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2-Quasi-λ-Nuclear Maps

W. Shatanawi

Abstract

In this paper we generalize the well-known result which says that the composition
of quasi-nuclear maps is nuclear. More precisely, we define what we call a 2-quasi-
λ-nuclear map between normed spaces, and we prove that the composition of a
2-quasi-λ-nuclear map with a quasi-λ-nuclear map is a pseudo-λ-nuclear map. Also,
we prove that a quasi-λ-nuclear map is a 2-quasi-λ-nuclear map. For a nuclear G∞-
space, we prove that a linear map T between normed spaces is 2-quasi-λ-nuclear if
and only if it is quasi-λ-nuclear.

1. Basic Concepts

For two sequences of scalars x = (xn) and y = (yn) we write xn = O(yn) if there is a
ρ > 0 such that xn ≤ ρyn for all n ∈ N.

A set A of sequences of non-negative real numbers is called a Köthe set, if it satisfies
the following conditions:

1. For each pair of elements a, b ∈ A there is c ∈ Awith an = O(cn) and bn = O(cn).

2. For every integer r ∈ N there exists a ∈ A with ar > 0.

The space of all sequences x = (xn) such that

pa(x) :=
∑
n

|xn| an < +∞

for all a ∈ A, is called the Köthe space, λ(A), generated by A[3].
A Köthe set P will be called a power set of infinite type if it satisfies the following

conditions:
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1. For each a ∈ P , 1 ≤ an ≤ an+1 for all n.

2. For each a ∈ P , there exists b ∈ P such that a2
n = O(bn).

A Köthe space of the form λ(P ) where P is a power set of infinite type is called a
G∞-space or a smooth sequence space of infinite type[8].

Let α = (αn) be an unbounded non-decreasing sequence of positive real numbers.
Then P∞ = {(kαn) : k ∈ N} is a countable Köthe set. The corresponding Köthe space
Λ∞(α) = λ(P∞) is called the power series of infinite type.

The space s of rapidly decreasing sequences is a G∞-space which is generated by

A = {(nk) : k = 1, 2, 3, ... }.
Let E and F be two arbitrary normed spaces. A linear map T from E into F is called

a nuclear map if there are sequences (an), (yn) in E′ and F respectively, with∑
n
||an|| ||yn|| < +∞ such that T (x) =

∑
n
〈x, an〉yn ,

and a quasi-nuclear map if there is a sequence (an) in E′ with
∑

n ||an|| < +∞ such

that ||T (x)|| ≤∑n |〈x, an〉| (see [4, P. 49, P. 56]).
In the rest of this paper, letter λ stands for a fixed sequence space contained in `1.
A linear map T of a normed space E into a normed space F is called a pseudo-λ-

nuclear map if there exist a sequence (αn) in λ and a bounded sequences (an) and (yn)
in E′ and F respectively such that Tx =

∑
n αn〈x, an〉yn , for all x in E, and a quasi-

λ-nuclear map if there exist a sequence (αn) in λ and a bounded sequence (an) in E′

such that ||Tx|| ≤∑n |αn| |〈x, an〉|, for all x in E([1][6]).
A linear map T from a normed space E into a normed space F is called a 2-quasi-

nuclear map, if there is a sequence (an) in E′ with

∑
n
||an||2 < +∞ such that ||Tx|| ≤

(∑
n
|〈x, an〉|2

)1/2

[5].

One of our goals in the present paper is to generalize the following Theorem:

Theorem 1.1 [4] The composition of quasi nuclear maps is nuclear.

To proceed in our work and to achieve our goals, we introduce the following definition:

Definition 1.1 A bounded linear map T of a normed space E into a normed space F

is called a 2-quasi-λ-nuclear map if there exist a sequence (αn) in λ and a bounded
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sequence (an) in E′ such that

||Tx|| ≤
(∑

n
|αn| |〈x, an〉|2

)1/2

,

for all x in E.

2. Main Results

Let N (E, F ), QN 1(E, F ), QN 2(E, F ), PλN (E, F ), QλN 1(E, F ), and QλN 2(E, F )
denote the collection of all nuclear, quasi-nuclear, 2-quasi-nuclear, pseudo-λ-nuclear,
quasi-λ-nuclear, and 2-quasi-λ-nuclear maps, respectively, between normed spaces E and
F . It is an easy matter to see the following propositions.

Proposition 2.1 If T ∈ PλN (E, F ), then T ∈ N (E, F ).

Proposition 2.2 If T ∈ QλN 1(E, F ), then T ∈ QN 1(E, F ).

Proposition 2.3 If T ∈ QλN 2(E, F ), then T ∈ QN 2(E, F ).

Let B(E, F ) denotes the collection of all bounded linear map between normed spaces
E and F . Then we have the following proposition.

Proposition 2.4 Let E, F and G be normed spaces. Let T and S be linear maps from
E into F and from F into G respectively. Then

1. If T ∈ B(E, F ) and S ∈ PλN (F,G), then ST ∈ PλN (E,G).

2. If T ∈ PλN (E, F ) and S ∈ B(F,G), then ST ∈ PλN (E,G).

3. If T ∈ B(E, F ) and S ∈ QλN 1(F,G), then ST ∈ QλN 1(E,G).

4. If T ∈ QλN 1(E, F ) and S ∈ B(F,G), then ST ∈ QλN 1(E,G).

5. If T ∈ B(E, F ) and S ∈ QλN 2(F,G), then ST ∈ QλN 2(E,G).

6. If T ∈ QλN 2(E, F ) and S ∈ B(F,G), then ST ∈ QλN 2(E,G).

Our next result indicates the relationship between quasi-λ-nuclear and 2-quasi-λ-
nuclear maps.

Theorem 2.1 Each quasi-λ-nuclear map is 2-quasi-λ-nuclear.
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Proof. Let T : E → F be a quasi-λ-nuclear map between normed spaces E and F .
Then there exist a sequence (αn) in λ and a bounded sequence (an) in E′ such that
||Tx|| ≤∑n |αn| |〈x, an〉|, for all x in E. By Hölder’s inequality, we have

||Tx|| ≤
(∑

n
|αn|

)1/2 (∑
n
|αn| |〈x, an〉|2

)1/2

.

Hence,

||Tx|| ≤
(∑

n
|αn| |〈x,

√
β an〉|2

)1/2

,

where β =
∑

n |αn|. Since (αn) ∈ λ and (
√
β an) is a bounded sequence in E′, T is a

2-quasi-λ-nuclear map. 2

The relationship between pseudo-`1-nuclear and nuclear maps is given by the following
proposition.

Proposition 2.5 A linear map T from a normed space E into a normed space F is
nuclear if and only if it is pseudo-`1-nuclear.

The following proposition gives the relationship between quasi-nuclear and quasi-`1-
nuclear maps.

Proposition 2.6 A linear map T from a normed space E into a normed space F is
quasi-nuclear if and only if it is quasi-`1-nuclear.

The next proposition indicates the relationship between 2-quasi-nuclear and 2-quasi-
`1-nuclear maps.

Proposition 2.7 A linear map T from a normed space E into a normed space F is a
2-quasi-nuclear map if and only if it is a 2-quasi-`1-nuclear map.

The following result is direct consequence of Proposition 2.6, Theorem 2.1 and Propo-
sition 2.7.

Corollary 2.1 Each quasi-nuclear map is a 2-quasi-nuclear map.

The following well-known results are essential for proving Theorem 2.2.

Lemma 2.1 (see Pietsch [4, P. 57]) Each normed space F can be considered as a linear
subspace of a Banach space `∞(I).
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Lemma 2.2 [4, P. 57] If G0 is a linear subspace of the normed space G, then each
continuous linear map S0 of G0 into a Banach space `∞(I) can be extended to a continuous
linear map S from G into `∞(I) with ||S|| = ||S0||.

Theorem 2.2 Each quasi-λ-nuclear map T : E → F between normed spaces E and F

is also pseudo-λ-nuclear if it is regarded as a map from E into a Banach space `∞(I) in
which F is embedded.
Proof. Since T is a quasi-λ-nuclear map, there exist a sequence (αn) in λ and a
bounded sequence (an) in E′ such that ||Tx|| ≤ ∑n |αn| |〈x, an〉|, for all x in E. Let

G0 = {(〈x, αnan〉) : x ∈ E}. Then G0 forms a subspace of `1. Define a map S0 : G0 → F

by S0(〈x, αnan〉) = Tx. Then S0 is a continuous linear map fromG0 into F with ||S0|| ≤ 1
because

||S0(〈x, αnan〉)|| = ||Tx||

≤
∑

n
|αn| |〈x, an〉|

=
∑

n
|〈x, αnan〉|

= ||(〈x, αnan〉)||1.

So by Lemmas 2.1 and 2.2, the map S0 can be extended to a continuous linear map S

from `1 into the Banach space `∞(I) with ||S|| ≤ 1. Let yn = Sen , where (en) is the
standard basis of `1. Then

||yn||∞ = ||Sen||∞ ≤ ||S|| ||en||1 ≤ 1.

Also, the map S has the representation S(ζn) =
∑
n ζnyn, for (ζn) ∈ `1. Since Tx =

S(〈x, αnan〉), the map T has the form

Tx =
∑

n
〈x, αnan〉yn =

∑
n
αn〈x, an〉yn.

Since (αn) ∈ λ and (an) is a bounded sequence in E′, and (yn) is a bounded sequence in
`∞(I), we get the pseudo-λ-nuclearity of the map T as a map from E into `∞(I). 2

The following known result is a crucial in proving our next result.

Theorem 2.3 [5] If T is a bounded linear map from a normed space E into a Banach
space F , then the following conditions are equivalent:
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1. T is a 2-quasi-nuclear map.

2. T factors through the diagonal map Dµ : `∞ → `2 for some µ ∈ `2, that is, there
are two bounded linear maps S1 from E into `∞ and S2 from `2 into F such that
T = S2DµS1.

Theorem 2.4 If T : E → F is a quasi-λ-nuclear map between normed spaces and if S is
a 2-quasi-λ -nuclear map from F into a Banach space G, then ST is a pseudo-λ-nuclear
map.

Proof. Since S is a 2-quasi-λ-nuclear map, by Theorem 2.3 and Proposition 2.3, S can
be factored through a diagonal map Dµ : `∞ → `2 for some µ ∈ `2, that is, there are two
bounded linear maps S1 from F into `∞ and S2 from `2 into G such that S = S2DµS1.
Then by using Proposition 2.4 and Theorem 2.2, we get the pseudo-λ-nuclearity of ST . 2

The following result follows from Theorem 2.1 and Theorem 2.4.

Corollary 2.2 The Composition of quasi-λ-nuclear maps is a pseudo-λ-nuclear map.

Remark. In case λ = `1, we get the well-known result which says that the composition
of quasi-nuclear maps is a nuclear map [4].

In order to prove our last main result, we introduce the following definition to facilitate
our subsequent arguments.

Definition 2.1 If A is a set of sequences, then we define the set B(A) by B(A) = {x :
x a ∈ `∞ ∀ a ∈ A}.

Remark. It is easy matter to see that if A is a Köthe set, then λ(A) ⊆ B(A). However,
we have the following result.

Proposition 2.8 If λ(P ) is a nuclear Köthe space, then B(P ) = λ(P ).

Proof. Let x ∈ B(P ) be given. For a ∈ P , by Grothendieck-Pietsch criterion for
nuclearity, we choose b ∈ P such that (an/bn) ∈ `1. Since x ∈ B(P ) and b ∈ P , there is
α > 0 such that |xn| bn ≤ α for each n. Let

Na = {n : an 6= 0} and Nb = {n : bn 6= 0}.
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Then Na ⊆ Nb. Thus,∑
n
|xn| an =

∑
n∈Na

|xn| an

≤
∑

n∈Nb
|xn| an

=
∑

n∈Nb
|xn| bn

an
bn

≤ α
∑

n∈Nb

an
bn

< +∞.

Therefore x ∈ λ(P ). 2

Theorem 2.5 Suppose that λ = λ(P0) is a nuclear G∞-space. A bounded linear map
between normed spaces is a quasi-λ-nuclear map if and only if it is a 2-quasi-λ-nuclear
map.
Proof. The ”if” part condition follows from Theorem 2.1. To prove the ”only if”
part, let T : E → F be a 2-quasi-λ-nuclear map between normed spaces E and F .
Then there exist a sequence (αn) in λ and a bounded sequence (an) in E′ such that

||Tx|| ≤
(∑

n |αn| |〈x, an〉|2
)1/2. Then we have ||Tx|| ≤∑n

√
|αn| |〈x, an〉|. To finish our

proof it is enough to show that (
√
|αn|) ∈ λ. For a ∈ P0, find β > 0 and b ∈ P0 such that

a2
n ≤ β2bn ∀n. So by Proposition 2.8, supn

√
|αn|an ≤ supn

√
|αn|bn <∞ since (αn) ∈ λ.

2

3. Examples

In this section, we give some examples to show that the converse of our main previous
results are not true in general. The following proposition will be of great use in our next
example.

Proposition 3.1 [6] A diagonal map D = (dn) with dn ≥ 0, is a pseudo-Λ∞(α)-nuclear
map from `1 into `1 if and only if the dn’s which are different from zero can be rearranged
into a sequence in Λ∞(α).

Now we give an example of a 2-quasi-nuclear map which is not a 2-quasi-λ-nuclear
map.

Example 3.1 Define a map D : `1 → `2 by Dx = (xn/2n). Then D is a 2-quasi-nuclear
map which is not a 2-quasi-Λ∞(n)-nuclear map.
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Proof. To show that D is a 2-quasi-nuclear map, let an = en/2n. Then

||Dx||22 =
∣∣∣∣∣∣(xn

2n
)∣∣∣∣∣∣2

2
=
∑

n

∣∣∣xn
2n

∣∣∣2 =
∑

n
|〈x, an〉|2 .

Since (an) is a sequence in `∞ with
∑

n ||an||2∞ < +∞, D is a 2-quasi-nuclear map. To

show that D is not a 2-quasi-Λ∞(n)-nuclear map, define a map A : `2 → `1 by putting
Ax = (xn/2n). Then A is quasi-nuclear. Therefore A is 2-quasi-nuclear. By Theorem
2.3, A can be factored through Dµ for some µ ∈ `2, that is, there are bounded maps
S2 : `2 → `∞, Dµ : `∞ → `2, and S1 : `2 → `1 such that A = S1DµS2. If we as-

sume that D is 2-quasi-Λ∞(n)-nuclear, then by Theorem 2.5, D is quasi-Λ∞(n)-nuclear.
Then by Proposition 2.4, S2D is quasi-Λ∞(n)-nuclear. Therefore by Theorem 2.2, S2D

is pseudo-Λ∞(n)-nuclear. Thus by Proposition 2.4, AD is pseudo-Λ∞(n) -nuclear. Since
AD : `1 → `1 is given by ADx = (xn/4n) and AD is pseudo-Λ∞(n)-nuclear, by Proposi-
tion 3.1 we have, (1/4n) ∈ Λ∞(n), which is a contradiction. So A is not 2-quasi-Λ∞(n)-
nuclear. 2

Now, we give an example of a 2-quasi-λ-nuclear map which is not quasi-λ-nuclear. To
achieve that we need the following definitions and results. For two normed spaces E and
F and for integers r ≥ 0, Ar(E, F ) denotes the collection of all finite rank linear maps A
from E into F whose range is at most r-dimensional.

Definition 3.1 [4; P. 120] Let T be a linear map from a normed space E into a normed
space F . The r-th approximation number αr(T ) of T is defined to be inf{||T − A|| :
A ∈ Ar(E, F )}.

Definition 3.2 [4; P. 144] Let B be an arbitrary bounded subset in a normed space E
with closed unit ball U . The infimum of all δ > 0 for which there is a linear subspace F
of E with dimension at most n such that B ⊂ δ U + F is called the n-th diameter of B
and is denoted by dn(B).

It is clear that d0(B) ≥ d1(B) ≥ · · · ≥ 0.

Definition 3.3 [see 7] Let T : E → F be a bounded linear map between normed spaces
E and F with closed unit balls U and V respectively. The n-th diameter of T , denoted
by dn(T ), is defined to be dn(T (U)).
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Lemma 3.1 [2, P. 23] Suppose that T is a linear map from a normed space E into a

normed space F . Then dn(T ) ≤ αn(T ) ≤ √n dn(T ).

Lemma 3.2 [2, P. 23] Suppose that T is a compact map from a Banach space X into a
Banach space F . Then αn(T ) = αn(T ′), where T ′ is the dual map of T .

Lemma 3.3 [2, P. 23] Suppose that T is a compact map from a Hilbert space H1 into a
Hilbert space H2. Then αn(T ) = dn(T ).

To this end, we have furnished the necessary background to give an example of a
2-quasi-λ-nuclear map which is not quasi-λ-nuclear.

Example 3.2 Let P =
{(
nln(kn)

)
: k = 1, 2, . . .

}
. Define the map D on `2 by Dx =

(
√
αn xn) where αn = 1

n2 nln(n2) . Then we have the following assertions:

1. λ(P ) is a nuclear Köthe space which is subset of `1.

2. There are no ρ > 0 and m ∈ N such that the inequality

nln (n2) ≤ ρnln (mn) holds for all n ∈ N.

3. (αn) ∈ λ(P ) and (
√
αn) /∈ λ(P ).

4. D is a 2-quasi-λ(P )-nuclear map.

5. D is not a quasi-λ(P )-nuclear map.

Proof. The proofs of 1,2, and 3 are trivial. Since (αn) ∈ λ(P ) and (en) is a bounded
sequence in `2, D is a 2-quasi-λ(P)-nuclear map. To prove 5, assume that D is a quasi-
λ(P )-nuclear map. Then there exist a sequence (βn) ∈ λ(P ) and a bounded sequence
(an) in `2 such that

||Dx|| ≤
∑

n
|βn| |〈x, an〉|.

Let γn =
∑∞

m=n |βm|. We claim that, γ = (γn) ∈ λ(P ). For k ∈ N, we have∑
n
|γn|nln(kn) =

∑∞

n=1

(∑∞

m=n
|βm|

)
nln(kn)

=
∑∞

n=1

(
|βn|

∑n

i=1
iln(ki)

)
≤

∑
n
|βn|nnln(kn).
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If we choose m ∈ N so that n ≤ nlnm, then we have∑
n
|γn|nln(kn) ≤

∑
n
|βn|nln(mkn) < +∞.

Therefore γ = (γn) ∈ λ(P ). Let

Mn = {x ∈ `2 : 〈x, ai〉 = 0, i = 1, 2, . . . , n}.

If x ∈Mn, then

||Dx|| ≤
∑∞

m=n
|βm| |〈x, am〉| ≤ γn supn||an|| ||x||.

Hence, D(U ∩Mn) ⊆ γn U where U is the unit ball of `2. Therefore

D′(U◦) ⊆ γn U◦ + M⊥n ,

which gives dn(D′) ≤ γn. By Lemma 3.2, Lemma 3.3 and Theorem 8.3.2 [4, P. 130],
we have αn(T ) =

√
αn ≤ γn . Since (

√
αn) /∈ λ(P ), we have (γn) /∈ λ(P ), which is a

contradiction. Therefore D is not a quasi-λ(P )-nuclear map. 2

Problem. Is Theorem 2.5 still valid for any G∞-space λ(P ) which is not nuclear?
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333-353 (1967).

[6] Ramanujan,M.S.: Power Series Spaces Λ(α) and Associated Λ(α)-Nuclearity, Math. Ann.,

189, 161-168 (1970).

166



SHATANAWI

[7] Robinson, W.: Relationships Between λ-Nuclearity and Pseudo-µ-Nuclearity, Trans. Amer.

Math. Soc., 201, 291-303 (1975).

[8] Terzioglu, T.: Smooth Sequence Spaces and Associated Nuclearity, Proc. Amer. Math. Soc.,

37, 497-504 (1973).

W. SHATANAWI
Department of Mathematics,
Hashemite University,
P.O. Box 150459 Zarqa 13115-JORDAN
e-mail: swasfi@hu.edu.jo

Received 17.12.2003

167


