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Quotient f~-Modules

Ayse Uyar

Abstract

Let L be an f-module over f-algebra A. Then L™ is a cf-module over the f-
algebra (A~); . Quotient f-modules are studied and subsequently a connection
between Z(L™) and [A™);]e is investigated.
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1. Introduction

In this note Riesz spaces are asumed to have separating order duals. Let A be a
Riesz algebra, i.e., A is a Riesz space which is simultaneously an associative algebra with
the additional property that a,b € A, implies that ab € A;. An f-algebra A is a Riesz
algebra which satisfies the extra requirement that aAb = 0 implies acAb = caAb = 0 for all
c€ Ay. If Ais an Archimedean f-algebra, then A is necessarily commutative. It is well-
known that for any Archimedean f-algebra A with point separating order dual, (A™)y
is an Archimedean f-algebra with respect to the Arens multiplication [4]. We denote by
Ly(L) , the class of all order bounded operators from L into itself. Recall that = € Ly(L)
is called an orthomorphism of L if 2 L y in L imply that w(z) L y. Orthomorphisms
of L will be denoted by Orth(L). Orth(L) is an f-algebra under pointwise order and
composition. The principal order ideal generated by the identity operator I in Orth(L) is
called the ideal center of L and is denoted by Z(L). If L is an Dedekind complete Riesz
space the Z(L) is the ideal generated by I in Ly(L) and Orth(L) is the band generated by
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I in Ly(L). We refer to [1] and [7] for terminology and further information about Riesz

spaces.

2. Quotient f-Modules

Definition 2.1 Let A be an f-algebra with unit e and L be a Riesz space. L is said to
be a left f-module over A if there exists a map A X L — L : (a,z) — ax satisfying

(i) L is a left module over A and ex = x for each x € L,

(i) for each a € Ay and x € Ly we have ax € L

(i4i) if © Ly in L, then for each a € A we have ax L y.

A right f-module over A is defined similarly. We shall only consider the left f-modules
from now on and these will simply be referred to as f-modules. A f-module over A is

called an cf-module if it has the following property:
(i) If (ao) C A and an 1 a for some a € A, then anx T ax for each x € L

If L is an f-module over A, then for each a € A, the mapping p, of L into L defined
by po(z) = ax,z € L, is an orthomorphism of L. We refer to [2] and [6] for further
information about f-modules.

If A is an Archimedean f-algebra then any uniformly closed ideal in A is an r-ideal
(i.e., a linear subspace of A which is a two-sided ring ideal) [3]. Let A be an f-algebra
and N be a uniformly closed ideal in A. It is easy to see that the quotient Riesz space
A/N is an Archimedean f-algebra with multiplication given by (x4 N)(y+ N) = xy+ N.
If A is an f-algebra with unit e then é is a unit of A/N.

Definition 2.2 Let A be an f-algebra with unit e , N be a uniformly closed ideal in A
and L be an f-module over A. Lo(N) ={x € L: Nz ={0}} is said to be a null ideal of
L with respect to N.

Note that Lo(N) is a band in L since Lo(N) = (,cn Np,, where N, is null ideal of
Pa. Furthermore, NL = {0} if and only if Lo(N) = L.

Example 2.3 Let A = C[0,1] and N = {f € C[0,1] : f(x) =0 for 0 < o < 1/2}.
If we take L = N then Lo(N) = {0}. On the other hand, if we take L = A then
Lo(N)={f€C[0,1]: f(x) =0 for1/2 < x < 1}.
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Proposition 2.4 Let A be an f-algebra with unit e and N be a uniformly closed ideal in
A. If L is an f-module over A then Lo(N) is an f-module over A/N with multiplication
given by

(a+ N)z = ax.

Proof. Once we have shown that multiplication is well defined, the proof that Lo (V) is
an f-module over A/N isroutine as Lo(N) isa band in L. ax € Ly(N) as A commutative.
Suppose a+N = b+ N. Sincea € a+ N = b+ N,a = b+n for some n € N. Consequently
ax = (b+n)x = bx + nx for each x in Lo(N). As nz =0,ax = bx .

In an Archimedean Riesz space, any relatively unifomly convergent sequence is order
convergent. Thus, any band in an Archimedean Riesz space is uniformly closed. Let A
be a Dedekind complete Riesz space and N be a band in A. Since A/N = N9 A/N is a
Dedekind complete.

Let L be an f-module over A. Let x € L be arbitrary and 0 < y < z. L is said
to be discrete with respect to Z(A) (topologically full with respect to A) if there exists
0 < a < e such that ax = y (if there exists a net 0 < a, < e such that a,z — y in
o(L,L™)) [2]. O

Proposition 2.5 Let L be an f-module over A and N be a uniformly closed ideal in A.
Then the following statements hold.

i) If L is discrete with respect to Z(A) then Lo(N) is discrete with respect to Z(A/N).

it) If NL = {0} and L is a topologically full with respect to A then Lo(N) is topolog-
ically full with respect to A/N.

iii) If L is an cf-module over A and N is a projection band in A then Lo(N) is an
cf-module over A/N.

Proof. i) Suppose z,y € Lo(NN) be such that 0 < y < z. By hypothesis, there exists
0 < a < e such that ax = y. Therefore, there exists 0 < @ < é such that axr = ax = y.

ii) This statement can be proven similarly.

iii) Let P be the band projection of A onto N%. P: A/N — N%a — P(a) = P(a)
is a Riesz isomorphism. Suppose that (ao) € A/N and d, T @ in A/N. As P is order
continuous, Pde T Pa and so Pa,, T Pa. On the other hand, there exists b, € Gq,b € @

such that Pa, = by, Pa = b for each «. Since L is an cf-module over A, b,z T bx for
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each x € Lo(N)4. By definition of the multiplication, we obtain that a,x 1 ax for each
x € LO (N)+ . O

Examples 2.6 (i) Let A = o and L = £,,(1 < p < o0) and N = {z € by : =
(1,0,0,...,0,...)}. It is easy to see that Lo(N) = {(zy) € €, : x1 = 0}. Lo(N) is an
cf-module over A/N and discrete with respect to Z(A/N) , since L is an cf-module over
A and discrete with respect to Z(A).

(ii) Let A =lo and L = {(x) € €y : x2n—1 =0, for alln € N}, (1 <p < o) and
N ={(an) € b : a2, =0, for alln € N}. Since NL = {0}, Lo(N) = L. Moreover, L
is an cf-module over A/N and discrete with respect to Z(A/N).

3. The Connection Between Z(L~) and [(4™))]:

Let L be an f-module over A. It is known that L™ is an f-module over (A™)).

Furthermore, L™ is topologically full with respect to (A™)y

n

when L is topologically full
with respect to A. It can also be seen that L™ is discrete with respect to Z((A™);) under
the hypothesis of Proposition 3.12 in [6].

Let us consider a particular bilinear map ¢ : L x L™ — A™, (x, f) — a7 : ¥g 5(a) =
f(a.z) for each a € A of an f-module L over A. For each z € L the map f — ¢(z, f) and
for each 0 < f € L™ the map z — ¢(z, f) are positive and we have |p(x, f)| < ¢(|z], | f])
for each (z,f) € L x L™. If L is a topologically full f-module then ¢ is a bilattice
homomorphism. Let x € L be arbitrary and consider S(z) = {¢5,7 : f € L™}. Then S(z)
is an ideal in A~ [ 6 ]. We denote by L ® L™ the union of S(z) for each « in L, i.e.,
LRLY={¢yr:xe€L, felL}.

Proposition 3.1 Let L be an f-module over A. Then L™~ is an cf-module over (A™);.

Proof. Let (F,) C (A™)y and F,, T F in (A™);. We shall show that F,,f 1 F'f for
each 0 < f € L™. For this, we pick 0 < f € L~ and 0 < x € L. Then 0 < ¢, r € A~ and
Fo(Yu,r) T F(g,s) holds [1]. Thus, F,f(z) T F f(x) holds for each 0 < z € L because of
module structure on L™~. So F,f T Ff in L™ for each 0 < f € L™. O
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Proposition 3.2 Let L be an f-module over A. Then L ® L™ is an ideal in A™.

Proof. Let 0 < |z| < yin L. For each f € L™ |, | < Yja), | < 1y,|p) holds in A™ .
Since S(y) is an ideal, S(z) C S(y). Let u,v € L ® L™ . There exists x,y € L such that
u € S(z),v € S(y). Since S(z) C S(|z|V|y|) and S(y) C S(|z| V |y|), \u+v € S(|z| V |y|)
for each A € R. Now suppose 0 < |u| < |v|;u € A~,v € L® L™. Then v € S(z) for some
x € L. As S(x) is ideal, u € S(x) and sou € L ® L™ O

Proposition 3.3 Let L be an f-module over A. Then N ={F € (A™)Y : F |por~= 0}
is a band in (A™)y and NL™~ = {0}.

n

Proof. N is clearly a subspace. Let 0 < |F| < |G| with G € N. Since |G |rgr~ | =
|G| |Lor~holds in (L ® L™)7, we see that F |Lgr~= 0. So N is an ideal in (A™);. We
shall show that it is a band. Let (F,) C N and 0 < F, 1 Flin (A~);. Then F,(p) T F(p)
foreach 0 < p e L ®L~. Thus F(u) =0 foreach 0 < p € L® L™, that is FF € N. To
show that NL~ =0, we pick ' € N and f € L™. For each x € L,v¢, s € L ® L™ and so
Ff(x) = F(33s) =0. That is, F'f = 0. O

The mapping p : A — Orth(L), defined by p(a) = p, , a € A, is an algebraic
homomorphism, p is also positive linear mapping of A into Orth(L) satisfying p(e) = I.
The principal ideal generated by unit in A will be denoted by I.. We quote the following
from [2].

Proposition 3.4. Let A be Dedekind complete f-algebra with unit e, L be a Dedekind
complete Riesz space and assume that L is an cf-module over A. Thenp:I. — Z(L) is

surjective if and only if L is discrete with respect to Z(A).

Remark. Let L be an f-module over A. Since I, is a subalgebra of A, we see that L
is an f-module over I.. Furthermore, Z(L) is f-module over I, with I, x Z(L) — Z(L)
(a,m) — am = p(a)m. Under the hypothesis of Proposition 3.4, Z(L) is discrete with
respect to Z(I.) whenever L is discrete with respect to Z(A). Indeed, w, 7 € Z(L) with
0 < 7 < 7 then Dedekind completeness of Z(L) ensures that there exists 0 < p < T
with pr = 7. As p is surjective, there exists 0 < a < e with u = p(a) and so ar = 7.
Since p is an algebra homomorphism, we obtain that p is I.-linear. Note that p is an

f-orthomorphism whenever Z(L) is discrete with respect to Z(I.) [6]. O

125



UYAR

Let L, A and N be as in Proposition 3.3. The principal ideal generated by unit
n (A~)y /N will be denoted by [(A~)y/N]; . (A™)y /N is Dedekind complete and
Ly (N) = L™ as we discussed earlier. By Proposition 2.5 (iii) and Proposition 3.1, L™ is
an cf-module over (A™~)>/N. Furthermore, L~ is discrete with respect to Z((A™~)y/N)
whenever L is topologically full f-module over A [6]. As an application of the quotient

f- modules let us obtain special case of 3.4

Corollary 3.5 Let L, A and N be as in Proposition 3.8 and L be a topologically full
f-module over A. Then p : [(A™)y/N]; — Z(L™) is a unital algebra and a Riesz

isomorphism. In addition, p is an f-orthomorphism.

Proof. To see that p is surjective, we can take respectively (A™~)> /N and L™ instead
of A, L in Proposition 3.4. p is clearly a unital algebra and a Riesz homomorphism and a
f-orthomorphism. Thus, it is enough to show p is injective. For this, let F' € [(A™) /N];
and p(F) = 0. Then Ff = Ff =0 for each f € L™ . Therefore, Ff(z) = F(¢.s) =0
for each z € L, f € L™. That is, F |pgrL~= 0 and so F € N. O

Example 3.6 Let A be an f-algebra with unit e and L = A. It is well known that A is
topologically full with respect to itself [ 6]. Since e = f for each f € A~, LQ L~ = A~
and so N = {0}. Thus we obtained that [(A~)y /Nl]s = [(A™)y]e = Z(A™).

Let p: [(A™)]e — Z(L™) where pp(f) = Ff for each f € L™. Tt is clear that Kerp
= NN[(A™)7]s. Note that D : [(A™)7]e/Kerp — Z(L™) is a Riesz isomorphism under the
hypothesis of 3.5. When is p injective? Following result to give necessary and sufficient

conditions for this.

Proposition 3.7 Let L be an f-module over A. p is injective if and only if L ® L™ is
an order dense ideal in A~ i.e.,(L ® L~)% = {0}.

Proof.  Suppose Kerp = {0}. Since A~ is Dedekind complete, there exists a band
projection P of A~ onto (L ® L~)?. By Theorem 5.2 in [ 4 ] , (A™); is an f-algebra
isomorphic to Orth(A™). Since P € Z(A™), there exists F € [(A™);]e such that
P(g) = Fg for each g € A~. Thus P(¢; ) = Fip, y =0 for each x € L and f € L™ from
the definition of L ® L~. Therefore, Fi, r(e) = F(¢ re) = F (¢4, 5) = 0 for each z € L
and f € L™. That is, F € N and so F € Kerp. By our hypothesis, F'=0. So P = 0.i.e.,
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(L ®L~)* = {0}.

Conversely, suppose that L ® L™ is order dense in A~. Let F € Kerp. Since p is
an Riesz homomorphism, Kerp is an ideal. So, we can assume that F is positive. Let
0 < g e A~. There exists (go) € L ® L™ such that 0 < g, T g. Since F is order
continuous, 0 = F(g,) T F(g) and so F = 0. O
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