Turk J Math 29 (2005) , 121 – 127. © TÜBİTAK

Quotient f-Modules

Ayşe Uyar

Abstract

Let L be an f-module over f-algebra A. Then L^{\sim} is a cf-module over the f-algebra $(A^{\sim})_n^{\sim}$. Quotient f-modules are studied and subsequently a connection between $Z(L^{\sim})$ and $[A^{\sim})_n^{\sim}]_{\hat{e}}$ is investigated.

Key Words: Vector lattices, f-modules, quotient Riesz spaces.

1. Introduction

In this note Riesz spaces are asumed to have separating order duals. Let A be a Riesz algebra, i.e., A is a Riesz space which is simultaneously an associative algebra with the additional property that $a, b \in A_+$ implies that $ab \in A_+$. An f-algebra A is a Riesz algebra which satisfies the extra requirement that $a \wedge b = 0$ implies $ac \wedge b = ca \wedge b = 0$ for all $c \in A_+$. If A is an Archimedean f-algebra, then A is necessarily commutative. It is well-known that for any Archimedean f-algebra A with point separating order dual, $(A^{\sim})_n^{\sim}$ is an Archimedean f-algebra with respect to the Arens multiplication [4]. We denote by $L_b(L)$, the class of all order bounded operators from L into itself. Recall that $\pi \in L_b(L)$ is called an orthomorphism of L if $x \perp y$ in L imply that $\pi(x) \perp y$. Orthomorphisms of L will be denoted by Orth(L). Orth(L) is an f-algebra under pointwise order and composition. The principal order ideal generated by the identity operator I in Orth(L) is called the ideal center of L and is denoted by Z(L). If L is an Dedekind complete Riesz space the Z(L) is the ideal generated by I in $L_b(L)$ and Orth(L) is the band generated by

AMS Mathematics Subject Classification: 46A40 (06F25)

I in $L_b(L)$. We refer to [1] and [7] for terminology and further information about Riesz spaces.

2. Quotient f-Modules

Definition 2.1 Let A be an f-algebra with unit e and L be a Riesz space. L is said to be a left f-module over A if there exists a map $A \times L \to L : (a, x) \to ax$ satisfying

- (i) L is a left module over A and ex = x for each $x \in L$,
- (ii) for each $a \in A_+$ and $x \in L_+$ we have $ax \in L_+$
- (iii) if $x \perp y$ in L, then for each $a \in A$ we have $ax \perp y$.

A right f-module over A is defined similarly. We shall only consider the left f-modules from now on and these will simply be referred to as f-modules. A f-module over A is called an cf-module if it has the following property:

(iv) If $(a_{\alpha}) \subseteq A$ and $a_{\alpha} \uparrow a$ for some $a \in A$, then $a_{\alpha}x \uparrow ax$ for each $x \in L_{+}$

If L is an f-module over A, then for each $a \in A$, the mapping p_a of L into L defined by $p_a(x) = ax, x \in L$, is an orthomorphism of L. We refer to [2] and [6] for further information about f-modules.

If A is an Archimedean f-algebra then any uniformly closed ideal in A is an r-ideal (i.e., a linear subspace of A which is a two-sided ring ideal) [3]. Let A be an f-algebra and N be a uniformly closed ideal in A. It is easy to see that the quotient Riesz space A/N is an Archimedean f-algebra with multiplication given by (x+N)(y+N) = xy+N. If A is an f-algebra with unit e then \dot{e} is a unit of A/N.

Definition 2.2 Let A be an f-algebra with unit e, N be a uniformly closed ideal in A and L be an f-module over A. $L_0(N) = \{x \in L : Nx = \{0\}\}$ is said to be a null ideal of L with respect to N.

Note that $L_0(N)$ is a band in L since $L_0(N) = \bigcap_{a \in N} N_{p_a}$, where N_{p_a} is null ideal of p_a . Furthermore, $NL = \{0\}$ if and only if $L_0(N) = L$.

Example 2.3 Let A = C[0,1] and $N = \{f \in C[0,1] : f(x) = 0 \text{ for } 0 \le x \le 1/2\}$. If we take L = N then $L_0(N) = \{0\}$. On the other hand, if we take L = A then $L_0(N) = \{f \in C[0,1] : f(x) = 0 \text{ for } 1/2 \le x \le 1\}$.

Proposition 2.4 Let A be an f-algebra with unit e and N be a uniformly closed ideal in A. If L is an f-module over A then $L_0(N)$ is an f-module over A/N with multiplication given by

$$(a+N)x = ax.$$

Proof. Once we have shown that multiplication is well defined, the proof that $L_0(N)$ is an *f*-module over A/N is routine as $L_0(N)$ is a band in *L*. $ax \in L_0(N)$ as *A* commutative. Suppose a+N=b+N. Since $a \in a+N=b+N$, a=b+n for some $n \in N$. Consequently ax = (b+n)x = bx + nx for each x in $L_0(N)$. As nx = 0, ax = bx.

In an Archimedean Riesz space, any relatively uniformly convergent sequence is order convergent. Thus, any band in an Archimedean Riesz space is uniformly closed. Let Abe a Dedekind complete Riesz space and N be a band in A. Since $A/N \cong N^d$, A/N is a Dedekind complete.

Let *L* be an *f*-module over *A*. Let $x \in L$ be arbitrary and $0 \leq y \leq x$. *L* is said to be discrete with respect to Z(A) (topologically full with respect to *A*) if there exists $0 \leq a \leq e$ such that ax = y (if there exists a net $0 \leq a_{\alpha} \leq e$ such that $a_{\alpha}x \to y$ in $\sigma(L, L^{\sim})$) [2].

Proposition 2.5 Let L be an f-module over A and N be a uniformly closed ideal in A. Then the following statements hold.

i) If L is discrete with respect to Z(A) then $L_0(N)$ is discrete with respect to Z(A/N).

ii) If $NL = \{0\}$ and L is a topologically full with respect to A then $L_0(N)$ is topologically full with respect to A/N.

iii) If L is an cf-module over A and N is a projection band in A then $L_0(N)$ is an cf-module over A/N.

Proof. i) Suppose $x, y \in L_0(N)$ be such that $0 \le y \le x$. By hypothesis, there exists $0 \le a \le e$ such that ax = y. Therefore, there exists $0 \le \dot{a} \le \dot{e}$ such that $\dot{a}x = ax = y$.

ii) This statement can be proven similarly.

iii) Let P be the band projection of A onto N^d . $\overline{P} : A/N \to N^d; \dot{a} \to \overline{P}(\dot{a}) = P(a)$ is a Riesz isomorphism. Suppose that $(\dot{a}_{\alpha}) \subseteq A/N$ and $\dot{a}_{\alpha} \uparrow \dot{a}$ in A/N. As \overline{P} is order continuous, $\overline{P}\dot{a}_{\alpha} \uparrow \overline{P}\dot{a}$ and so $Pa_{\alpha} \uparrow Pa$. On the other hand, there exists $b_{\alpha} \in \dot{a}_{\alpha}, b \in \dot{a}$ such that $Pa_{\alpha} = b_{\alpha}, Pa = b$ for each α . Since L is an cf-module over $A, b_{\alpha}x \uparrow bx$ for

each $x \in L_0(N)_+$. By definition of the multiplication, we obtain that $\dot{a}_{\alpha}x \uparrow \dot{a}x$ for each $x \in L_0(N)_+$.

Examples 2.6 (i) Let $A = \ell_{\infty}$ and $L = \ell_p$, $(1 \le p < \infty)$ and $N = \{x \in \ell_{\infty} : x = (x_1, 0, 0, ..., 0, ...)\}$. It is easy to see that $L_0(N) = \{(x_n) \in \ell_p : x_1 = 0\}$. $L_0(N)$ is an *cf*-module over A/N and discrete with respect to Z(A/N), since L is an *cf*-module over A and discrete with respect to Z(A).

(ii) Let $A = \ell_{\infty}$ and $L = \{(x_n) \in \ell_p : x_{2n-1} = 0$, for all $n \in N\}$, $(1 \le p < \infty)$ and $N = \{(a_n) \in \ell_{\infty} : a_{2n} = 0$, for all $n \in N\}$. Since $NL = \{0\}$, $L_0(N) = L$. Moreover, L is an cf-module over A/N and discrete with respect to Z(A/N).

3. The Connection Between $Z(L^{\sim})$ and $[(A^{\sim})_n^{\sim}]_{\hat{e}}$

Let L be an f-module over A. It is known that L^{\sim} is an f-module over $(A^{\sim})_n^{\sim}$. Furthermore, L^{\sim} is topologically full with respect to $(A^{\sim})_n^{\sim}$ when L is topologically full with respect to A. It can also be seen that L^{\sim} is discrete with respect to $Z((A^{\sim})_n^{\sim})$ under the hypothesis of Proposition 3.12 in [6].

Let us consider a particular bilinear map $\phi: L \times L^{\sim} \to A^{\sim}, (x, f) \to \psi_{x,f}: \psi_{x,f}(a) = f(a.x)$ for each $a \in A$ of an f-module L over A. For each $x \in L_+$ the map $f \to \phi(x, f)$ and for each $0 \leq f \in L^{\sim}$ the map $x \to \phi(x, f)$ are positive and we have $|\phi(x, f)| \leq \phi(|x|, |f|)$ for each $(x, f) \in L \times L^{\sim}$. If L is a topologically full f-module then ϕ is a bilattice homomorphism. Let $x \in L$ be arbitrary and consider $S(x) = \{\psi_{x,f}: f \in L^{\sim}\}$. Then S(x) is an ideal in A^{\sim} [6]. We denote by $L \otimes L^{\sim}$ the union of S(x) for each x in L, i.e., $L \otimes L^{\sim} = \{\psi_{x,f}: x \in L, f \in L^{\sim}\}$.

Proposition 3.1 Let L be an f-module over A. Then L^{\sim} is an cf-module over $(A^{\sim})_n^{\sim}$.

Proof. Let $(F_{\alpha}) \subseteq (A^{\sim})_{n}^{\sim}$ and $F_{\alpha} \uparrow F$ in $(A^{\sim})_{n}^{\sim}$. We shall show that $F_{\alpha}f \uparrow Ff$ for each $0 \leq f \in L^{\sim}$. For this, we pick $0 \leq f \in L^{\sim}$ and $0 \leq x \in L$. Then $0 \leq \psi_{x,f} \in A^{\sim}$ and $F_{\alpha}(\psi_{x,f}) \uparrow F(\psi_{x,f})$ holds [1]. Thus, $F_{\alpha}f(x) \uparrow Ff(x)$ holds for each $0 \leq x \in L$ because of module structure on L^{\sim} . So $F_{\alpha}f \uparrow Ff$ in L^{\sim} for each $0 \leq f \in L^{\sim}$.

Proposition 3.2 Let L be an f-module over A. Then $L \otimes L^{\sim}$ is an ideal in A^{\sim} .

Proof. Let $0 \leq |x| \leq y$ in L. For each $f \in L^{\sim} |\psi_{x,f}| \leq \psi_{|x|,|f|} \leq \psi_{y,|f|}$ holds in A^{\sim} . Since S(y) is an ideal, $S(x) \subseteq S(y)$. Let $u, v \in L \otimes L^{\sim}$. There exists $x, y \in L$ such that $u \in S(x), v \in S(y)$. Since $S(x) \subseteq S(|x| \lor |y|)$ and $S(y) \subseteq S(|x| \lor |y|), \lambda u + v \in S(|x| \lor |y|)$ for each $\lambda \in R$. Now suppose $0 \leq |u| \leq |v|; u \in A^{\sim}, v \in L \otimes L^{\sim}$. Then $v \in S(x)$ for some $x \in L$. As S(x) is ideal, $u \in S(x)$ and so $u \in L \otimes L^{\sim}$

Proposition 3.3 Let L be an f-module over A. Then $N = \{F \in (A^{\sim})_n^{\sim} : F \mid_{L \otimes L^{\sim}} = 0\}$ is a band in $(A^{\sim})_n^{\sim}$ and $NL^{\sim} = \{0\}$.

Proof. N is clearly a subspace. Let $0 \leq |F| \leq |G|$ with $G \in N$. Since $|G|_{L \otimes L^{\sim}}| = |G||_{L \otimes L^{\sim}}$ holds in $(L \otimes L^{\sim})_n^{\sim}$, we see that $F|_{L \otimes L^{\sim}} = 0$. So N is an ideal in $(A^{\sim})_n^{\sim}$. We shall show that it is a band. Let $(F_{\alpha}) \subseteq N$ and $0 \leq F_{\alpha} \uparrow F$ in $(A^{\sim})_n^{\sim}$. Then $F_{\alpha}(\mu) \uparrow F(\mu)$ for each $0 \leq \mu \in L \otimes L^{\sim}$. Thus $F(\mu) = 0$ for each $0 \leq \mu \in L \otimes L^{\sim}$, that is $F \in N$. To show that $NL^{\sim} = 0$, we pick $F \in N$ and $f \in L^{\sim}$. For each $x \in L, \psi_{x,f} \in L \otimes L^{\sim}$ and so $Ff(x) = F(\psi_{x,f}) = 0$. That is, Ff = 0.

The mapping $p : A \to Orth(L)$, defined by $p(a) = p_a$, $a \in A$, is an algebraic homomorphism, p is also positive linear mapping of A into Orth(L) satisfying p(e) = I. The principal ideal generated by unit in A will be denoted by I_e . We quote the following from [2].

Proposition 3.4. Let A be Dedekind complete f-algebra with unit e, L be a Dedekind complete Riesz space and assume that L is an cf-module over A. Then $p: I_e \to Z(L)$ is surjective if and only if L is discrete with respect to Z(A).

Remark. Let L be an f-module over A. Since I_e is a subalgebra of A, we see that L is an f-module over I_e . Furthermore, Z(L) is f-module over I_e with $I_e \times Z(L) \to Z(L)$ $(a, \pi) \to a\pi = p(a)\pi$. Under the hypothesis of Proposition 3.4, Z(L) is discrete with respect to $Z(I_e)$ whenever L is discrete with respect to Z(A). Indeed, $\pi, \tau \in Z(L)$ with $0 \le \pi \le \tau$ then Dedekind completeness of Z(L) ensures that there exists $0 \le \mu \le I$ with $\mu\tau = \pi$. As p is surjective, there exists $0 \le a \le e$ with $\mu = p(a)$ and so $a\tau = \pi$. Since p is an algebra homomorphism, we obtain that p is I_e -linear. Note that p is an f-orthomorphism whenever Z(L) is discrete with respect to $Z(I_e)$ [6].

Let L, A and N be as in Proposition 3.3. The principal ideal generated by unit in $(A^{\sim})_{n}^{\sim}/N$ will be denoted by $[(A^{\sim})_{n}^{\sim}/N]_{\dot{e}}$. $(A^{\sim})_{n}^{\sim}/N$ is Dedekind complete and $L_{0}^{\sim}(N) = L^{\sim}$ as we discussed earlier. By Proposition 2.5 (iii) and Proposition 3.1, L^{\sim} is an *cf*-module over $(A^{\sim})_{n}^{\sim}/N$. Furthermore, L^{\sim} is discrete with respect to $Z((A^{\sim})_{n}^{\sim}/N)$ whenever L is topologically full *f*-module over A [6]. As an application of the quotient *f*- modules let us obtain special case of 3.4

Corollary 3.5 Let L, A and N be as in Proposition 3.3 and L be a topologically full f-module over A. Then $p : [(A^{\sim})_n^{\sim}/N]_{\dot{e}} \to Z(L^{\sim})$ is a unital algebra and a Riesz isomorphism. In addition, p is an f-orthomorphism.

Proof. To see that p is surjective, we can take respectively $(A^{\sim})_{n}^{\sim}/N$ and L^{\sim} instead of A, L in Proposition 3.4. p is clearly a unital algebra and a Riesz homomorphism and a f-orthomorphism. Thus, it is enough to show p is injective. For this, let $\dot{F} \in [(A^{\sim})_{n}^{\sim}/N]_{\dot{e}}$ and $p(\dot{F}) = 0$. Then $\dot{F}f = Ff = 0$ for each $f \in L^{\sim}$. Therefore, $Ff(x) = F(\psi_{x,f}) = 0$ for each $x \in L, f \in L^{\sim}$. That is, $F \mid_{L \otimes L^{\sim}} = 0$ and so $F \in N$.

Example 3.6 Let A be an f-algebra with unit e and L = A. It is well known that A is topologically full with respect to itself [6]. Since $\psi_{e,f} = f$ for each $f \in A^{\sim}$, $L \otimes L^{\sim} = A^{\sim}$ and so $N = \{0\}$. Thus we obtained that $[(A^{\sim})_n^{\sim}/N]_{\dot{e}} = [(A^{\sim})_n^{\sim}]_{\dot{e}} = Z(A^{\sim})$.

Let $p: [(A^{\sim})_n^{\sim}]_{\hat{e}} \to Z(L^{\sim})$ where $p_F(f) = Ff$ for each $f \in L^{\sim}$. It is clear that Kerp $= N \cap [(A^{\sim})_n^{\sim}]_{\hat{e}}$. Note that $\overline{p}: [(A^{\sim})_n^{\sim}]_{\hat{e}}/\text{Kerp} \to Z(L^{\sim})$ is a Riesz isomorphism under the hypothesis of 3.5. When is p injective? Following result to give necessary and sufficient conditions for this.

Proposition 3.7 Let L be an f-module over A. p is injective if and only if $L \otimes L^{\sim}$ is an order dense ideal in A^{\sim} , i.e., $(L \otimes L^{\sim})^d = \{0\}$.

Proof. Suppose Kerp = $\{0\}$. Since A^{\sim} is Dedekind complete, there exists a band projection P of A^{\sim} onto $(L \otimes L^{\sim})^d$. By Theorem 5.2 in [4], $(A^{\sim})_n^{\sim}$ is an f-algebra isomorphic to $Orth(A^{\sim})$. Since $P \in Z(A^{\sim})$, there exists $F \in [(A^{\sim})_n^{\sim}]_{\hat{e}}$ such that P(g) = Fg for each $g \in A^{\sim}$. Thus $P(\psi_{x,f}) = F\psi_{x,f} = 0$ for each $x \in L$ and $f \in L^{\sim}$ from the definition of $L \otimes L^{\sim}$. Therefore, $F\psi_{x,f}(e) = F(\psi_{x,f}e) = F(\psi_{x,f}) = 0$ for each $x \in L$ and $f \in L^{\sim}$. That is, $F \in N$ and so $F \in$ Kerp. By our hypothesis, F = 0. So P = 0, i.e.,

 $(L \otimes L^{\sim})^d = \{0\}.$

Conversely, suppose that $L \otimes L^{\sim}$ is order dense in A^{\sim} . Let $F \in \text{Kerp.}$ Since p is an Riesz homomorphism, Kerp is an ideal. So, we can assume that F is positive. Let $0 \leq g \in A^{\sim}$. There exists $(g_{\alpha}) \subseteq L \otimes L^{\sim}$ such that $0 \leq g_{\alpha} \uparrow g$. Since F is order continuous, $0 = F(g_{\alpha}) \uparrow F(g)$ and so F = 0. \Box

References

- [1] Aliprantis, C.D. and Burkinshaw, O.: Positive Operators, Academic Press, London, 1985
- [2] Alpay, Ş. and Turan, B.: On f-Modules, Rev. Roumain de Math. Pures et App. 40, 233-241, 1995
- [3] De Pagter, B.: f-Algebras and Orthomorphisms, Ph.D.Dissertation, University of Leiden, 1981.
- [4] Huijsmans, C.B. and de Pagter, B.: The ordered bidual of lattice ordered algebras, J. Functional Analysis, 59, 41-64, 1984
- [5] Hungerford, T.W.: Algebra, Springer-Verlag, New York, 1987
- [6] Turan, B.: On f-Linearity and f-Orthomorphisms, Positivity 4, 293-301, 2000.
- [7] Zaanen, A.C.: Riesz Spaces II, North Holland, Amsterdam, 1983.

Received 11.08.2003

Ayşe UYAR Department of Math Education Gazi University 06500, Teknikokullar, Ankara-TURKEY e-mail: ayseu@gazi.edu.tr