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Abstract

In this paper, we obtain some common fixed point theorems for pairs of fuzzy
mappings in left K-sequentially complete quasi-pseudo-metric spaces and right K-
sequentially complete quasi-pseudo-metric spaces, respectively. Well-known theo-

rems are special cases of our results.
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1. Introduction

Heilpern [5] first introduced the concept of fuzzy mappings and proved a fixed point
theorem for fuzzy contraction mappings which is a fuzzy analogue of Nadler’s [6] fixed
point theorem for multivalued mappings. Bose and Shani [2], in their first theorem,
extended the result of Heilpern to a pair of generalized fuzzy contraction mappings. Park
and Jeong [7] proved some common fixed point theorems for fuzzy mappings satisfying
contractive-type conditions and a rational inequality in complete metric spaces, which are
the fuzzy extensions of some theorems in [1, 8]. Recently, Gregori and Pastor [3] proved

a fixed point theorem for fuzzy contraction mappings in left K-sequentially complete
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quasi-pseudo-metric spaces. Their result is a generalization of the result of Heilpern.
In [11] the authors extended the results of [3] and [5]. On the other hand, Gregori
and Romaguera [4] obtained some interesting fixed point theorems for fuzzy mappings in
Smyth-complete and left K-sequentially complete quasi-metric spaces, respectively. Some
well known theorems are special cases of their results. In [10] the authors considered a
generalized contractive type condition involving fuzzy mappings in left K-sequentially
complete quasi-metric spaces and established a fixed point theorem which is an extension
of Theorem 2 in [4]. Also, the result of [10] is a quasi-metric version of Theorem 1 in [4].

In this paper, we establish some generalized common fixed point theorems involving
pair of fuzzy mappings in left K-sequentially complete quasi-pseudo-metric spaces and
right K-sequentially complete quasi-pseudo-metric spaces, respectively, which are gener-
alization of some results in [3, 5, 11]. Also some well known theorems as in [3, 5, 7] are

special cases of our results.

2. Preliminaries

Throughout this paper the letter N denotes the set of positive integers. If A is a
subset of a topological space (X, 7), we will denote by cl; A the closure of A in (X, 7).

A quasi-pseudo-metric on a nonempty set X is a nonnegative real valued function d
on X x X such that, for all z,y, z € X:

(i) d(z,z) = 0, and (ii) d(z,y) < d(x, z) + d(z,y).

A pair (X,d) is called a quasi-pseudo-metric space, if d is a quasi-pseudo-metric on
X.

Each quasi-pseudo-metric d on X induces a topology 7(d) which has as a base the
family of all d-balls B.(x), where B.(z) = {y € X : d(x,y) < €}.

If d is a quasi-pseudo-metric on X, then the function d~', defined on X x X by
d=Y(z,y) = d(y, r) is also a quasi-pseudo-metric on X. By dAd~! and dV d~! we denote
min{d,d~'} and max{d,d '}, respectively.

Let d be a quasi-pseudo-metric on X. A sequence (z,)nen in X is said to be

(i) left K-Cauchy [9], if for each € > 0 there is a k € N such that d(z,, z,,) < € for
alln,m € N withm >n > k.

(ii) right K-Cauchy [9], if for each € > 0 there is a k € N such that d(x,, z.,) < ¢ for
alln,m € N withn >m > k.
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A quasi-pseudo-metric space (X, d) is said to be left (right) K-sequentially complete
[9], if each left (right) K-Cauchy sequence in (X, d) converges to some point in X (with
respect to the topology 7(d)).

Now let (X, d) be a quasi-pseudo-metric space and let A and B be nonempty subsets
of X. Then the Hausdorff distance between subsets A and B is defined by

H(A,B) = max{ilelg d(a, B), ggg d(b, A)} (see[3]),

where d(a, B) = inf{d(a,x) : € B}.
Note that H(A, B) > 0 with H(A,B) = 0 iff clA = ¢IlB, H(A,B) = H(B, A) and
H(A,B) < H(A,C)+ H(C, B) for any nonempty subset A, B and C of X. When d is a

metric on X, clearly H is the usual Hausdorff distance.

A fuzzy set on X is an element of I where I = [0,1]. The a-level set of a fuzzy set
A, denoted by A,, is defined by
Ay ={x e X : A(z) > a} for each a € (0,1], and Ay = cl({z € X : A(z) > 0}).

For z € X we denote by {«} the characteristic function of the ordinary subset {z} of
X.

Definition 2.1. Let (X,d) be a quasi-pseudo-metric space. The families W*(X) and
W' (X) of fuzzy sets on (X, d) are defined by

W*(X) ={A € I* : A; is nonempty d— closed and d~!-compact} (see[3]),
W'(X) ={A € I’* : Ay is nonempty d— closed and d-compact}.

In [5] it is defined the family W (X) of fuzzy sets on metric linear space (X,d),
as follows: A € W(X) iff A, is compact and convex in X for each o € [0,1] and
supzex A(X) = 1.

If (X, d) is a metric linear space, then we have
W(X)CcW*(X)=W'(X)={A € IX: A; is nonempty and d-compact } C I*X.
Definition 2.2. Let (X,d) be a quasi-pseudo-metric space and let A, B € W*(X) or

A,B e W/'(X) and a € [0,1]. Then we define,
Pa(A, B) = inf{d(z,y) : 2 € Aa,y € Ba} = d(Aa, Ba),

D.(A,B) = H(Aa, Ba),
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where H is the Hausdorff distance deduced from the quasi-pseudo-metric d on X,
p(A, B) = sup{pa(4, B) : a € [0, 1]},

D(A, B) = sup{D,(4, B) : a € [0, 1]}.

It is easy to see that p, is non-decreasing function of a, and p1(A, B) = d(41, B1) =
p(A, B) where d(Ay, By) = inf{d(z,y): x € A1,y € By }.

Definition 2.3. [3] Let X be an arbitrary set and Y be any quasi-pseudo-metric space.
F is said to be a fuzzy mapping if F is a mapping from the set X into W*(Y") or W/(Y).

This definition is more general than the one given in [5].

Definition 2.4. We say that z is a fized point of the mapping F : X — IX, if

Note that, If A, B € IX, then A C B means A(z) < B(z) for each z € X.

3. Lemmas

Before establishing our main results, we need the lemmas presented in the next section.
The following four lemmas were proved by Gregory and Pastor [3].

Lemma 3.1. Let (X, d) be a quasi-pseudo-metric space and let x € X and A € W*(X).
Then {z} C A if and only if p1(z, A) = 0.

Lemma 3.2. Let (X,d) be a quasi-pseudo-metric space and let A € W*(X). Then
pa(z, A) < d(z,y) + paly, A) for any z,y € X and o € [0,1].

Lemma 3.3. Let (X,d) be a quasi-pseudo-metric space and let {xg} C A. Then
Pa(zo, B) < Do (A, B) for each A, B € W*(X) and o € [0, 1].

Lemma 3.4. Suppose K # () is compact in the quasi-pseudo- metric space (X,d~1). If
z € X, then there exists ko € K such that d(z, K) = d(z, ko).

Above Lemma 3.1, Lemma 3.2 and Lemma 3.3 were proved by Heilpern [5] for the
family W(X) in a metric space.

We will use also the following lemmas.

Lemma 3.5. Let (X,d) be a quasi-pseudo-metric space and let x € X and A € W/(X).
Then {z} C A if and only if p1(A4,z) = 0.
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Lemma 3.6. Let (X,d) be a quasi-pseudo-metric space and let A € W'(X). Then
Pa(A, 2) < pa(A,y) +d(y,z) for any v,y € X and a € [0, 1].

Lemma 3.7. Let (X,d) be a quasi-pseudo-metric space and let {xg} C A. Then
Pa(B,x0) < Do(B, A) for each A,B € W'(X) and « € [0, 1].

The proofs of these lemmas are similar to the proofs of lemmas in [5] and omitted.

Lemma 3.8. Suppose K # 0 is compact in the quasi-pseudo- metric space (X,d). If
z € X, then there exists ko € K such that d(K, z) = d(ko, 2).

Proof. By a method similar to that in the proof of Lemma 2.9 in [3], the result follows.

4. Common fixed point theorems

We now prove the following theorem.

Theorem 4.1. Let (X,d) be a left K-sequentially complete quasi-pseudo-metric space
and let F1 and Fy be fuzzy mappings from X to W*(X) satisfying the inequality

[1+7(dVvd ") (z,y)]D(Fi(x), Fa(y)) <
< rmax{p(z, F1(2))p(y, F2(v)), p(x, F2(y))p(y, F1(x))} +
+hmax{(d A d~")(z,y), p(z, Fi(x)), p(y, F2(y)),

S, Faly) + p(y, Fa(a))]) (1)

for each z,y € X, wherer > 0 and 0 < h < 1. Then there exists x* € X such that
{z*} C Fi(z*) and {z*} C Fa(z*).

Proof. Suppose xg is an arbitrary point in X such that {1} C Fi(xo). Since (Fz(x1)); is
d~'-compact, it follows from Lemma 3.4, there exists x5 € (Fy(x1))1 such that d(x1, 22) =
d(x1, (Fa(x1))1). Thus we have

d(x1, x2) = d(z1, (F2(21))1) < H(21, (F2(21))1) < D(Fi(2o), Fa(71)). (2)
Similarly, we can find z3 € X such that

{1'3} C Fl(l'g) and d(l’g,l’g,) < D(Fg(l'l),Fl(LL'Q)).
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Continuing in this way, we can obtain a sequence (z,)nen in X such that
{wany1} C Fi(wan), {T2ny2} C Fa(T2nt1),

d(zan+1, Tanye) < D(Fi(x2n), Fo(rant1))

and

d(@2n+2, Tants) < D(F2(22n41), F1(22n42))
forn=0,1,2, ...
Now using inequalities (1) and (2) we have,
[1+rd(xo, x1)]d(z1,22) < [1+7(dV d ) (xo, 21)]D(Fi(x0), Fa(21)) <
< rmax{p(zo, F1(20))p(1, Fa(x1)), p(xo, Fa(1))p(w1, Fi(wo))} +
+hmax{(d A d~")(xo, 1), p(xo, F1(20)), p(a1, Fa(x1)),

%[P(fﬂo, Fy(x1)) + p(a1, Fi(zo))]}

Since z1 € (F1(z0))1 and z2 € (Fz(x1))1, we have p(zo, F1(z0)) < d(xo, z1),
p(x1, Fa(z1)) < d(z1,x2), p(zo, Fo(z1)) < d(x0, 22) < d(x0,21) + d(21,22) and
p(x1, Fi(zo)) = 0

Thus we have,
1+ rd(zo, z1)]d(x1, 22) < rd(z0, T1)d(T1, T2)+

+hmax{d(zo, x1), d(z1, 22), =[d(x0, 1) + d(z1, 22)]}.

N~

and it follows that

[d(l’o,l’l) + d(l’l,wg)]} = hd(l’o,l’l)

N~

d(x1,z2) < hmax{d(xg,z1),d(x1, T2),

since h < 1. Thus
d(l’l,l'g) S hd(l’o,l’l).

Similarly,
(g, x3) < hd(z1, m2) < h*d(x0,21)

and, in general,
d(xp, Tpy1) < W"d(xg,21)  for allm € N.
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For n < m, we have

m—n—1 m—1 n
A(Tn, xm) < Y d(@nyi, Tngin) < D hld(zo, 21) < (w0, 21).
i= =0

Since 0 < h < 1, it follows that (z,)nen is a left K-Cauchy sequence in the left K-
sequentially complete quasi-pseudo-metric space (X, d) and so there exists z* € X such

that lim,, o ©, = x*.

Now, by Lemma 3.2, we have p;(a*, Fo(z*)) < d(a*, 22n41) + p1(Z2nt1, Fo(z*)) for
all n € N. So, by Lemmas 3.3 and inequality (1),

p1(a", Fo(z™)) < d(z™, 22n41) + D1(Fi(z2n), F2(27)) <

< d(x*, x2n41) + D(Fi(x2,), Fa(zx™)) <

rmax{p(ran, F1(x2,))p(z*, Fo(z*)),
14+ r(dVd=1)(zon, %))

p(won, Fo(x*))p(z*, Fi(z2,))} + hmax{(d A d~1)(z2,, 2%),
1+ r(dVd1)(xap, %))

p(@an, Fi(an)), p(x*, Fa(z*)), 5[p(an, Fa(a*)) + pla*, Fi(xan))]}
1+ 7(dVd=1)(zan, z*)) '

<d(z*, zont1) +

Since
(dv d_l)(gcgn,x*) > d_l(gcgn,x*) =d(z", x2)
and
(dn d_l)(gcgn,x*) < d_l(gcgn,x*) =d(z", x2n),
we have

pi(z™, Fa(z™)) < d(z™, m2n41)+

+7“maX{P(fC2n»Fl(fﬂzn))P(fC*»Fz(fﬂ*))»]?(wzn»Fz(w*))P(w*»Fl(wzn))}
14+ rd(z*, x2,)

hmax{d(w*7x2n)7p(w2n7 F1($2n))»p(55*» FQ(.’I]*)),
+
1+ rd(z*, 22p)

3P(@2n, Fa(z¥)) + p(a*, Fi(220))]}
1+ rd(x*, z2,)

+

)
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and by lemmas 3.2 and 3.3,

pi(z™, Fa(z™)) < d(z™, m2n41)+

rmax{d(T2n, Tont1)p(r*, F2(z*)),
1+ rd(x*, z2,)

[d(22n, T2n+1) + D(F1(224), Fo(2"))]d(2*, T2041)}
1+ rd(z*, 22p)

+hmax{d(w*, T2n), A(T2n; Tant1), d(T*, Tont1) + D(F1(220), Fo(77)),
1+ rd(z*, 22p)

+

3[d(@an, @an41) + D(Fi(w2n), Fa(a)) + d(@”, won 1)}

1+ rd(z*, 22p)

it follows that

pi(z™, Fa(z™)) < d(z*, m2n41)+

rmax{d(T2n, Tont1)p(r*, F2(z*)),
1+ rd(x*, z2,)

[d(22n, T2n+1) + D(F1(224), Fo(2"))]d(2*, T2041)}
1+ rd(z*, 22p)

+hmax{d(w*, Zon), A(Zon, Tant1), d(2*, Tant1) + D(F1(z2,), Fa(z™))}
1+ rd(z*, z2n) ’

+

since 1[d(%on, Tant1) + D(F1(22n), Fa(a*)) + d(x*, 22n41)] is less then or equal to
d(T2n, T2n+1) OF (2", T2n11) + D(F1(220), F2(2%)).

Now let

my, = max{d(Tan, Ton+1)p(z*, Fa(x™)),

[d(2n, T2n+1) + D(F1(22,), Fo(2"))]d(2", 22n41)}
and
M, = max{d(x", x2n), d(T2n, T2n+1), d(2", T2n11) + D(F1(220), F2(27))}.
Then from inequality (3) we have

rmy, + hM,

pl(w ’ 2(1' )) = (‘T » L2 +1)+ 1+7‘d(.’L’*,£L’2n)

136



SAHIN, KARAYILAN, TELCI

Now we have to consider, for each n € N, the following four cases:

Case 1. If m,, = d(xan, Tant1)p(z*, Fo(z*)) and M, is equal to either d(a*, z2,) or
d(x2n, Tont1), then since d(z*, x2,) and d(x2y,, Tan+1) converge to 0 as n — 0o, we obtain
that m, — 0 and M,, — 0. Also, d(x*, z2,1) converge to 0. Hence, from (4), we obtain
p1(a*, Fa(z*)) = 0.

Case 2. If my, = d(xan, Tan+1)p(z*, Fa(x*)) and
M, = d(z*,22n+1) + D(F1(22n), F2(2*)), then by inequality (1), we have

rmy, + hM,

M, <d(x*,xon LA
< d(a”, 22n 1) 1+ rd(z*, z2p)
and it follows that

1+ rd(z*,x2,) — h
1+ rd(z*, z2n)

My

M, —_—.
[ 14+ rd(z*, x2,)

] S d(fL'*,fL'QnJ,_l) +

Since d(z*, zay), d(z*,22n+1) and m, converge to 0 as n — oo, we obtain that
M,, — 0. Thus from (4), we have py (z*, F»(z*)) = 0.

Case 3. If m,, = [d(x2n, Tant+1) + D(F1(z2n), Fa(x*))]d(z*, x2n+1) and M, is equal to
either d(z*, zay,) or d(x2n, Tant1), then by inequality (1), we have

rmy, + hM,,

e TR (2, 2o
1 +Td(x*,x2n)] (2%, 22n41)

s S [d(x2n7x2n+1)
and it follows that

hM,,
ma|

1+ rd(z*, 22p)

L+ rd(z*, x9n) — rd(z*, 29n11)
1+ rd(x*, z2,)

] S [d(x2n7x2n+1) + ]d($*79€2n+1)-

Since d(z*, xay), d(x*, Tant1), d(2n, Tany1) and M, converge to 0 as n — oo, we
obtain that m, — 0. Thus from (4), we have p;(a*, Fa(z*)) = 0.

Case 4. If m,, = [d(z2n, T2n+1) + D(F1(z2n), Fa(x*))]d(z*, £2n+1) and
M, = d(z*, 2on+1) + D(Fi(22n), F2(2*)), then by inequality (1), we have
rmy, + hM,

DU (wan), Fo(27)) = =200 s =

_ rld(xen, Tant1) + D(Fi(z2n), Fo(z*))]d(z*, z2n41) N
1+ rd(z*, z2n)
hld(z*, xant+1) + D(Fi(z2n), Fo(z*))]
1+ rd(z*, z2n)

+
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and it follows that
14+ rd(z*, x2y) — rd(a*, Tony1) — h]
1+ rd(z*, z2n)

[rd(zan, Tant+1) + hld(z*, Tant1)
- 1+ rd(x*, z2,) '

IN

D(Fy(x2,), Fo(x¥))[

Since d(x*, xay), d(z*, Tony1) and d(zan, Tany1) converge to 0 as n — oo and 0 <
1 —h < 1, we obtain that D(Fy(z2n), F2(z*)) — 0. Hence m,, and M,, converge to 0 as

n — o0o. Thus from (4), we have py(x*, Fa(z*)) = 0.

It now follows from cases 1 — 4 and Lemma 3.1 that {z*} C Fy(z*).

Similarly, it can be shown that {z*} C Fi(z*).

When (X,d) is a right K-sequentially complete quasi-pseudo-metric space, using
Lemmas 3.5, 3.6, 3.7 and 3.8 we get the following result.

Theorem 4.2. Let (X,d) be a right K-sequentially complete quasi-pseudo-metric space
and let F1 and Fy be fuzzy mappings from X to W'(X) satisfying the inequality

[1+7(dVvd ") (z,y)]D(Fi(x), Fa(y) <
< rmax{p(Fi(z), z)p(F2(y),y), p(F2(y), z)p(F1(z),y)} +
+hmax{(d A d~")(z,y), p(Fi(z), z), p(Fa(y), y),

SI(F0). ) + p(Fr (), )]} (5)

for each z,y € X, wherer > 0 and 0 < h < 1. Then there exists x* € X such that

{z*} C Fi(2*) and {a*} C Fa(z*).

The proof of this theorem is similar to the proof of Theorem 4.1 and is omitted.

On noting that

[p(z, Fi(x)) + p(y, Fa(y))] <

N~

[p(x, Fi(x))p(y, Fa(y)]'/? <

<max{(dAd~")(z,y), plz, Fi(x)),p(y, F2(y)), %[P(w, Fy(y)) + ply, F1(2))]},
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we have the following corollary from Theorem 4.1 with r» = 0.

Corollary 4.1. Let (X,d) be a left K-sequentially complete quasi-pseudo-metric space
and let F1 and Fy be fuzzy mappings from X to W*(X) satisfying the inequality

D(Fi(), F2(y)) < hlp(e, Fi(z))p(y, F2(y))]'/?,

for each x,y € X, where 0 < h < 1. Then there exists x* € X such that {z*} C Fy(z*)
and {z*} C Fy(z*).

Similarly, we have the following corollary from Theorem 4.2.

Corollary 4.2. Let (X,d) be a right K-sequentially complete quasi-pseudo-metric space
and let F1 and Fy be fuzzy mappings from X to W'(X) satisfying the inequality

D(F\(x), Fa(y)) < [p(Fi(2), 2)p(Fa(y), »)]'/?,

for each x,y € X, where 0 < h < 1. Then there exists x* € X such that {z*} C Fy(z*)
and {z*} C Fy(z*).

Both Corollary 4.1 and Corollary 4.2 are extensions of Theorem 3.2 of [7] in quasi-

pseudo-metric space.

When (X, d) is a complete metric space, we get the following corollary.

Corollary 4.3. Let (X, d) be a complete metric space and let Fy and Fy be fuzzy mappings
from X to W/ (X) satisfying the inequality
[1+rd(z,y)|D(Fi(x), F2(y)) <
< rmax{p(z, F1(2))p(y, F2(y)), p(, Fa(y))p(y, F1(2))} +
+h max{d(w, y)»P(CC» Fl(«T))»p(y» F2(y))7

Sz, Fx(w) +plys Fr ()]} (6)

for each z,y € X, wherer > 0 and 0 < h < 1. Then there exists x* € X such that
{z*} C Fi(z*) and {z*} C Fa(z*).

Remark 1. Letting F} = F5 with » = 0 in inequality (1), then Theorem 3.2 of [11] is a
consequence of Theorem 4.1. Similarly, notice that Theorem 3.1 of [3] can be obtained

from Theorem 4.1.
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Remark 2. If we put r = 0 in inequality (6), we can see that Theorem 3.1 in [7] is a

special case of our Corollary 4.3. Also Theorem 3.2 of [7] can be obtained from Corollary

4.3.

Remark 3. Similarly, if we put 7 = 0 in inequality (6), we can obtain Theorem 3.1 of
[5] from Corollary 4.3.
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