗

ϕ,λ
are

bounded on Lp(Rn) for 2 ≤ p < 2 + 2α.

Throughout this paper, the letter C is a positive constant that may vary at each
occurrence but it is independent of the essential variables.

Finally, the author would like to thank the referee for his/her valuable remarks.

2. Preliminary Estimates

Throughout the rest of this paper, we shall need the following simple observation:
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Proposition 2.1. Suppose that ϕ : R+ → R is second continuously differentiable
increasing convex function with ϕ(0) = 0. Then
(i) ϕ(2r) ≥ 2ϕ(r) for every r > 0.
(ii) rϕ′(r) ≥ ϕ(r) for every r > 0.

A proof of Proposition 2.1 is straightforward. In fact, the inequality (ii) is an easy
consequence of the fact that the function g(r) = rϕ′(r) − ϕ(r) is an increasing function
(since ϕ is convex, i.e., ϕ′′(r) ≥ 0) and the fact that g(0) = 0. The inequality (i) follows
by use of the Mean value theorem, the fact that ϕ′ is increasing (since ϕ is convex), and
(ii).

It is interesting to notice that the inequalities (i) and (ii) in Proposition 2.1 may not
hold if the convexity of the function ϕ is dropped. For example, the nonconvex function
ϕ(r) =

√
r does not satisfy (i) and (ii).

For a smooth mapping ϕ : R+ → R, a homogeneous function Ω of degree zero on Rn

that is integrable on Sn−1 and satisfies (1.1), a ξ ∈ Rn, and a nonnegative real number
u, let

G(ϕ,Ω, ξ, u) =
∫
u
2≤|y|<u

e−iϕ(|y|)ξ·y′ |y|−n+1 Ω(y)dy. (2.1)

Then we have the following lemma.
Lemma 2.2. If Ω ∈ F

α
(Sn−1) for some α > 0 and ϕ is an increasing convex function

with ϕ(0) = 0, then there exist a constant C > 0 independent of u and ξ such that

|G(ϕ,Ω, ξ, u)| ≤ uCmin{|ϕ(u)ξ| , (log
∣∣∣ϕ(

u

2
)ξ
∣∣∣)−1−α}. (2.2)

Proof. First, by the cancelation property (1.1), we have

|G(ϕ,Ω, ξ, u)|= |G(ϕ,Ω, ξ, u)−G(ϕ,Ω, 0, u)| ≤ uC |ϕ(u)ξ| . (2.3)

Secondly, using polar coordinates, it is easy to see that

|G(ϕ,Ω, ξ, u)| ≤ u
∫

Sn−1

∣∣∣Ω(y
′
)
∣∣∣ J(ϕ, ξ, u)dσ(y′), (2.4)

where

J(ϕ, ξ, u) =
∣∣∣∣∫ 2

1

e−iϕ(u2 r)ξ·y′dr

∣∣∣∣ . (2.5)
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Now by integration by parts and Proposition 2.1(ii), it follows that

J(ϕ, ξ, u) ≤
∣∣∣ϕ(

u

2
)ξ · y′

∣∣∣−1

. (2.6)

Therefore, by (2.6) and the trivial estimate J(ϕ, ξ, u) ≤ 1, it is easy to see that

J(ϕ, ξ, u) ≤ C{log |ξ′ · y′|−1}1+α{log
∣∣∣ϕ(

u

2
)ξ
∣∣∣}−1−α, (2.7)

where C is a constant independent of ξ, y′, and u. Thus by (2.4) and (2.7), we have

|G(ϕ,Ω, ξ, u)| ≤ uC{log
∣∣∣ϕ(

u

2
)ξ
∣∣∣}−1−α

∫
Sn−1

∣∣∣Ω(y
′
)
∣∣∣ {log |ξ′ · y′|−1}1+αdσ(y′)

≤ uC{log
∣∣∣ϕ(

u

2
)ξ
∣∣∣}−1−α sup

η∈Sn−1

∫
Sn−1

∣∣∣Ω(y
′
)
∣∣∣ {log |η′ · y′|−1}1+αdσ(y′);

which when combined with the condition (1.4), implies that

|G(ϕ,Ω, ξ, u)| ≤ uC(log
∣∣∣ϕ(

u

2
)ξ
∣∣∣)−1−α.

This concludes the proof of lemma. 2

Now, by following a similar argument as in the proof of Lemma 4.1 in ([7]), we get
the following relation between the operators µϕ and µ∗

ϕ,λ
.

Lemma 2.3. Let λ > 1. Then for any nonnegative function g, we have∫
Rn

(µ∗
ϕ,λ
f(x))2g(x)dx ≤ Cλ

∫
Rn

(µ
ϕ
f(x))2(Hg)(x)dx, (2.8)

where H is the classical Hardy-Littlewood maximal operator on Rn.

Proof. The inequality (2.8) is an immediate consequence of the definition of µ∗
ϕ,λ
f in

(1.6) and the following simple inequality:

sup
t∈R

2−nt
∫

Rn

(
2t

2t + |x− y|

)nλ
g(x)dx ≤ Cλ(Hg)(y).

2
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3. Proof of Main Result

Proof of Theorem 1.1. Suppose that Ω ∈ F
α
(Sn−1) for some α > 0 and satisfies

(1.1). Let Γ(y) = ϕ(|y|)y′, where ϕ : R+ → R is an increasing convex function with
ϕ(0) = 0. We start by writing our operator µϕ as

µ
ϕ
(f)(x) =

∑∞

j=0
2−jµ

ϕ,j
(f)(x), (3.1)

where µϕ,j is given by

µϕ,j(f)(x) = (
∫ ∞
−∞
|∆j,t(f)(x)|2 dt) 1

2 (3.2)

and

∆j,t(f)(x) = 2−(t−j)
∫

2t−j−1<|y|≤2t−j
f(x − Γ(y)) |y|−n+1 Ω(y)dy. (3.3)

To prove that
∥∥µϕ(f)

∥∥
p
≤ ‖f‖p for all p ∈ (2α+2

2α+1 , 2 + 2α), it suffices to show that∥∥µ
ϕ,j

(f)
∥∥
p
≤ C ‖f‖p (3.4)

for all p ∈ (2α+2
2α+1 , 2 +2α) and j ≥ 0 with constant C independent of j. To establish (3.4),

we argue as in ([2]).
By an elementary procedure, choose a collection of C∞ functions {ωk}k∈Z on (0,∞)

with the following properties:

supp(ωk) ⊆ [
1

ϕ(2k+1)
,

1
ϕ(2k−1)

]; 0 ≤ ωk ≤ 1;∣∣∣∣dsωkdus
(u)
∣∣∣∣ ≤ Cs

us
;
∑
k∈Z

ωk(u) = 1. (3.5)

For k ∈ Z, let ψk be the function defined on Rn by ψ̂k(y) = ωk(|y|). Then, it is easy
to see that

µϕ,j(f)(x) ≤
∑
k∈Z

µϕ,j,k(f)(x), (3.6)
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where

µϕ,j,k (f)(x) = (
∫ ∞
−∞

∣∣∆j,t(f ∗ ψbt−jc+k(x)
∣∣2 dt) 1

2 . (3.7)

Here, bxc is the greatest integer function less than or equal to x.
First, we claim that ∥∥µ

ϕ,j,k(f)
∥∥
p
≤ C ‖f‖p (3.8)

for all p ∈ (1,∞) with constant C independent of j and k. To see this, define the operators
Mj,k and Sj,k by

Mj(f)(x) = sup
t∈R
|∆j,t(f)(x)| (3.9)

Sj,kf(x) = (
∫ ∞
−∞

∣∣f ∗ ψbt−jc+k(x)
∣∣2 dt) 1

2 . (3.10)

Then, by a similar justification as in ([2] , see also [12], P. 46 and[11], P. 245-246), it
follows that

‖Sj,k(f)‖p ≤ C ‖f‖p (3.11)

for all p ∈ (1,∞) with constant C depends only on p and the dimension of the underlying
space Rn.

Now, using polar coordinates, we have

Mj(f)(x) ≤
∫

Sn−1

∣∣∣Ω(y
′
)
∣∣∣ {sup

r>0

1
r

r∫
r
2

|f(x − ϕ(v)y′)| dv}dσ(y′). (3.12)

By convexity of ϕ and Proposition on page 477 in ([12]), we have∥∥∥∥∥∥∥sup
r>0

1
r

r∫
r
2

|f(x − ϕ(v)y′)| dv

∥∥∥∥∥∥∥
p

≤ C ‖f‖p (3.13)

for all p ∈ (1,∞) with constant C independent of y′ ∈ Sn−1. Therefore, by (3.12), (3.13),
and Minkowski inequality, we obtain

‖Mj(f)‖p ≤ C ‖f‖p (3.14)
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for all p ∈ (1,∞) with constant C independent of j. Thus, by (3.11), (3.14), the fact that
2−(t−j)G(ϕ, |Ω| , 0, 2t−j) ≤ C where G(ϕ, |Ω| , 0, 2t−j) is given by (2.1), and Theorem 3.1
in ([1]), we obtain (3.8).

Secondly, we claim that for p ∈ (2α+2
2α+1 , 2 + 2α), there exist constants θ(p) > 0 and

β(p) > 1 such that ∥∥µϕ,j,k(f)
∥∥
p
≤ A(k) ‖f‖p , (3.15)

where

A(k) =

{
2−θ(p)k , if k ≥ −1
|k|−β(p) , if k < −1.

(3.16)

To prove (3.15), we proceed as follows.
Notice that

(∆j,t(f ∗ ψbt−jc+k))̂(ξ) = 2−(t−j)G(ϕ,Ω, ξ, 2t−j)ωbt−jc+k(|ξ|)f̂(ξ), (3.17)

where G(ϕ,Ω, ξ, 2t−j) is given by (2.1). Therefore, by Lemma 2.2, we obtain∣∣∣(∆j,t(f ∗ ψbt−jc+k))̂(ξ)
∣∣∣ ≤ C

∣∣ϕ(2t−j)ξ
∣∣ ∣∣ωbt−jc+k(|ξ|)

∣∣ ∣∣∣f̂(ξ)
∣∣∣ (3.18)∣∣∣(∆j,t(f ∗ ψbt−jc+k))̂(ξ)

∣∣∣ ≤ C(log
∣∣ϕ(2t−j−1)ξ

∣∣)−1−α ∣∣ωbt−jc+k(|ξ|)
∣∣ ∣∣∣f̂(ξ)

∣∣∣
(3.19)

with constant C independent of j, k, t, and ξ. For k ∈ Z, ξ ∈ Rn and j > 0, let
b(k, j, ξ) = log2(2j−k−1ϕ−1(|ξ|−1)) and d(k, j, ξ) = log2(2j−k+2ϕ−1(|ξ|−1)). Thus, if
k > 1, by Plancherel’s theorem, (3.5), and (3.18), we have

∥∥µϕ,j,k(f)
∥∥2

2
= C

∫
Rn

∣∣∣f̂(ξ)
∣∣∣2 d(k,j,ξ)∫
b(k,j,ξ)

∣∣ϕ(2t−j)ξ
∣∣2 dtdξ

≤ (log 2)C2−k
∫

Rn

∣∣∣f̂(ξ)
∣∣∣2 d(k,j,ξ)∫
b(k,j,ξ)

dtdξ

≤ (log 2)C2−k ‖f‖22 (3.20)
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Here, in the second inequality in (3.20), we used Proposition 2.1 (i). Thus∥∥µ
ϕ,j,k(f)

∥∥
2
≤ C2−k ‖f‖2 . (3.21)

We notice here that by the fact 2−(t−j)G(ϕ, |Ω| , 0, 2t−j) ≤ C, the inequality (3.21) also
holds for k = −1, 0, 1. Therefore, by interpolating between (3.8) and (3.21) along with
the remark just mentioned for every 1 < p <∞, we get (3.15) for k ≥ −1.

On the other hand, if k < −1, then by Plancherel’s theorem, (3.5), (3.19), Proposition
2.2 (i), and similar argument as for the case k > 1, we obtain∥∥µ

ϕ,j,k(f)
∥∥

2
≤ C |k|−1−α ‖f‖2 . (3.22)

Therefore, if p ∈ (2α+2
2α+1

, 2 + 2α), then by interpolating between (3.22) and (3.8) for any
1 < p <∞, there exists a constant β(p) > 1 such that∥∥µϕ,j,k(f)

∥∥
p
≤ C |k|−β ‖f‖p . (3.23)

This concludes the proof of (3.15).
Hence, (3.4) follows by (3.6), (3.15), and Minkowski inequality. This completes the

proof of Theorem 1.1. 2

Finally, Theorem 1.2 follows by Lemma 2.3, Theorem 1.1, and a similar argument as
in ([7]). We omit the details.
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