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Abstract

It may be desirable to estimate the behaviour of a pair of random variables and

their functions through the information acquired by utilizing only one of them and

its functions. In this work, such an approach has been used. Motivated by the need

to provide treatment to every patient in a new drug trial, an exponential model was

considered. This approach provides sufficient information to make inferences about

the effect of a treatment without using a control group who will be otherwise denied

treatment, as an alternative method to the commonly used controlled clinical trials.
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1. Introduction

It is one of the major human activities to acquire information from the observation of
experiments. In one approach, Fisher [3] proposed a method in which random samples
are selected from a population under study, until sufficient statistics are obtained and
characteristics of the population are estimated by utilizing the sample information.

In the medical field, design of experiments are widely based on Fisher’s method, known
as controlled clinical trials model. It refers to comparing the behaviour of two groups,
both randomly selected from the same ill population: one, a control group which does not
receive treatment but instead a placebo (usually some harmless nontreatment); the other,
which receives the treatment being evaluated. Then the effect of the treatment is inferred
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by comparing the average behaviour of these two groups. A brief exposure to diverse
utilization areas of controlled clinical trials may be acquired from references [1], [2], [5],
[10] and [11]. There has been an alternative method to acquire the desired information
about the effect of treatments, without utilizing a control group (where treatment is
provided to all individuals participating in the trial), introduced by Robbins [8], in the
form of statistical learning applied to the field of medical treatments and their evaluation.
This work follows in that direction.

2. Formulations

Let X and Y be a pair of nonnegative random variables which are exponentially
distributed and parametrized by an unknown θ. Also assume that there are two functions
of X, u and v, both are σ-finite (a set is said to be σ-finite if it is a countable union of
sets of finite measure. For example, real numbers with Lebesgue measure is σ-finite but
not finite), such that the following equation holds,

∫
v(X)dF (X|θ) = θ

∫
u(X)dF (X|θ), for all 0 < θ <∞ (1)

Assume that there is a finite number (say, n) of observations about the pair of (Xi, Yi),
with their corresponding distinct parameter θi, for i = 1, 2, . . . , n. Here, θi is a finite,
positive, identical and independently distributed (i.i.d.) random variable coming from
an unknown distribution G(θ). Also, Xi is the pre-treatment value and Yi is the post-
treatment value of an observed state, for example, body temperature.

Suppose that the illness effects people from time to time with various degrees of
symptoms. Hence, we can assume that there is a reoccurence process of the illness,
captured and expressed by an exponential distribution. Consequently, let the assumptions
(model) be as follows.

(A1): θ is the independent positive random variable, with a finite expected value
(E[θ] <∞).

(A2): Xi|θi ∼ exp(1/θi) is the independent random variable.

(A3): Yi|Xi, θi ∼ exp(1/cθi) is a conditionally independent random variable.

In this model construction, c denotes a positive multiplicative treatment effect factor.

The objective is to find an unbiased estimator [4] of the treatment effect on the
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population, as a relationship of Xi and Yi, such as Sn =
∑n
i=1 ui(Xi)Yi, only by a

function of Xi, say Tn =
∑n

i=1 vi(Xi), at a desired confidence level.

Let ui(Xi) be the indicator function of the event {Xi > a}, denoted by

ui(Xi) = I{Xi > a} =

{
1, if Xi > a

0, otherwise
, for i = 1, 2, . . .n, where, a is a nonnegative

constant for selecting the treatment group, say it is a treshold value (cutoff point) for the
acceptable level of Xi, which indicates the state of a person’s health. Thus, if Xi ≤ a,
then the ith person observed is healthy and does not need treatment. On the other
hand, if Xi > a, then apply the treatment and observe its effect by Yi, on this person.
The biased random selection criterion, X > a, may be based on historical data, or any
prior medical knowledge. Since it is desired to estimate Sn, by utilizing Tn, such that

E[Sn] = cE[Tn], then let vi(Xi) =
∫Xi

0
I{t > a}dt, for any i.

Lemma 1 The pair of functions, (ui, vi), satisfies the equation (1), that is, E[vi(Xi)|θi] =
θi E[ui(Xi)|θi].
Proof.

Pick an i ∈ {1, 2, . . . , n}. Since vi(Xi) =
∫ Xi

0
I{t > a}dt and

ui(Xi) = I{Xi > a}, then

E[vi(Xi)|θi] =
∫∞

0
vi(x)dF (x|θi) =

∫∞
0

∫ x
0
I{t > a}dt(1/θi)e−x/θidx

=
∫∞

0

∫ x
0
I{t > a}(1/θi)e−x/θidtdx

=
∫∞

0
I{t > a}

∫∞
t

(1/θi)e−x/θidxdt, by changing the order of integration,

=
∫∞

0 I{t > a}e−t/θidt
=θi

∫∞
0
I{t > a}(1/θi)e−t/θidt

=θi
∫∞

0
ui(x)dF (x|θi)

=θi E[ui(Xi)|θi]. 2

Lemma 2 E[Sn] = cE[Tn].

Proof.

Since E[Tn] = E[
∑n

i=1 vi(Xi)] =
∑n

i=1E[vi(Xi)] =
∑n

i=1 E[E[vi(Xi)|θi]],
and E[vi(Xi)|θi] = θi E[ui(Xi)|θi], by the Lemma 1, then
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E[Tn] =
n∑
i=1

E[θiE[ui(Xi)|θi]] (2)

On the other hand, E[Sn] = E[
∑n
i=1 ui(Xi)Yi] =

∑n
i=1 E[E[ui(Xi)Yi|θi]]

=
∑n

i=1E[E[ui(Xi)|θi]E[Yi|θi]], by (A3).
Since E[Yi|θi] = cθi, then

E[Sn] =
n∑
i=1

E[E[ui(Xi)|θi]cθi] =
n∑
i=1

cE[E[θiui(Xi)|θi]]

= c

n∑
i=1

E[θiE[ui(Xi)|θi]] (3)

Therefore, E[Sn] = cE[Tn], by equations (2) and (3). 2

3. Estimation of Sn

Let Sn =
∑n
i=1 I{Xi > a} Yi, and Tn =

∑n
i=1

∫ Xi
0

I{t > a}dt.
Since E[Tn] =

∑n
i=1 E[

∫Xi
0

I{t > a}dt] and∫Xi
0

I{t > a}dt = (Xi − a) I{Xi > a}, then
E[Tn] =

∑n
i=1 E[(Xi − a) I{Xi > a}]

=
∑n

i=1E[E[(Xi − a) I{Xi > a}|θi]],
where, E[(Xi − a) I{Xi > a}|θi] =∫∞

0
(x− a) I{x > a} (1/θi)e(−x/θi)dx = θi e

(−a/θi).

Hence, E[E[(Xi − a) I{Xi > a}|θi]] = E[θi e(−a/θi)] =
∫∞

0
θie

(−a/θi) dG(θi).

Since E[X] < ∞ and as n → ∞, 1
n

∑n
i=1(Xi − a)+ → E[Tn], by the law of large

numbers [4], then E[Tn] =
∑n

i=1E[θie(−a/θi)] =
∑n

i=1

∫∞
0
θie

(−a/θi) dG(θi) is estimated

by T̂n = 1
n

∑n
i=1(Xi − a)+.

In this formulation, (Z)+ = max{0, Z}, for any Z. Therefore, E[Sn] is estimated by
cT̂n = c

n

∑n
i=1(Xi − a)+, as a consequence of Lemma 2.

3.1. Confidence interval for the estimator

Since E[Yi|θi, Xi] = cθi and V ar(Yi|θi, Xi) = c2θ2
i , then E[Y 2

i |θi, Xi] = 2c2θ2
i . Also, since

E[Sn] = cE[Tn] and Sn − cTn =
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∑n
i=1(I{Xi > a} Yi − c

∫Xi
0 I{t > a}dt), then as n→∞,

Sn−cTn√
n
→ N (0, σ2), in distribution. Here, N (µ, σ2) denotes the Normal probability

distribution with mean µ and variance σ2.

Hence, σ2 = E[(I{Xi > a} Yi − c
∫Xi

0
I{t > a}dt)2]

=E[I2{Xi > a} Y 2
i − 2cI{Xi > a} Yi

∫ Xi
0

I{t > a}dt+ (c
∫ Xi

0
I{t > a}dt)2]

=E[Y 2
i I{Xi > a}]− 2cE[Yi (Xi − a) I{Xi > a}] + c2E[(Xi − a)2 I{Xi > a}]

=E[2c2θ2
i E[I{Xi > a}|θi]− 2c2θi E[(Xi − a) I{Xi > a}|θi]

+c2E[(Xi − a)2 I{Xi > a}|θi]], by conditioning [9], (A2) and (A3).

Therefore, we can find an interval to estimate the value of the unknown parameter
at any desired precision. Without loss of generality, fix the Type-I error probability [4]
to be 0.05, then at 95% confidence level, an estimate of the σ2 (say, σ̂2) would be as

follows. We have E[X|θ] = θ by (A2), and then an unbiased estimator of θ would be θ̂,

with E[θ] = E[E[X|θ]] = E[X]. Thus, θ̂ = X is an unbiased estimator of E[X], where
X = 1

n

∑n
i=1Xi.

Let wi(Xi) = 2c2θ2
i I{Xi > a} − 2c2θi (Xi − a)+ + c2[(Xi − a)+]2, for any positive

and finite θi, for all i’s. Consequently for any positive and finite θ we have, w(X, θ) =
2c2θ2I{X > a} − 2c2θ(X − a)+ + c2[(X − a)+]2.

Since V ar(X|θ) = θ2, by (A2), then E[V ar(X|θ)] = E[θ2]. The θ2 is estimated by θ̂2,
while E[V ar(X|θ)] itself can be estimated by ( n

n−1
)S2 , based on the available empirical

evidence, where,

S2 = 1
n

∑n
i=1(Xi − X)2 = 1

n{
∑n

i=1 X
2
i − nX

2} = 1
n

∑n
i X

2
i − X

2
. Therefore, as

n→∞, E[θ2] can be estimated by ( n
n−1)S2 = 1

n−1

∑n
i=1 X

2
i − n

n−1X
2
.

Also, we have E[w(X, θ)] = E[2c2θ2I{X > a} − 2c2θ(X − a)+

+ c2{(X − a)+}2] = 2c2E[θ2E[I{X > a}|θ]]− 2c2E[θE[(X − a)+|θ]]
+ c2E[E[{(X − a)+}2|θ]] = 2c2E[θ2]E[I{X > a}]− 2c2E[θ]E[(X − a)+]

+ c2E[{(X − a)+}2], by conditioning and (A1).

As n → ∞, we have 1
n

∑n
i=1 wi(Xi) → E[w(X, θ)], by the law of large numbers [4].

Then ŵ(X) = 2c2S2 ( 1
n−1)[#{i|i ∈ {1, . . . , n}, Xi > a}]− 2c2X [ 1

n

∑
i∈{1,... ,n|Xi>a}(Xi −

a)] + c2[ 1
n

∑
i∈{1,... ,n|Xi>a}(Xi − a)2], is an estimator of w(X, θ), based on the observed

Xis, such as when n → ∞, ŵ(X) → E[w(X, θ)]. Here, #{A} denotes the cardinality of
a set A.
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GÜRSOY

Also, let Wn = 1
n

∑n
i=1 wi(Xi). While, as n → ∞, E[Wn] → σ2, with probability

one (w.p. 1); thus, σ̂2 = Ŵn would be an estimator of σ2. Here, Ŵn = ŵ(X). Also, as
n → ∞, we have Sn−cTn√

Wn
→ N (0, 1), in distribution. Therefore, at the desired level of

confidence, 2Φ(z) − 1 = 0.95 ⇒ Φ(z) = 1.95/2 ⇒ z = Φ−1(1.95/2) ⇒ z = 1.96. Here,
Φ(.) denotes the cumulative distribution function (c.d.f.) [9] of the Standard Normal
distribution.

Consequently, the confidence interval of Sn (at the desired level of precision), centered
about E[Sn], would be [E[Sn] − zσ, E[Sn] + zσ] and it is asymptotically estimated by

[cT̂n − 1.96
√
Ŵn, cT̂n + 1.96

√
Ŵn], at the 95% level of confidence.

4. Estimating the treatment effect

The unknown value of the treatment effect could be found by the relationship, Sn =
cTn, as follows. Let cn be such that Sn = cnTn. Since Tn =

∑n
i=1(Xi − a)+ and

Sn =
∑n

i=1(Xi− a)+ Yi, based on the pre- and post-treatment observations and together
with the selection criterion, Xi > a, for i = 1, . . . , n, then we can find cn = Sn/Tn =∑n

i=1(Xi − a)+Yi/
∑n

i=1(Xi − a)+, by utilizing the available data. Hence, as n→∞, we
have cn → c, almost surely (a.s.), as a consequence of Lemma 2.

5. Conclusions

In this work, a method for forming inferences about the characteristics of a pair of
random variables and their functions, by utilizing information generated by only one of
them and its functions, has been investigated for the exponential probability distribution,
with example application as an alternative method for clinical trials, in the field of
biomathematics. Therefore, the relevant information about the effect of a treatment
can be acquired by using the above mentioned sequential method.

In this construct, the unknown distribution of the parameter G becomes an irrelevant
factor to the estimation procedure, thus this approach may be called a semi-parametric
method. The model may also explain the time to become ill (for a population), such
that the mean time to illness is θ. Also, from the perspective of public health policy, a
decision maker may wish to assess the risk, or the likelihood of being ill, by P {X > a} =
1−FX|θ(a) = e−

a
θ (similarly, the probability of being healthy, P {X ≤ a} = 1−e− aθ , which

may be the degree of health of a population). The model constructed here assumes that
the driving force behind the stochastic events is primarily time, similar to the assumption
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used in quantum statistics (such as in the Schrödinger’s equations) [6]. Furthermore, one
can construct arbitrary nonnegative random variables from exponential random variables,
by utilizing smooth enough inverse function relationships, to approximate varieties of
other distributions [12]. However, a nonparametric model, which does not rely on any
particular type of probability distribution assumption, would provide much more robust
explanations than the semi-parametric model employed in this work.
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