Common Fixed Point Theorems for Fuzzy Mappings in Quasi-Pseudo-Metric Spaces

(Dedicated to the Memory of the Late Professor Dr. Y. A. Verdiyev)
İlker Şahin, Hakan Karayılan and Mustafa Telci*

Abstract

In this paper, we obtain some common fixed point theorems for pairs of fuzzy mappings in left K-sequentially complete quasi-pseudo-metric spaces and right K sequentially complete quasi-pseudo-metric spaces, respectively. Well-known theorems are special cases of our results.

Key words and phrases: Fuzzy mapping; Fixed point; Quasi-pseudo-metric; Left K-sequentially complete; Right K-sequentially complete.

1. Introduction

Heilpern [5] first introduced the concept of fuzzy mappings and proved a fixed point theorem for fuzzy contraction mappings which is a fuzzy analogue of Nadler's [6] fixed point theorem for multivalued mappings. Bose and Shani [2], in their first theorem, extended the result of Heilpern to a pair of generalized fuzzy contraction mappings. Park and Jeong [7] proved some common fixed point theorems for fuzzy mappings satisfying contractive-type conditions and a rational inequality in complete metric spaces, which are the fuzzy extensions of some theorems in [1, 8]. Recently, Gregori and Pastor [3] proved a fixed point theorem for fuzzy contraction mappings in left K-sequentially complete

[^0]quasi-pseudo-metric spaces. Their result is a generalization of the result of Heilpern. In [11] the authors extended the results of [3] and [5]. On the other hand, Gregori and Romaguera [4] obtained some interesting fixed point theorems for fuzzy mappings in Smyth-complete and left K-sequentially complete quasi-metric spaces, respectively. Some well known theorems are special cases of their results. In [10] the authors considered a generalized contractive type condition involving fuzzy mappings in left K-sequentially complete quasi-metric spaces and established a fixed point theorem which is an extension of Theorem 2 in [4]. Also, the result of [10] is a quasi-metric version of Theorem 1 in [4].

In this paper, we establish some generalized common fixed point theorems involving pair of fuzzy mappings in left K-sequentially complete quasi-pseudo-metric spaces and right K-sequentially complete quasi-pseudo-metric spaces, respectively, which are generalization of some results in $[3,5,11]$. Also some well known theorems as in $[3,5,7]$ are special cases of our results.

2. Preliminaries

Throughout this paper the letter \mathbf{N} denotes the set of positive integers. If A is a subset of a topological space (X, τ), we will denote by $\mathrm{cl}_{\tau} A$ the closure of A in (X, τ).

A quasi-pseudo-metric on a nonempty set X is a nonnegative real valued function d on $X \times X$ such that, for all $x, y, z \in X$:
(i) $d(x, x)=0$, and (ii) $d(x, y) \leq d(x, z)+d(z, y)$.

A pair (X, d) is called a quasi-pseudo-metric space, if d is a quasi-pseudo-metric on X.

Each quasi-pseudo-metric d on X induces a topology $\tau(d)$ which has as a base the family of all d-balls $B_{\varepsilon}(x)$, where $B_{\varepsilon}(x)=\{y \in X: d(x, y)<\varepsilon\}$.

If d is a quasi-pseudo-metric on X, then the function d^{-1}, defined on $X \times X$ by $d^{-1}(x, y)=d(y, x)$ is also a quasi-pseudo-metric on X. By $d \wedge d^{-1}$ and $d \vee d^{-1}$ we denote $\min \left\{d, d^{-1}\right\}$ and $\max \left\{d, d^{-1}\right\}$, respectively.

Let d be a quasi-pseudo-metric on X. A sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in X is said to be
(i) left K-Cauchy [9], if for each $\varepsilon>0$ there is a $k \in \mathbf{N}$ such that $d\left(x_{n}, x_{m}\right)<\varepsilon$ for all $n, m \in \mathbf{N}$ with $m \geq n \geq k$.
(ii) right K-Cauchy [9], if for each $\varepsilon>0$ there is a $k \in \mathbf{N}$ such that $d\left(x_{n}, x_{m}\right)<\varepsilon$ for all $n, m \in \mathbf{N}$ with $n \geq m \geq k$.

A quasi-pseudo-metric space (X, d) is said to be left (right) K-sequentially complete [9], if each left (right) K-Cauchy sequence in (X, d) converges to some point in X (with respect to the topology $\tau(d)$).

Now let (X, d) be a quasi-pseudo-metric space and let A and B be nonempty subsets of X. Then the Hausdorff distance between subsets A and B is defined by

$$
H(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

where $d(a, B)=\inf \{d(a, x): x \in B\}$.
Note that $H(A, B) \geq 0$ with $H(A, B)=0$ iff $c l A=c l B, H(A, B)=H(B, A)$ and $H(A, B) \leq H(A, C)+H(C, B)$ for any nonempty subset A, B and C of X. When d is a metric on X, clearly H is the usual Hausdorff distance.

A fuzzy set on X is an element of I^{X} where $I=[0,1]$. The α-level set of a fuzzy set A, denoted by A_{α}, is defined by
$A_{\alpha}=\{x \in X: A(x) \geq \alpha\}$ for each $\alpha \in(0,1]$, and $A_{0}=c l(\{x \in X: A(x)>0\})$.
For $x \in X$ we denote by $\{x\}$ the characteristic function of the ordinary subset $\{x\}$ of X.

Definition 2.1. Let (X, d) be a quasi-pseudo-metric space. The families $W^{*}(X)$ and $W^{\prime}(X)$ of fuzzy sets on (X, d) are defined by

$$
\begin{aligned}
W^{*}(X) & \left.=\left\{A \in I^{X}: A_{1} \text { is nonempty } d-\text { closed and } d^{-1} \text {-compact }\right\} \text { (see }[3]\right), \\
W^{\prime}(X) & =\left\{A \in I^{X}: A_{1} \text { is nonempty } d-\text { closed and } d \text {-compact }\right\}
\end{aligned}
$$

In [5] it is defined the family $W(X)$ of fuzzy sets on metric linear space (X, d), as follows: $A \in W(X)$ iff A_{α} is compact and convex in X for each $\alpha \in[0,1]$ and $\sup _{x \in X} A(X)=1$.

If (X, d) is a metric linear space, then we have

$$
W(X) \subset W^{*}(X)=W^{\prime}(X)=\left\{A \in I^{X}: A_{1} \text { is nonempty and } d \text {-compact }\right\} \subset I^{X}
$$

Definition 2.2. Let (X, d) be a quasi-pseudo-metric space and let $A, B \in W^{*}(X)$ or $A, B \in W^{\prime}(X)$ and $\alpha \in[0,1]$. Then we define,

$$
\begin{gathered}
p_{\alpha}(A, B)=\inf \left\{d(x, y): x \in A_{\alpha}, y \in B_{\alpha}\right\}=d\left(A_{\alpha}, B_{\alpha}\right), \\
D_{\alpha}(A, B)=H\left(A_{\alpha}, B_{\alpha}\right),
\end{gathered}
$$

where H is the Hausdorff distance deduced from the quasi-pseudo-metric d on X,

$$
\begin{aligned}
& p(A, B)=\sup \left\{p_{\alpha}(A, B): \alpha \in[0,1]\right\} \\
& D(A, B)=\sup \left\{D_{\alpha}(A, B): \alpha \in[0,1]\right\}
\end{aligned}
$$

It is easy to see that p_{α} is non-decreasing function of α, and $p_{1}(A, B)=d\left(A_{1}, B_{1}\right)=$ $p(A, B)$ where $d\left(A_{1}, B_{1}\right)=\inf \left\{d(x, y): x \in A_{1}, y \in B_{1}\right\}$.

Definition 2.3. [3] Let X be an arbitrary set and Y be any quasi-pseudo-metric space. F is said to be a fuzzy mapping if F is a mapping from the set X into $W^{*}(Y)$ or $W^{\prime}(Y)$.

This definition is more general than the one given in [5].
Definition 2.4. We say that x is a fixed point of the mapping $F: X \longrightarrow I^{X}$, if $\{x\} \subset F(x)$.

Note that, If $A, B \in I^{X}$, then $A \subset B$ means $A(x) \leq B(x)$ for each $x \in X$.

3. Lemmas

Before establishing our main results, we need the lemmas presented in the next section.
The following four lemmas were proved by Gregory and Pastor [3].
Lemma 3.1. Let (X, d) be a quasi-pseudo-metric space and let $x \in X$ and $A \in W^{*}(X)$. Then $\{x\} \subset A$ if and only if $p_{1}(x, A)=0$.

Lemma 3.2. Let (X, d) be a quasi-pseudo-metric space and let $A \in W^{*}(X)$. Then $p_{\alpha}(x, A) \leq d(x, y)+p_{\alpha}(y, A)$ for any $x, y \in X$ and $\alpha \in[0,1]$.
Lemma 3.3. Let (X, d) be a quasi-pseudo-metric space and let $\left\{x_{0}\right\} \subset A$. Then $p_{\alpha}\left(x_{0}, B\right) \leq D_{\alpha}(A, B)$ for each $A, B \in W^{*}(X)$ and $\alpha \in[0,1]$.

Lemma 3.4. Suppose $K \neq \emptyset$ is compact in the quasi-pseudo- metric space $\left(X, d^{-1}\right)$. If $z \in X$, then there exists $k_{0} \in K$ such that $d(z, K)=d\left(z, k_{0}\right)$.

Above Lemma 3.1, Lemma 3.2 and Lemma 3.3 were proved by Heilpern [5] for the family $W(X)$ in a metric space.

We will use also the following lemmas.
Lemma 3.5. Let (X, d) be a quasi-pseudo-metric space and let $x \in X$ and $A \in W^{\prime}(X)$. Then $\{x\} \subset A$ if and only if $p_{1}(A, x)=0$.

Lemma 3.6. Let (X, d) be a quasi-pseudo-metric space and let $A \in W^{\prime}(X)$. Then $p_{\alpha}(A, x) \leq p_{\alpha}(A, y)+d(y, x)$ for any $x, y \in X$ and $\alpha \in[0,1]$.

Lemma 3.7. Let (X, d) be a quasi-pseudo-metric space and let $\left\{x_{0}\right\} \subset A$. Then $p_{\alpha}\left(B, x_{0}\right) \leq D_{\alpha}(B, A)$ for each $A, B \in W^{\prime}(X)$ and $\alpha \in[0,1]$.

The proofs of these lemmas are similar to the proofs of lemmas in [5] and omitted.
Lemma 3.8. Suppose $K \neq \emptyset$ is compact in the quasi-pseudo- metric space (X, d). If $z \in X$, then there exists $k_{0} \in K$ such that $d(K, z)=d\left(k_{0}, z\right)$.

Proof. By a method similar to that in the proof of Lemma 2.9 in [3], the result follows.

4. Common fixed point theorems

We now prove the following theorem.
Theorem 4.1. Let (X, d) be a left K-sequentially complete quasi-pseudo-metric space and let F_{1} and F_{2} be fuzzy mappings from X to $W^{*}(X)$ satisfying the inequality

$$
\begin{align*}
& {\left[1+r\left(d \vee d^{-1}\right)(x, y)\right] D\left(F_{1}(x), F_{2}(y)\right) \leq} \\
& \leq r \max \left\{p\left(x, F_{1}(x)\right) p\left(y, F_{2}(y)\right), p\left(x, F_{2}(y)\right) p\left(y, F_{1}(x)\right)\right\}+ \\
& +h \max \left\{\left(d \wedge d^{-1}\right)(x, y), p\left(x, F_{1}(x)\right), p\left(y, F_{2}(y)\right)\right. \\
& \left.\frac{1}{2}\left[p\left(x, F_{2}(y)\right)+p\left(y, F_{1}(x)\right)\right]\right\} \tag{1}
\end{align*}
$$

for each $x, y \in X$, where $r \geq 0$ and $0<h<1$. Then there exists $x^{*} \in X$ such that $\left\{x^{*}\right\} \subset F_{1}\left(x^{*}\right)$ and $\left\{x^{*}\right\} \subset F_{2}\left(x^{*}\right)$.

Proof. Suppose x_{0} is an arbitrary point in X such that $\left\{x_{1}\right\} \subset F_{1}\left(x_{0}\right)$. Since $\left(F_{2}\left(x_{1}\right)\right)_{1}$ is d^{-1}-compact, it follows from Lemma 3.4, there exists $x_{2} \in\left(F_{2}\left(x_{1}\right)\right)_{1}$ such that $d\left(x_{1}, x_{2}\right)=$ $d\left(x_{1},\left(F_{2}\left(x_{1}\right)\right)_{1}\right)$. Thus we have

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right)=d\left(x_{1},\left(F_{2}\left(x_{1}\right)\right)_{1}\right) \leq H\left(x_{1},\left(F_{2}\left(x_{1}\right)\right)_{1}\right) \leq D\left(F_{1}\left(x_{0}\right), F_{2}\left(x_{1}\right)\right) \tag{2}
\end{equation*}
$$

Similarly, we can find $x_{3} \in X$ such that

$$
\left\{x_{3}\right\} \subset F_{1}\left(x_{2}\right) \text { and } d\left(x_{2}, x_{3}\right) \leq D\left(F_{2}\left(x_{1}\right), F_{1}\left(x_{2}\right)\right)
$$

Continuing in this way, we can obtain a sequence $\left(x_{n}\right)_{n \in \mathbf{N}}$ in X such that

$$
\begin{aligned}
& \left\{x_{2 n+1}\right\} \subset F_{1}\left(x_{2 n}\right),\left\{x_{2 n+2}\right\} \subset F_{2}\left(x_{2 n+1}\right) \\
& d\left(x_{2 n+1}, x_{2 n+2}\right) \leq D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x_{2 n+1}\right)\right)
\end{aligned}
$$

and

$$
d\left(x_{2 n+2}, x_{2 n+3}\right) \leq D\left(F_{2}\left(x_{2 n+1}\right), F_{1}\left(x_{2 n+2}\right)\right)
$$

for $n=0,1,2, \ldots$.
Now using inequalities (1) and (2) we have,

$$
\begin{gathered}
{\left[1+r d\left(x_{0}, x_{1}\right)\right] d\left(x_{1}, x_{2}\right) \leq\left[1+r\left(d \vee d^{-1}\right)\left(x_{0}, x_{1}\right)\right] D\left(F_{1}\left(x_{0}\right), F_{2}\left(x_{1}\right)\right) \leq} \\
\leq r \max \left\{p\left(x_{0}, F_{1}\left(x_{0}\right)\right) p\left(x_{1}, F_{2}\left(x_{1}\right)\right), p\left(x_{0}, F_{2}\left(x_{1}\right)\right) p\left(x_{1}, F_{1}\left(x_{0}\right)\right)\right\}+ \\
+h \max \left\{\left(d \wedge d^{-1}\right)\left(x_{0}, x_{1}\right), p\left(x_{0}, F_{1}\left(x_{0}\right)\right), p\left(x_{1}, F_{2}\left(x_{1}\right)\right)\right. \\
\left.\frac{1}{2}\left[p\left(x_{0}, F_{2}\left(x_{1}\right)\right)+p\left(x_{1}, F_{1}\left(x_{0}\right)\right)\right]\right\}
\end{gathered}
$$

Since $x_{1} \in\left(F_{1}\left(x_{0}\right)\right)_{1}$ and $x_{2} \in\left(F_{2}\left(x_{1}\right)\right)_{1}$, we have $p\left(x_{0}, F_{1}\left(x_{0}\right)\right) \leq d\left(x_{0}, x_{1}\right)$, $p\left(x_{1}, F_{2}\left(x_{1}\right)\right) \leq d\left(x_{1}, x_{2}\right), p\left(x_{0}, F_{2}\left(x_{1}\right)\right) \leq d\left(x_{0}, x_{2}\right) \leq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)$ and $p\left(x_{1}, F_{1}\left(x_{0}\right)\right)=0$.

Thus we have,

$$
\begin{aligned}
{\left[1+r d\left(x_{0}, x_{1}\right)\right] d\left(x_{1}, x_{2}\right) } & \leq r d\left(x_{0}, x_{1}\right) d\left(x_{1}, x_{2}\right)+ \\
+ & h \max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right), \frac{1}{2}\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right]\right\}
\end{aligned}
$$

and it follows that

$$
d\left(x_{1}, x_{2}\right) \leq h \max \left\{d\left(x_{0}, x_{1}\right), d\left(x_{1}, x_{2}\right), \frac{1}{2}\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right]\right\}=h d\left(x_{0}, x_{1}\right)
$$

since $h<1$. Thus

$$
d\left(x_{1}, x_{2}\right) \leq h d\left(x_{0}, x_{1}\right)
$$

Similarly,

$$
d\left(x_{2}, x_{3}\right) \leq h d\left(x_{1}, x_{2}\right) \leq h^{2} d\left(x_{0}, x_{1}\right)
$$

and, in general,

$$
d\left(x_{n}, x_{n+1}\right) \leq h^{n} d\left(x_{0}, x_{1}\right) \quad \text { for all } n \in \mathbf{N}
$$

For $n<m$, we have

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{i=0}^{m-n-1} d\left(x_{n+i}, x_{n+i+1}\right) \leq \sum_{i=0}^{m-1} h^{i} d\left(x_{0}, x_{1}\right) \leq \frac{h^{n}}{1-h} d\left(x_{0}, x_{1}\right)
$$

Since $0<h<1$, it follows that $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a left K-Cauchy sequence in the left K sequentially complete quasi-pseudo-metric space (X, d) and so there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

Now, by Lemma 3.2, we have $p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{2 n+1}\right)+p_{1}\left(x_{2 n+1}, F_{2}\left(x^{*}\right)\right)$ for all $n \in \mathbf{N}$. So, by Lemmas 3.3 and inequality (1),

$$
\begin{aligned}
& p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{2 n+1}\right)+D_{1}\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right) \leq \\
& \leq d\left(x^{*}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right) \leq \\
& \leq d\left(x^{*}, x_{2 n+1}\right)+\frac{r \max \left\{p\left(x_{2 n}, F_{1}\left(x_{2 n}\right)\right) p\left(x^{*}, F_{2}\left(x^{*}\right)\right),\right.}{\left.1+r\left(d \vee d^{-1}\right)\left(x_{2 n}, x^{*}\right)\right)} \\
& \quad \frac{\left.p\left(x_{2 n}, F_{2}\left(x^{*}\right)\right) p\left(x^{*}, F_{1}\left(x_{2 n}\right)\right)\right\}+h \max \left\{\left(d \wedge d^{-1}\right)\left(x_{2 n}, x^{*}\right),\right.}{\left.1+r\left(d \vee d^{-1}\right)\left(x_{2 n}, x^{*}\right)\right)} \\
& \quad \frac{\left.p\left(x_{2 n}, F_{1}\left(x_{2 n}\right)\right), p\left(x^{*}, F_{2}\left(x^{*}\right)\right), \frac{1}{2}\left[p\left(x_{2 n}, F_{2}\left(x^{*}\right)\right)+p\left(x^{*}, F_{1}\left(x_{2 n}\right)\right)\right]\right\}}{\left.1+r\left(d \vee d^{-1}\right)\left(x_{2 n}, x^{*}\right)\right)} .
\end{aligned}
$$

Since

$$
\left(d \vee d^{-1}\right)\left(x_{2 n}, x^{*}\right) \geq d^{-1}\left(x_{2 n}, x^{*}\right)=d\left(x^{*}, x_{2 n}\right)
$$

and

$$
\left(d \wedge d^{-1}\right)\left(x_{2 n}, x^{*}\right) \leq d^{-1}\left(x_{2 n}, x^{*}\right)=d\left(x^{*}, x_{2 n}\right)
$$

we have

$$
\begin{aligned}
& p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{2 n+1}\right)+ \\
& +\frac{r \max \left\{p\left(x_{2 n}, F_{1}\left(x_{2 n}\right)\right) p\left(x^{*}, F_{2}\left(x^{*}\right)\right), p\left(x_{2 n}, F_{2}\left(x^{*}\right)\right) p\left(x^{*}, F_{1}\left(x_{2 n}\right)\right)\right\}}{1+r d\left(x^{*}, x_{2 n}\right)}+ \\
& +\frac{h \max \left\{d\left(x^{*}, x_{2 n}\right), p\left(x_{2 n}, F_{1}\left(x_{2 n}\right)\right), p\left(x^{*}, F_{2}\left(x^{*}\right)\right),\right.}{1+r d\left(x^{*}, x_{2 n}\right)} \\
& \frac{\left.\frac{1}{2}\left[p\left(x_{2 n}, F_{2}\left(x^{*}\right)\right)+p\left(x^{*}, F_{1}\left(x_{2 n}\right)\right)\right]\right\}}{1+r d\left(x^{*}, x_{2 n}\right)},
\end{aligned}
$$

and by lemmas 3.2 and 3.3,

$$
\begin{aligned}
& p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{2 n+1}\right)+ \\
& \quad+\frac{r \max \left\{d\left(x_{2 n}, x_{2 n+1}\right) p\left(x^{*}, F_{2}\left(x^{*}\right)\right),\right.}{1+r d\left(x^{*}, x_{2 n}\right)} \\
& \frac{\left.\left[d\left(x_{2 n}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right] d\left(x^{*}, x_{2 n+1}\right)\right\}}{1+r d\left(x^{*}, x_{2 n}\right)}+ \\
& +\frac{h \max \left\{d\left(x^{*}, x_{2 n}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x^{*}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right.}{1+r d\left(x^{*}, x_{2 n}\right)} \\
& \frac{\left.\frac{1}{2}\left[d\left(x_{2 n}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)+d\left(x^{*}, x_{2 n+1}\right)\right]\right\}}{1+r d\left(x^{*}, x_{2 n}\right)}
\end{aligned}
$$

it follows that

$$
\begin{align*}
& p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{2 n+1}\right)+ \\
& \quad+\frac{r \max \left\{d\left(x_{2 n}, x_{2 n+1}\right) p\left(x^{*}, F_{2}\left(x^{*}\right)\right),\right.}{1+r d\left(x^{*}, x_{2 n}\right)} \\
& \quad \frac{\left.\left[d\left(x_{2 n}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right] d\left(x^{*}, x_{2 n+1}\right)\right\}}{1+r d\left(x^{*}, x_{2 n}\right)}+ \\
& \quad+\frac{h \max \left\{d\left(x^{*}, x_{2 n}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x^{*}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right\}}{1+r d\left(x^{*}, x_{2 n}\right)} \tag{3}
\end{align*}
$$

since $\frac{1}{2}\left[d\left(x_{2 n}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)+d\left(x^{*}, x_{2 n+1}\right)\right]$ is less then or equal to $d\left(x_{2 n}, x_{2 n+1}\right)$ or $d\left(x^{*}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)$.

Now let

$$
\begin{aligned}
m_{n}=\max \{ & d\left(x_{2 n}, x_{2 n+1}\right) p\left(x^{*}, F_{2}\left(x^{*}\right)\right), \\
& {\left.\left[d\left(x_{2 n}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right] d\left(x^{*}, x_{2 n+1}\right)\right\} }
\end{aligned}
$$

and

$$
M_{n}=\max \left\{d\left(x^{*}, x_{2 n}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x^{*}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right\}
$$

Then from inequality (3) we have

$$
\begin{equation*}
p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{2 n+1}\right)+\frac{r m_{n}+h M_{n}}{1+\operatorname{rd}\left(x^{*}, x_{2 n}\right)} \tag{4}
\end{equation*}
$$

ŞAHİN, KARAYILAN, TELCI

Now we have to consider, for each $n \in \mathbf{N}$, the following four cases:
Case 1. If $m_{n}=d\left(x_{2 n}, x_{2 n+1}\right) p\left(x^{*}, F_{2}\left(x^{*}\right)\right)$ and M_{n} is equal to either $d\left(x^{*}, x_{2 n}\right)$ or $d\left(x_{2 n}, x_{2 n+1}\right)$, then since $d\left(x^{*}, x_{2 n}\right)$ and $d\left(x_{2 n}, x_{2 n+1}\right)$ converge to 0 as $n \rightarrow \infty$, we obtain that $m_{n} \rightarrow 0$ and $M_{n} \rightarrow 0$. Also, $d\left(x^{*}, x_{2 n+1}\right)$ converge to 0 . Hence, from (4), we obtain $p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right)=0$.

Case 2. If $m_{n}=d\left(x_{2 n}, x_{2 n+1}\right) p\left(x^{*}, F_{2}\left(x^{*}\right)\right)$ and
$M_{n}=d\left(x^{*}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)$, then by inequality (1), we have

$$
M_{n} \leq d\left(x^{*}, x_{2 n+1}\right)+\frac{r m_{n}+h M_{n}}{1+r d\left(x^{*}, x_{2 n}\right)}
$$

and it follows that

$$
M_{n}\left[\frac{1+r d\left(x^{*}, x_{2 n}\right)-h}{1+r d\left(x^{*}, x_{2 n}\right)}\right] \leq d\left(x^{*}, x_{2 n+1}\right)+\frac{r m_{n}}{1+r d\left(x^{*}, x_{2 n}\right)}
$$

Since $d\left(x^{*}, x_{2 n}\right), d\left(x^{*}, x_{2 n+1}\right)$ and m_{n} converge to 0 as $n \rightarrow \infty$, we obtain that $M_{n} \rightarrow 0$. Thus from (4), we have $p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right)=0$.

Case 3. If $m_{n}=\left[d\left(x_{2 n}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right] d\left(x^{*}, x_{2 n+1}\right)$ and M_{n} is equal to either $d\left(x^{*}, x_{2 n}\right)$ or $d\left(x_{2 n}, x_{2 n+1}\right)$, then by inequality (1), we have

$$
m_{n} \leq\left[d\left(x_{2 n}, x_{2 n+1}\right)+\frac{r m_{n}+h M_{n}}{1+r d\left(x^{*}, x_{2 n}\right)}\right] d\left(x^{*}, x_{2 n+1}\right)
$$

and it follows that

$$
m_{n}\left[\frac{1+r d\left(x^{*}, x_{2 n}\right)-r d\left(x^{*}, x_{2 n+1}\right)}{1+r d\left(x^{*}, x_{2 n}\right)}\right] \leq\left[d\left(x_{2 n}, x_{2 n+1}\right)+\frac{h M_{n}}{1+r d\left(x^{*}, x_{2 n}\right)}\right] d\left(x^{*}, x_{2 n+1}\right)
$$

Since $d\left(x^{*}, x_{2 n}\right), d\left(x^{*}, x_{2 n+1}\right), d\left(x_{2 n}, x_{2 n+1}\right)$ and M_{n} converge to 0 as $n \rightarrow \infty$, we obtain that $m_{n} \rightarrow 0$. Thus from (4), we have $p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right)=0$.

Case 4. If $m_{n}=\left[d\left(x_{2 n}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right] d\left(x^{*}, x_{2 n+1}\right)$ and $M_{n}=d\left(x^{*}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)$, then by inequality (1), we have

$$
\begin{aligned}
& D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right) \leq \frac{r m_{n}+h M_{n}}{1+r d\left(x^{*}, x_{2 n}\right)}= \\
& =\frac{r\left[d\left(x_{2 n}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right] d\left(x^{*}, x_{2 n+1}\right)}{1+r d\left(x^{*}, x_{2 n}\right)}+ \\
& \quad+\frac{h\left[d\left(x^{*}, x_{2 n+1}\right)+D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\right]}{1+r d\left(x^{*}, x_{2 n}\right)}
\end{aligned}
$$

and it follows that

$$
\begin{aligned}
& D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right)\left[\frac{1+r d\left(x^{*}, x_{2 n}\right)-r d\left(x^{*}, x_{2 n+1}\right)-h}{1+r d\left(x^{*}, x_{2 n}\right)}\right] \leq \\
& \leq \frac{\left[r d\left(x_{2 n}, x_{2 n+1}\right)+h\right] d\left(x^{*}, x_{2 n+1}\right)}{1+r d\left(x^{*}, x_{2 n}\right)}
\end{aligned}
$$

Since $d\left(x^{*}, x_{2 n}\right), d\left(x^{*}, x_{2 n+1}\right)$ and $d\left(x_{2 n}, x_{2 n+1}\right)$ converge to 0 as $n \rightarrow \infty$ and $0<$ $1-h<1$, we obtain that $D\left(F_{1}\left(x_{2 n}\right), F_{2}\left(x^{*}\right)\right) \rightarrow 0$. Hence m_{n} and M_{n} converge to 0 as $n \rightarrow \infty$. Thus from (4), we have $p_{1}\left(x^{*}, F_{2}\left(x^{*}\right)\right)=0$.

It now follows from cases $1-4$ and Lemma 3.1 that $\left\{x^{*}\right\} \subset F_{2}\left(x^{*}\right)$.
Similarly, it can be shown that $\left\{x^{*}\right\} \subset F_{1}\left(x^{*}\right)$.

When (X, d) is a right K-sequentially complete quasi-pseudo-metric space, using Lemmas 3.5, 3.6, 3.7 and 3.8 we get the following result.

Theorem 4.2. Let (X, d) be a right K-sequentially complete quasi-pseudo-metric space and let F_{1} and F_{2} be fuzzy mappings from X to $W^{\prime}(X)$ satisfying the inequality

$$
\begin{align*}
& {\left[1+r\left(d \vee d^{-1}\right)(x, y)\right] D\left(F_{1}(x), F_{2}(y)\right) \leq} \\
& \leq r \max \left\{p\left(F_{1}(x), x\right) p\left(F_{2}(y), y\right), p\left(F_{2}(y), x\right) p\left(F_{1}(x), y\right)\right\}+ \\
& +h \max \left\{\left(d \wedge d^{-1}\right)(x, y), p\left(F_{1}(x), x\right), p\left(F_{2}(y), y\right),\right. \\
& \left.\frac{1}{2}\left[p\left(F_{2}(y), x\right)+p\left(F_{1}(x), y\right)\right]\right\} \tag{5}
\end{align*}
$$

for each $x, y \in X$, where $r \geq 0$ and $0<h<1$. Then there exists $x^{*} \in X$ such that $\left\{x^{*}\right\} \subset F_{1}\left(x^{*}\right)$ and $\left\{x^{*}\right\} \subset F_{2}\left(x^{*}\right)$.

The proof of this theorem is similar to the proof of Theorem 4.1 and is omitted.

On noting that

$$
\begin{aligned}
& {\left[p\left(x, F_{1}(x)\right) p\left(y, F_{2}(y)\right)\right]^{1 / 2} \leq \frac{1}{2}\left[p\left(x, F_{1}(x)\right)+p\left(y, F_{2}(y)\right)\right] \leq} \\
& \quad \leq \max \left\{\left(d \wedge d^{-1}\right)(x, y), p\left(x, F_{1}(x)\right), p\left(y, F_{2}(y)\right), \frac{1}{2}\left[p\left(x, F_{2}(y)\right)+p\left(y, F_{1}(x)\right)\right]\right\}
\end{aligned}
$$

we have the following corollary from Theorem 4.1 with $r=0$.
Corollary 4.1. Let (X, d) be a left K-sequentially complete quasi-pseudo-metric space and let F_{1} and F_{2} be fuzzy mappings from X to $W^{*}(X)$ satisfying the inequality

$$
D\left(F_{1}(x), F_{2}(y)\right) \leq h\left[p\left(x, F_{1}(x)\right) p\left(y, F_{2}(y)\right)\right]^{1 / 2}
$$

for each $x, y \in X$, where $0<h<1$. Then there exists $x^{*} \in X$ such that $\left\{x^{*}\right\} \subset F_{1}\left(x^{*}\right)$ and $\left\{x^{*}\right\} \subset F_{2}\left(x^{*}\right)$.

Similarly, we have the following corollary from Theorem 4.2.
Corollary 4.2. Let (X, d) be a right K-sequentially complete quasi-pseudo-metric space and let F_{1} and F_{2} be fuzzy mappings from X to $W^{\prime}(X)$ satisfying the inequality

$$
D\left(F_{1}(x), F_{2}(y)\right) \leq\left[p\left(F_{1}(x), x\right) p\left(F_{2}(y), y\right)\right]^{1 / 2}
$$

for each $x, y \in X$, where $0<h<1$. Then there exists $x^{*} \in X$ such that $\left\{x^{*}\right\} \subset F_{1}\left(x^{*}\right)$ and $\left\{x^{*}\right\} \subset F_{2}\left(x^{*}\right)$.

Both Corollary 4.1 and Corollary 4.2 are extensions of Theorem 3.2 of [7] in quasi-pseudo-metric space.

When (X, d) is a complete metric space, we get the following corollary.
Corollary 4.3. Let (X, d) be a complete metric space and let F_{1} and F_{2} be fuzzy mappings from X to $W^{\prime}(X)$ satisfying the inequality

$$
\begin{align*}
& {[1+r d(x, y)] D\left(F_{1}(x), F_{2}(y)\right) \leq} \\
& \leq r \max \left\{p\left(x, F_{1}(x)\right) p\left(y, F_{2}(y)\right), p\left(x, F_{2}(y)\right) p\left(y, F_{1}(x)\right)\right\}+ \\
& +h \max \left\{d(x, y), p\left(x, F_{1}(x)\right), p\left(y, F_{2}(y)\right)\right. \\
& \left.\frac{1}{2}\left[p\left(x, F_{2}(y)\right)+p\left(y, F_{1}(x)\right)\right]\right\} \tag{6}
\end{align*}
$$

for each $x, y \in X$, where $r \geq 0$ and $0<h<1$. Then there exists $x^{*} \in X$ such that $\left\{x^{*}\right\} \subset F_{1}\left(x^{*}\right)$ and $\left\{x^{*}\right\} \subset F_{2}\left(x^{*}\right)$.
Remark 1. Letting $F_{1}=F_{2}$ with $r=0$ in inequality (1), then Theorem 3.2 of [11] is a consequence of Theorem 4.1. Similarly, notice that Theorem 3.1 of [3] can be obtained from Theorem 4.1.

Remark 2. If we put $r=0$ in inequality (6), we can see that Theorem 3.1 in [7] is a special case of our Corollary 4.3. Also Theorem 3.2 of [7] can be obtained from Corollary 4.3.

Remark 3. Similarly, if we put $r=0$ in inequality (6), we can obtain Theorem 3.1 of [5] from Corollary 4.3.

References

[1] Beg, I., Azam, A.: Fixed point of asymptotically regular multivalued mappings, J. Austral. Math. Soc. 53, 313-326 (1992).
[2] Bose, R. K., Sahani, D.: Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems 21, 53-58 (1987).
[3] Gregori, V., Pastor, J.: A fixed point theorem for fuzzy contraction mappings, Rend. Istit. Math. Univ. Trieste 30, 103-109 (1999).
[4] Gregori, V., Romaguera, S.: Fixed point theorems for fuzzy mappings in quasi-metric spaces, Fuzzy Sets and Systems 115, 477-483 (2000).
[5] Heilpern, S.: Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl. 83, 566-569 (1981).
[6] Nadler, S. B.: Multivalued contraction mappings, Pacific J. Math. 30, 475-488 (1969).
[7] Park, J. Y., Jeong, J. U.: Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems 87, 111-116 (1997).
[8] Popa, V.: Common fixed points for multifunctions satisfying a rational inequality, Kobe J. Math. 2, 23-28 (1985).
[9] Reilly, I. L., Subrahmanyam, P. V. and Vamanamurthy, M. K.: Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math. 93, 127-140 (1982).
[10] Telci, M., Fisher, B.: On a fixed point theorem for fuzzy mappings in quasi-metric spaces, Thai J. Math. 2, 1-8 (2003).
[11] Telci, M., Şahin, İ.: A fixed point theorem for fuzzy mappings in quasi-pseudo-metric spaces, J. Fuzzy Math. 10, 105-110 (2002).

İ. ŞAHİN, H. KARAYILAN and M. TELCİ
Received 04.11.2003
Department of Mathematics,
Faculty of Arts and Sciences, Trakya University, 22030 Edirne-TURKEY
e-mail: mtelci@trakya.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 54A40, 54H25

 * Corresponding author

