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Quotient f-Modules

Ayşe Uyar

Abstract

Let L be an f -module over f -algebra A. Then L∼ is a cf -module over the f -

algebra (A∼)∼n . Quotient f -modules are studied and subsequently a connection

between Z(L∼) and [A∼)∼n ]ê is investigated.
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1. Introduction

In this note Riesz spaces are asumed to have separating order duals. Let A be a
Riesz algebra, i.e., A is a Riesz space which is simultaneously an associative algebra with
the additional property that a, b ∈ A+ implies that ab ∈ A+. An f-algebra A is a Riesz
algebra which satisfies the extra requirement that a∧b = 0 implies ac∧b = ca∧b = 0 for all
c ∈ A+. If A is an Archimedean f-algebra, then A is necessarily commutative. It is well-
known that for any Archimedean f-algebra A with point separating order dual, (A∼)∼n
is an Archimedean f-algebra with respect to the Arens multiplication [4]. We denote by
Lb(L) , the class of all order bounded operators from L into itself. Recall that π ∈ Lb(L)
is called an orthomorphism of L if x ⊥ y in L imply that π(x) ⊥ y. Orthomorphisms
of L will be denoted by Orth(L). Orth(L) is an f-algebra under pointwise order and
composition. The principal order ideal generated by the identity operator I in Orth(L) is
called the ideal center of L and is denoted by Z(L). If L is an Dedekind complete Riesz
space the Z(L) is the ideal generated by I in Lb(L) and Orth(L) is the band generated by
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I in Lb(L). We refer to [1] and [7] for terminology and further information about Riesz
spaces.

2. Quotient f-Modules

Definition 2.1 Let A be an f-algebra with unit e and L be a Riesz space. L is said to
be a left f-module over A if there exists a map A× L→ L : (a, x)→ ax satisfying

(i) L is a left module over A and ex = x for each x ∈ L,

(ii) for each a ∈ A+ and x ∈ L+ we have ax ∈ L+

(iii) if x ⊥ y in L, then for each a ∈ A we have ax ⊥ y.

A right f-module over A is defined similarly. We shall only consider the left f-modules
from now on and these will simply be referred to as f-modules. A f-module over A is
called an cf-module if it has the following property:

(iv) If (aα) ⊆ A and aα ↑ a for some a ∈ A, then aαx ↑ ax for each x ∈ L+

If L is an f-module over A, then for each a ∈ A, the mapping pa of L into L defined
by pa(x) = ax, x ∈ L, is an orthomorphism of L. We refer to [2] and [6] for further
information about f-modules.

If A is an Archimedean f-algebra then any uniformly closed ideal in A is an r-ideal
(i.e., a linear subspace of A which is a two-sided ring ideal) [3]. Let A be an f-algebra
and N be a uniformly closed ideal in A. It is easy to see that the quotient Riesz space
A/N is an Archimedean f-algebra with multiplication given by (x+N)(y+N) = xy+N.

If A is an f-algebra with unit e then ė is a unit of A/N .

Definition 2.2 Let A be an f-algebra with unit e , N be a uniformly closed ideal in A

and L be an f-module over A. L0(N) = {x ∈ L : Nx = {0}} is said to be a null ideal of
L with respect to N .

Note that L0(N) is a band in L since L0(N) =
⋂
a∈N Npa , where Npa is null ideal of

pa. Furthermore, NL = {0} if and only if L0(N) = L.

Example 2.3 Let A = C[0, 1] and N = {f ∈ C[0, 1] : f(x) = 0 for 0 ≤ x ≤ 1/2}.
If we take L = N then L0(N) = {0}. On the other hand, if we take L = A then
L0(N) = {f ∈ C[0, 1] : f(x) = 0 for 1/2 ≤ x ≤ 1}.
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Proposition 2.4 Let A be an f-algebra with unit e and N be a uniformly closed ideal in
A. If L is an f-module over A then L0(N) is an f-module over A/N with multiplication
given by

(a+ N)x = ax.

Proof. Once we have shown that multiplication is well defined, the proof that L0(N) is
an f-module over A/N is routine as L0(N) is a band in L. ax ∈ L0(N) as A commutative.
Suppose a+N = b+N . Since a ∈ a+N = b+N, a = b+n for some n ∈ N . Consequently
ax = (b+ n)x = bx+ nx for each x in L0(N). As nx = 0, ax = bx .

In an Archimedean Riesz space, any relatively unifomly convergent sequence is order
convergent. Thus, any band in an Archimedean Riesz space is uniformly closed. Let A
be a Dedekind complete Riesz space and N be a band in A. Since A/N ∼= Nd, A/N is a
Dedekind complete.

Let L be an f-module over A. Let x ∈ L be arbitrary and 0 ≤ y ≤ x. L is said
to be discrete with respect to Z(A) (topologically full with respect to A) if there exists
0 ≤ a ≤ e such that ax = y (if there exists a net 0 ≤ aα ≤ e such that aαx → y in
σ(L, L∼)) [2]. 2

Proposition 2.5 Let L be an f-module over A and N be a uniformly closed ideal in A.
Then the following statements hold.

i) If L is discrete with respect to Z(A) then L0(N) is discrete with respect to Z(A/N).
ii) If NL = {0} and L is a topologically full with respect to A then L0(N) is topolog-

ically full with respect to A/N .
iii) If L is an cf-module over A and N is a projection band in A then L0(N) is an

cf-module over A/N .

Proof. i) Suppose x, y ∈ L0(N) be such that 0 ≤ y ≤ x. By hypothesis, there exists
0 ≤ a ≤ e such that ax = y. Therefore, there exists 0 ≤ ȧ ≤ ė such that ȧx = ax = y.

ii) This statement can be proven similarly.
iii) Let P be the band projection of A onto Nd. P : A/N → Nd; ȧ → P (ȧ) = P (a)

is a Riesz isomorphism. Suppose that (ȧα) ⊆ A/N and ȧα ↑ ȧ in A/N . As P is order
continuous, Pȧα ↑ Pȧ and so Paα ↑ Pa. On the other hand, there exists bα ∈ ȧα, b ∈ ȧ
such that Paα = bα, P a = b for each α. Since L is an cf-module over A, bαx ↑ bx for
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each x ∈ L0(N)+. By definition of the multiplication, we obtain that ȧαx ↑ ȧx for each
x ∈ L0(N)+ . 2

Examples 2.6 (i) Let A = `∞ and L = `p, (1 ≤ p < ∞) and N = {x ∈ `∞ : x =
(x1, 0, 0, ..., 0, ...)}. It is easy to see that L0(N) = {(xn) ∈ `p : x1 = 0}. L0(N) is an
cf-module over A/N and discrete with respect to Z(A/N) , since L is an cf-module over
A and discrete with respect to Z(A).

(ii) Let A = `∞ and L = {(xn) ∈ `p : x2n−1 = 0 , for all n ∈ N}, (1 ≤ p < ∞) and
N = {(an) ∈ `∞ : a2n = 0 , for all n ∈ N}. Since NL = {0}, L0(N) = L. Moreover, L
is an cf-module over A/N and discrete with respect to Z(A/N).

3. The Connection Between Z(L∼) and [(A∼)∼n ]ê

Let L be an f-module over A. It is known that L∼ is an f-module over (A∼)∼n .
Furthermore, L∼ is topologically full with respect to (A∼)∼n when L is topologically full
with respect to A. It can also be seen that L∼ is discrete with respect to Z((A∼)∼n ) under
the hypothesis of Proposition 3.12 in [6].

Let us consider a particular bilinear map φ : L×L∼ → A∼, (x, f)→ ψx,f : ψx,f(a) =
f(a.x) for each a ∈ A of an f-module L over A. For each x ∈ L+ the map f → φ(x, f) and
for each 0 ≤ f ∈ L∼ the map x→ φ(x, f) are positive and we have |φ(x, f)| ≤ φ(|x|, |f |)
for each (x, f) ∈ L × L∼. If L is a topologically full f-module then φ is a bilattice
homomorphism. Let x ∈ L be arbitrary and consider S(x) = {ψx,f : f ∈ L∼}. Then S(x)
is an ideal in A∼ [ 6 ]. We denote by L⊗ L∼ the union of S(x) for each x in L, i.e.,
L ⊗ L∼ = {ψx,f : x ∈ L, f ∈ L∼}.

Proposition 3.1 Let L be an f-module over A. Then L∼ is an cf-module over (A∼)∼n .

Proof. Let (Fα) ⊆ (A∼)∼n and Fα ↑ F in (A∼)∼n . We shall show that Fαf ↑ Ff for
each 0 ≤ f ∈ L∼. For this, we pick 0 ≤ f ∈ L∼ and 0 ≤ x ∈ L. Then 0 ≤ ψx,f ∈ A∼ and
Fα(ψx,f) ↑ F (ψx,f) holds [1]. Thus, Fαf(x) ↑ Ff(x) holds for each 0 ≤ x ∈ L because of
module structure on L∼. So Fαf ↑ Ff in L∼ for each 0 ≤ f ∈ L∼. 2
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Proposition 3.2 Let L be an f-module over A. Then L ⊗ L∼ is an ideal in A∼.

Proof. Let 0 ≤ |x| ≤ y in L. For each f ∈ L∼ |ψx,f | ≤ ψ|x|,|f| ≤ ψy,|f| holds in A∼ .
Since S(y) is an ideal, S(x) ⊆ S(y). Let u, v ∈ L ⊗ L∼ . There exists x, y ∈ L such that
u ∈ S(x), v ∈ S(y). Since S(x) ⊆ S(|x| ∨ |y|) and S(y) ⊆ S(|x| ∨ |y|), λu+ v ∈ S(|x| ∨ |y|)
for each λ ∈ R. Now suppose 0 ≤ |u| ≤ |v|; u ∈ A∼, v ∈ L⊗ L∼. Then v ∈ S(x) for some
x ∈ L. As S(x) is ideal, u ∈ S(x) and so u ∈ L ⊗ L∼ 2

Proposition 3.3 Let L be an f-module over A. Then N = {F ∈ (A∼)∼n : F |L⊗L∼= 0}
is a band in (A∼)∼n and NL∼ = {0}.

Proof. N is clearly a subspace. Let 0 ≤ |F | ≤ |G| with G ∈ N . Since |G |L⊗L∼ | =
|G| |L⊗L∼holds in (L ⊗ L∼)∼n , we see that F |L⊗L∼= 0. So N is an ideal in (A∼)∼n . We
shall show that it is a band. Let (Fα) ⊆ N and 0 ≤ Fα ↑ F in (A∼)∼n . Then Fα(µ) ↑ F (µ)
for each 0 ≤ µ ∈ L ⊗ L∼. Thus F (µ) = 0 for each 0 ≤ µ ∈ L ⊗ L∼, that is F ∈ N . To
show that NL∼ = 0, we pick F ∈ N and f ∈ L∼. For each x ∈ L, ψx,f ∈ L ⊗ L∼ and so
Ff(x) = F (ψx,f) = 0. That is, Ff = 0. 2

The mapping p : A → Orth(L), defined by p(a) = pa , a ∈ A, is an algebraic
homomorphism, p is also positive linear mapping of A into Orth(L) satisfying p(e) = I.
The principal ideal generated by unit in A will be denoted by Ie. We quote the following
from [2].

Proposition 3.4. Let A be Dedekind complete f-algebra with unit e, L be a Dedekind
complete Riesz space and assume that L is an cf-module over A. Then p : Ie → Z(L) is
surjective if and only if L is discrete with respect to Z(A).

Remark. Let L be an f-module over A. Since Ie is a subalgebra of A, we see that L
is an f-module over Ie. Furthermore, Z(L) is f-module over Ie with Ie × Z(L) → Z(L)
(a, π) → aπ = p(a)π. Under the hypothesis of Proposition 3.4, Z(L) is discrete with
respect to Z(Ie) whenever L is discrete with respect to Z(A). Indeed, π, τ ∈ Z(L) with
0 ≤ π ≤ τ then Dedekind completeness of Z(L) ensures that there exists 0 ≤ µ ≤ I

with µτ = π. As p is surjective, there exists 0 ≤ a ≤ e with µ = p(a) and so aτ = π.
Since p is an algebra homomorphism, we obtain that p is Ie-linear. Note that p is an
f-orthomorphism whenever Z(L) is discrete with respect to Z(Ie) [6]. 2
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Let L,A and N be as in Proposition 3.3. The principal ideal generated by unit
in (A∼)∼n /N will be denoted by [(A∼)∼n /N ] ˙̂e . (A∼)∼n /N is Dedekind complete and
L∼0 (N) = L∼ as we discussed earlier. By Proposition 2.5 (iii) and Proposition 3.1, L∼ is
an cf-module over (A∼)∼n /N . Furthermore, L∼ is discrete with respect to Z((A∼)∼n /N)
whenever L is topologically full f-module over A [6]. As an application of the quotient
f- modules let us obtain special case of 3.4

Corollary 3.5 Let L,A and N be as in Proposition 3.3 and L be a topologically full
f-module over A. Then p : [(A∼)∼n /N ] ˙̂e → Z(L∼) is a unital algebra and a Riesz
isomorphism. In addition, p is an f-orthomorphism.

Proof. To see that p is surjective, we can take respectively (A∼)∼n /N and L∼ instead
of A, L in Proposition 3.4. p is clearly a unital algebra and a Riesz homomorphism and a
f-orthomorphism. Thus, it is enough to show p is injective. For this, let Ḟ ∈ [(A∼)∼n /N ] ˙̂e

and p(Ḟ ) = 0. Then Ḟ f = Ff = 0 for each f ∈ L∼ . Therefore, Ff(x) = F (ψx,f) = 0
for each x ∈ L, f ∈ L∼. That is, F |L⊗L∼= 0 and so F ∈ N . 2

Example 3.6 Let A be an f-algebra with unit e and L = A. It is well known that A is
topologically full with respect to itself [ 6]. Since ψe,f = f for each f ∈ A∼, L⊗L∼ = A∼

and so N = {0}. Thus we obtained that [(A∼)∼n /N ] ˙̂e = [(A∼)∼n ]ê = Z(A∼).

Let p : [(A∼)∼n ]ê → Z(L∼) where pF (f) = Ff for each f ∈ L∼. It is clear that Kerp
= N ∩ [(A∼)∼n ]ê. Note that p : [(A∼)∼n ]ê/Kerp→ Z(L∼) is a Riesz isomorphism under the
hypothesis of 3.5. When is p injective? Following result to give necessary and sufficient
conditions for this.

Proposition 3.7 Let L be an f-module over A. p is injective if and only if L ⊗ L∼ is
an order dense ideal in A∼, i.e., (L⊗ L∼)d = {0}.

Proof. Suppose Kerp = {0}. Since A∼ is Dedekind complete, there exists a band
projection P of A∼ onto (L ⊗ L∼)d. By Theorem 5.2 in [ 4 ] , (A∼)∼n is an f-algebra
isomorphic to Orth(A∼). Since P ∈ Z(A∼), there exists F ∈ [(A∼)∼n ]ê such that
P (g) = Fg for each g ∈ A∼. Thus P (ψx,f) = Fψx,f = 0 for each x ∈ L and f ∈ L∼ from
the definition of L ⊗ L∼. Therefore, Fψx,f(e) = F (ψx,fe) = F (ψx,f) = 0 for each x ∈ L
and f ∈ L∼. That is, F ∈ N and so F ∈ Kerp. By our hypothesis, F = 0. So P = 0,i.e.,
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(L ⊗ L∼)d = {0}.
Conversely, suppose that L ⊗ L∼ is order dense in A∼. Let F ∈ Kerp. Since p is

an Riesz homomorphism, Kerp is an ideal. So, we can assume that F is positive. Let
0 ≤ g ∈ A∼. There exists (gα) ⊆ L ⊗ L∼ such that 0 ≤ gα ↑ g. Since F is order
continuous, 0 = F (gα) ↑ F (g) and so F = 0. 2
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