Characterizations of Augmented Graded Rings

Mashhoor Refai, Fida A. M. Moh'd

Abstract

In this paper, we introduce some characterizations for augmented graded rings in special cases.

Key Words: Graded rings, Augmented graded rings, Strongly graded rings.

Introduction

Let G be a group with identity e. A ring R is said to be a G-graded ring if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. The G-graded ring R is denoted by (R, G). We denote by supp(R, G) the support of G which is defined to be $\{g \in G : R_g \neq 0\}$. The elements of R_g are called homogeneous of degree g. For $x \in R$, x can be written uniquely as $\sum_{g \in G} x_g$ where x_g is the component of x in R_g . Also we write $h(R) = \bigcup_{g \in G} R_g$.

In this paper, we give some characterizations for the augmented graded rings for the case where supp(R, G) is a subgroup of G. The general case is left open. One of the characterizations has a connection with the second strong property.

²⁰⁰⁰ AMS Mathematics Subject Classification: 13 A 02 $\,$

This research was supported in part by Yarmouk University

1. Preliminaries

In this section, we give some basic facts of graded rings. For more details, one can look in [3, 4, 5].

Lemma 1.1 Let R be a G-graded ring and $x, y \in R, g \in G$. Then

1.
$$(x+y)_g = x_g + y_g.$$

2. $(xy)_g = \sum_{h \in G} x_h y_{h^{-1}g}.$

Proposition 1.2 Let R be a G-graded ring. Then

R_e is a subring of R and 1 ∈ R_e.
R_g and R are left (resp. right) R_e-modules, for all g ∈ G.

Definition 1.3 A G-graded ring R is said to be strongly graded if $R_g R_h = R_{gh}$ for all $g, h \in G$.

Proposition 1.4 Let R be a G-graded ring. Then (R, G) is strong iff $R_g R_{g^{-1}} = R_e$ for all $g \in G$.

Corollary 1.5 (R, G) is strong iff $1 \in R_g \ R_{g^{-1}}$ for all $g \in G$.

Definition 1.6 Let R be a G-graded ring. Then (R, G) is first strong if $R_g R_{g^{-1}} = R_e$ for all $g \in supp(R, G)$, or equivalently if $1 \in R_g R_{g^{-1}}$ for all $g \in supp(R, G)$.

Proposition 1.7 If (R, G) is first strong, then supp(R, G) is a subgroup of G.

Definition 1.8 Let R be a G-graded ring. Then (R, G) is said to be second strong if supp(R, G) is a monoid in G and $R_gR_h = R_{gh}$ for all $g, h \in supp(R, G)$.

Remark 1.9 Every first strongly graded ring is second strong but the converse is not true in general (see [5]).

Definition 1.10 A ring R is said to be an augmented G-graded ring if it satisfies the following conditions:

1. $R = \bigoplus_{g \in G} R_g$ where R_g is an additive subgroup of R and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$

(R is a G-graded ring).

2. If R_e is the identity component of the graduation then $R_e = \bigoplus_{g \in G} R_{e-g}$, where R_{e-g} is

an additive subgroup of R_e and $R_{e-g}R_{e-h} \subset R_{e-gh}$ for all $g, h \in G$ (R_e is a G-graded ring).

3. For each $g \in G$, there exists $r_g \in R_g$ such that $R_g = \bigoplus_{h \in G} R_{e-h}r_g$. We assume $r_e = 1$.

4. If $g, h \in G$ and r_g, r_h are both non-zero, then $r_g r_h = r_{gh}$ and for all $x, y \in R_e$ we have $(xr_g) (yr_h) = xyr_{gh}$.

Remark 1.11 It follows from the last definition that

1. Condition 3 of the definition implies $R_h = R_e r_h$ for all $h \in G$.

2. R_g is a G-graded R_e -module with the usual multiplication on R and with the graduation $R_{g-h} = R_{e-h}r_g$ for all $h \in G$

3. $R_{g-h}R_{g'-h'} \subseteq R_{gg'-hh'}$ for all $g, g', h, h' \in G$. $R_{g-h}R_{g'-h'} = R_{e-h}r_g R_{e-h'}r_{g'}$ If $r_g, r_{g^{-1}}$ are both non-zero then $r_g R_e = R_e r_g = R_g$.

Proposition 1.12 Let R be an augmented G-graded ring such that supp(R,G) is a subgroup of G. Then (R,G) is first strong.

Proof Let
$$g \in supp(R, G)$$
. Then $g^{-1} \in supp(R, G)$, i.e., $R_g \neq 0$ and $R_{g^{-1}} \neq 0$.
Since $R_g = R_e r_g$ and $R_{g^{-1}} = R_e r_{g^{-1}}$ we get $r_g \neq 0$, $r_{g^{-1}} \neq 0$ and hence
 $r_g r_{g^{-1}} = r_{gg^{-1}} = r_e = 1$. Thus $1 \in R_g R_{g^{-1}}$, i. e., R is first strong.

2. Characterizations of Augmented Graded Rings

In this section, we give characterizations for the augmented graded rings in the case where supp(R, G) is a subgroup of G. The general case is still open.

Lemma 2.1 Let $f: S \to G$ be a group isomorphism and R be a G-graded ring. Then R is S-graded ring with: $R_s = R_{f(s)}$ for all $s \in S$.

Proof. Trivial.

Notation 2.2 Suppose (R, G) is an augmented G-graded ring and $r_g \in R_g$ such that $R_g = \bigoplus_{h \in G} R_{e-h}r_g$. We let $F = \{r_g : g \in supp(R, G), r_g \text{ is fixed for each } g \in G\}$. It is easy to show |F| = |supp(R, G)|.

Lemma 2.3 Let R be an augmented G-graded ring such that supp(R, G) is a subgroup of G. Then F is a multiplicative group with the multiplication of R restricted on F. Furthermore, F is isomorphic to supp(R, G).

Proof. $F \neq \emptyset$ for $1 = r_e \in F$. Let $g, h \in supp(R, G)$. Then $r_g r_h = r_{gh} \in F$ because $gh \in supp(R, G)$. Hence, F is closed under multiplication.

Let $g \in supp(R, G)$ then $g^{-1} \in supp(R, G)$ and hence $r_g r_{g^{-1}} = r_{g^{-1}}r_g = r_e = 1$, i.e., r_g has an inverse in F. Namely, $r_g^{-1} = r_{g^{-1}}$. Since F inherits the associativity from R, F is a multiplicative group.

One can show that $f : supp(R, G) \to F$ given by $f(g) = r_g$ is a group isomorphism. \Box

Lemma 2.4 Suppose R is an augmented G-graded ring and F given in Notation 2.2 is a multiplicative group. Then supp(R,G) is subgroup of G and hence F is isomorphic to supp(R,G).

Proof. Suppose (R, G) is augmented and F is a multiplicative group.

Let $g, h \in supp(R, G)$. Then $r_g r_h = r_{gh} \in F$ and hence $gh \in supp(R, G)$. Thus supp(R, G) is a monoid in G. Let $g \in supp(R, G)$. Then $r_g \in F$; So $r_g r_h = 1$ for some $r_h \in F$ and $h \in supp(R, G)$. So, $r_{gh} = r_g r_h = 1 = r_e$ and hence gh = e and $h = g^{-1}$. Therefore, $g^{-1} \in supp(R, G)$. By Lemma 2.3, supp(R, G) is isomorphic to F. \Box

Corollary 2.5 Let R be an augmented G-graded ring. Then, supp(R, G) is a subgroup of G iff F is a multiplicative group. Moreover, F is isomorphic to supp(R, G).

Proposition 2.6 Let R be a G-graded ring such that supp(R,G) is a subgroup of G. Then (R,G) is augmented iff the following conditions hold:

- 1. R_e is a G-graded ring by any graduation.
- 2. For each $g \in supp(R, G)$ there exists $r_g \in R_g$ such that $R_g = R_e r_g$.
- 3. For each $g, h \in supp(R, G)$ we have $r_g r_h = r_{gh}$ and $xr_g = r_g x$ for each $x \in R_e$.

Proof. Suppose (R, G) is augmented then (1), (2) and (3) follow by Remark 1.11. For the converse, suppose $R_e = \bigoplus_{h \in G} R_{e-h}$.

First, we show that $R_g = \bigoplus_{h \in G} R_{e-h}r_g$ for all $g \in G$. If $g \notin supp(R, G)$ we have $r_g = 0$. One can see that $R_g = \bigoplus_{h \in G} R_{e-h}r_g$. Suppose $g \in supp(R, G)$ and $x \in R_g = R_e r_g \in \sum_{h \in G} R_{e-h}r_g$. $R_{e-h}r_g$. Then $x = sr_g$ and $s \in R_e$. Assume that $s = \sum_{i=1}^n y_{e-h_i}$ where $y_{e-h_i} \in R_{y_{e-h_i}}$ for $i = 1, 2, \dots, n$. Then, $x = \sum_{i=1}^n y_{e-h_i}r_g$. Hence, $R_g = \sum_{g \in G} R_{e-h}r_g$. Let $x \in R_{e-\alpha}r_g \cap \sum_{h \in G-\{\alpha\}} R_{e-h}r_g$. Then $x = y_{e-\alpha}r_g = \sum_{h \in G-\{\alpha\}} y_{e-h}r_g$ and hence $\{y_{e-h} - \sum_{h \in G-\{\alpha\}} y_{e-h}\}r_g = 0$. Thus, $\{y_{e-\alpha} - \sum_{h \in G-\{\alpha\}} y_{e-h}\}r_gr_{g^{-1}} = 0$ or $\{y_{e-\alpha} - P_{e-\alpha}r_g = P_{e-\alpha}r_gr_g = P_{e-\alpha}r_gr_g$.

 $\sum_{h \in G - \{\alpha\}} y_{e-h} = 0 \text{ where } r_g r_{g^{-1}} = r_e = 1. \text{ Hence, } y_{e-\alpha} = 0 \text{ and } y_{e-h} = 0 \text{ for all } h \in G - \{\alpha\} \text{ because } R_e \text{ is a } G \text{-graded ring }. \text{ Therefore, } x = 0 \text{ and } R_{e-\alpha} r_g \cap \sum_{h \in G - \{\alpha\}} y_{e-h} = 0 \text{ for all } h \in G - \{\alpha\} \text{ because } R_e \text{ is a } G \text{-graded ring }. \text{ Therefore, } x = 0 \text{ and } R_{e-\alpha} r_g \cap \sum_{h \in G - \{\alpha\}} y_{e-h} = 0 \text{ for all } h \in G \text{ for } h \in G \text{ fo$

 $R_{e-h}r_g = 0$ for all $\alpha \in G$. Thus, we conclude that $R_g = \bigoplus_{h \in G} R_{e-h}r_g$.

Second, we claim $(xr_g)(yr_h) = xy r_{gh}$ for all $x, y \in R_e$ and $g, h \in supp(R, G)$. Since $r_gr_h = r_{gh}$ for all $g, h \in supp(R, G)$ and $xr_g = r_gx$ for all $x \in R_e$, and $g \in supp(R, G)$, we have $(xr_g)(yr_h) = x(r_gy)r_h = x(yr_g)r_h = xy r_gr_h = xyr_{gh}$.

Proposition 2.7 Let R be a G-graded ring such that H = supp(R, G) is a subgroup of G. Then (R, G) is augmented iff the following conditions hold

1. R_e is G-graded ring by any graduation.

2. There exists a multiplicative group $F \subset h(R)$ such that F is isomorphic to supp(R, G), $F \cap R_e = 1$, $R = R_e$ F and ax = xa for each $x \in R_e$ and $a \in F$.

Proof. Suppose (R, G) is an augmented G-graded ring. Then condition (1) is clear. Let $R_g = \bigoplus_{h \in G} R_{e-h}r_g$ for some $r_g \in R_g$ and $g \in G$. Fixing this r_g for each $g \in G$, taking $F = \{r_g: g \in H\}$ and using Lemma 2.3, we have F is a multiplicative group

such that $F \subset h(R)$, F isomorphic to supp(R,G), $F \cap R_e = \{1\}$ and $R = \bigoplus_{g \in G} R_e r_g =$

 $\bigoplus_{g \in H} R_e r_g = R_e F.$

By Remark 1.11, $r_g x = xr_g$ for all $x \in R_e$ and $g \in G$ (or $g \in H$).

Conversely, let $f: H \to F$ be a group isomorphism. We show (R, G) is augmented step by step.

Step1: If $g_1, g_2 \in H$ and $g_1 \neq g_2$ then $\sigma_1 \neq \sigma_2$ where $f(g_i) = R_{\sigma_i}$, for i = 1, 2. Otherwise, if $\sigma_1 = \sigma_2$ then $f(g_i) \in R_{\sigma_i}$, for i = 1, 2, and one can show that $f(g_i^{-1}) = R_{\sigma_i^{-1}}$. So, $f(g_1^{-1})f(g_2) \in R_{\sigma_1^{-1}}R_{\sigma_1} \subset R_e$ or $f(g_1^{-1}g_2) \in R_e \cap F = \{1\}$. Hence, $f(g_1^{-1}g_2) = 1$ and then $g_1^{-1}g_2 = e$, i.e., $g_1 = g_2$.

Step2: We show $R_{\sigma} \cap F \neq \emptyset$ for each $\sigma \in H$.

Let $K = \{ \sigma \in H : R_{\sigma} \cap F = \emptyset \}$. Then $R = R_e F = \sum_{g \in H} R_e f(g)$ and $R_e f(g) \subset R_{\sigma_g}$ where $f(g) \in R_{\sigma_g}$. Also, if $g_1 \neq g_2$ then $\sigma_{g_1} \neq \sigma_{g_2}$ and hence $R = \bigoplus_{g \in H} R_e f(g)$. Let $g \in H$

and $m \in R_{\sigma_g}$. Then, $m = \sum_{i=1}^n x_i f(g_i)$ where $x_i \in R_e$ and $g_i \in H$ for all $i = 1, \dots, n$. Thus,

n=1 and $g_1=g$ with $f(g)\in R_{\sigma_q}$, i.e., $m=x_1f(g)\in R_ef(g)$. Therefore, $R_{\sigma_q}=R_ef(g)$ and hence $R_{\sigma_g} \cap F \neq \emptyset$. So, $\sigma_g \in H - K$ for all $g \in H$. Since $R = \bigoplus_{g \in H} R_e f(g) =$ $\bigoplus_{g \in H} R_{\sigma_g} \subset \bigoplus_{\sigma \in H-K} R_{\sigma} \subset \bigoplus_{\sigma \in H} R_{\sigma} = R \text{ we have } R = \bigoplus_{\sigma \in H} R_{\sigma} = \bigoplus_{\sigma \in H-K} R_{\sigma} \text{ and hence}$ $\bigoplus_{\sigma \in K} R_{\sigma} = 0. \text{ Since } K \subset H \text{ , } K = \emptyset. \text{ Therefore, } R_{\sigma} \cap F \neq \emptyset \text{ for all } \sigma \in H.$

Step3: Define $\zeta: H \to H$ by $\zeta(g) = \sigma_g$ where $f(g) \in R_{\sigma_g}$. Our aim now is to show that ζ is a group isomorphism.

Cearly ζ is well-defined and monomorphism.

Let $\sigma \in H$. By Step2, $R_{\sigma} \cap F \neq \emptyset$. Thus there exists $a \in F \cap R_{\sigma}$. Moreover, $a \in F$ and f is onto imply $a = f(g) \in R_{\sigma}$ and hence $\sigma = \zeta(g)$ where $g \in H$, i.e., ζ is onto.

By Lemma 2.1, R is an H-graded ring with $R_{(h)} = R_{\zeta(h)}$ for all $h \in H$. Hence, R is G-graded with $R_{(g)} = R_{\zeta(g)}$ if $g \in H$ and R(g) = 0 if $g \notin H$.

Let $R = \bigoplus_{a \in G} R_{(g)}$. Then, by Proposition 2.6, $R = \bigoplus_{a \in G} R_{(g)}$ is an augmented G-graded

ring.

Remark 2.8 Let G be an abelian multiplicative group and $\{H_{\alpha} : \alpha \in \Delta\}$ be a family of subgroups of G. We write $G = \bigotimes_{\alpha \in \Delta} H_{\alpha}$ if for each $g \in G$, $g = \prod_{\alpha \in \Delta} g_{\alpha}$ where $g_{\alpha} \in H_{\alpha}$ and $g_{\alpha} = e$ for all $\alpha \in \Delta$ except finitely many and if $H_{\beta} \cap \left(\bigcap_{\alpha \in \Delta - \{\beta\}} H_{\alpha}\right) = e$ where e is the identity of G, for all $\beta \in \Delta$. Indeed, this is the internal direct product of the

 $multiplicative \ subgroups \ of \ G.$ If $g \in G$. Then g has a unique decomposition of the form $g = \prod_{\alpha \in \Delta} g_{\alpha}$.

Proposition 2.9 Let R be a G-graded ring such that supp(R,G) is an abelian subgroup of G. Suppose $supp(R,G) = \bigotimes_{\alpha \in \Delta} < g_{\alpha} >$, where $g_{\alpha} \in supp(R,G)$ and $< g_{\alpha} >$ is the cyclic group generated by g_{α} for all $\alpha \in \Delta$, and xy = yx for each $x, y \in h(R) - R_e$. Then

(R,G) is augmented iff the following conditions hold

1. R_e is G-graded ring with any graduation.

2. (R, G) is second strong.

3. $R_{g_{\alpha}}$ is isomorphic to R_e as a left and right R_e -module for all $\alpha \in \Delta$. In the case $g_{\alpha} = e$ for some $\alpha \in \Delta$ we suppose R_e isomorphic to itself by the identity isomorphism.

Proof. Suppose (R, G) is augmented graded ring. Since supp(R, G) is subgroup of G it follows by Proposition 1.12, (R, G) is second strong. By Remark 1.11, $xr_g = r_g x$ for all $x \in R_e$ and $g \in G$ where $r_g \in R_g$ with $R_g = \bigoplus_{h \in G} R_{e-h}r_g$. Also, $R_g = R_e r_g$ for all $g \in G$ and $r_g \neq 0$ iff $g \in supp(R, G)$.

Define $f : R_e \to R_g = R_e R_g$ by $f(x) = xr_g$ for each $x \in R_e$. Then clearly f is well-defined and f is R_e -module isomorphism for all $g \in supp(R, G)$ and hence for g_{α} where $\alpha \in \Delta$.

For the converse, assume that conditions (1), (2) and (3) hold. Since supp(R, G) is a subgroup of G and (R, G) is second strong then (R, G) is first strong. Let f_{α} : $R_e \to R_{g_{\alpha}}$ be an R_e -module isomorphism. For each $x \in R_e$, $f_{\alpha}(x) = xf_{\alpha}(1) = f_{\alpha}(1)x$. Let $r_{g_{\alpha}} = f_{\alpha}(1)$ for each $\alpha \in \Delta$. Then for each $x_{g_{\alpha}} \in R_{g_{\alpha}}$ there exists $x \in R_e$ such that $x_{g_{\alpha}} = f_{\alpha}(x) = xr_{\alpha} = r_{\alpha}x$, and x is unique because f_{α} is 1-1. Hence $R_{g_{\alpha}} = R_e r_{g_{\alpha}} = r_{g_{\alpha}}R_e$ for all $\alpha \in \Delta$.

Since R is first strong, $R_{g_{\alpha}}R_{g_{\alpha}^{-1}} = R_{g_{\alpha}^{-1}}R_{g_{\alpha}} = R_e$ for all $\alpha \in \Delta$. So, $(r_{g_{\alpha}}R_e)R_{g_{\alpha}^{-1}} = R_{g_{\alpha}^{-1}}(R_e r_{g_{\alpha}})$ or $r_{g_{\alpha}}(R_e R_{g_{\alpha}^{-1}}) = (R_{g_{\alpha}^{-1}}R_e)r_{g_{\alpha}}$ and hence we obtain $r_{g_{\alpha}}R_{g_{\alpha}^{-1}} = R_{g_{\alpha}^{-1}}r_{g_{\alpha}} = R_e$. Therefore there exist $x, y \in R_{g_{\alpha}^{-1}}$ such that $1 = xr_{g_{\alpha}} = r_{g_{\alpha}}y$. Clearly, $xr_{g_{\alpha}}, r_{g_{\alpha}}y \in R_e$. Thus $f_{\alpha}(xr_{g_{\alpha}}) = f_{\alpha}(r_{g_{\alpha}}y)$ and hence $r_{g_{\alpha}}(xr_{g_{\alpha}}) = (r_{g_{\alpha}}y)r_{g_{\alpha}}$. Multiplying both sides by x from the left to get $(xr_{g_{\alpha}})(xr_{g_{\alpha}}) = (xr_{g_{\alpha}})(yr_{g_{\alpha}})$ which gives $xr_{g_{\alpha}} = yr_{g_{\alpha}}$. Multiplying both sides from the right by y to get $x(r_{g_{\alpha}}y) = y(r_{g_{\alpha}}y)$ and so x = y. Thus, $xr_g = r_{g_{\alpha}}x = 1$, i.e., $r_{g_{\alpha}}$ is a unit in R, for each $\alpha \in \Delta$. Since $R_{g_{\alpha}}R_{g_{\alpha}^{-1}} = R_e, r_{g_{\alpha}}R_{g_{\alpha}^{-1}} = R_e$ and hence $R_{g_{\alpha}^{-1}} = r_{g_{\alpha}}^{-1} R_e$.

Similarly, $R_{g_{\alpha}^{-1}} = R_e r_{g_{\alpha}}^{-1}$ for each $\alpha \in \Delta$. We define $r_{g_{\alpha}^{-1}} = r_{g_{\alpha}}^{-1}$; $\alpha \in \Delta$. Thus $R_e = R_{g_{\alpha}} R_{g_{\alpha}^{-1}} = R_e r_{g_{\alpha}} r_{g_{\alpha}^{-1}}$. We let $r_e = r_{g_{\alpha}} r_{g_{\alpha}^{-1}} = 1$.

If $\alpha \in \Delta$ and $n \in N$ then $R_{g_{\alpha}^n} = R_{g_{\alpha}} \cdots R_{g_{\alpha}}$ (*n*-times) and hence $R_{g_{\alpha}^n} = (R_e r_{g_{\alpha}}) \cdot \cdots (R_e r_{g_{\alpha}})$ (*n*-times) which gives $R_{g_{\alpha}^n} = R_e r_{g_{\alpha}} \cdots r_{g_{\alpha}}$ where $r_{g_{\alpha}}$ is product with itself *n*-times. We define $r_{g_{\alpha}^n} = r_{g_{\alpha}}^n$.

If $n \in Z - (N \cup \{0\})$, i.e., n < 0 we have $R_{g_{\alpha}^{n}} = R_{(g_{\alpha}^{-1})^{n}} = R_{g_{\alpha}^{-1}} \cdots R_{g_{\alpha}^{-1}}$ (|n|-times) and hence $R_{g_{\alpha}^{n}} = (R_{e}r_{g^{-1}}) \cdots (R_{e}r_{g^{-1}})$ (|n|-times) and so $R_{g_{\alpha}^{n}} = R_{e}r_{g_{\alpha}^{-1}} \cdots r_{g_{\alpha}^{-1}} = R_{e}r_{g_{\alpha}^{-1}}^{|n|}$. We define $r_{g_{\alpha}^{n}} = r_{g_{\alpha}^{-1}}^{|n|} = (r_{g_{\alpha}})^{-|n|} = r_{g_{\alpha}}^{n}$ for all $\alpha \in \Delta$.

Therefore, for any $\alpha \in \Delta$ and $n \in Z$ we define $r_{g_{\alpha}^n} = r_{g_{\alpha}}^n$ and hence $R_{g_{\alpha}^n} = R_e r_{g_{\alpha}}^n$. Similarly, we can show that $R_{g_{\alpha}^n} = r_{g_{\alpha}^n} R_e$, for all $n \in Z$ and $\alpha \in \Delta$.

Now, let $h \in supp(R, G)$. By Remark 2.8, h can be written uniquely as $h = \prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}}$ where $n_{\alpha} \in Z$ and $g_{\alpha}^{n_{\alpha}} = e$ for all α except finitely many.

Without loss of generality, suppose $h = g_{\alpha_1}^{n_1} \cdots g_{\alpha_m}^{n_m}$. Then $R_h = R_{g_{\alpha_1}^{n_1}} \cdots R_{g_{\alpha_m}^{n_m}} = (R_e r_{g_{\alpha_1}^{n_1}}) \cdots (R_e r_{g_{\alpha_m}^{n_m}}) = R_e r_{g_{\alpha_1}^{n_1}} \cdots r_{g_{\alpha_m}^{n_m}} = r_{g_{\alpha_1}^{n_1}} \cdots r_{g_{\alpha_m}^{n_m}} R_e$. We define $r_h = r_{g_{\alpha_1}^{n_1}} \cdots r_{g_{\alpha_m}^{n_m}} = r_{g_{\alpha_1}^{n_1}} \cdots r_{g_{\alpha_m}^{n_m}} R_e$. We define $r_h = r_{g_{\alpha_1}^{n_1}} \cdots r_{g_{\alpha_m}^{n_m}} = r_{g_{\alpha_1}^{n_1}} \cdots r_{g_{\alpha_m}^{n_m}}$. Since $g_{\alpha}^{n_\alpha} = e$ for each $\alpha \notin \{1, \cdots, m\}$ we have $r_{g_{\alpha}^{n_\alpha}} = r_e = 1$. So, it is possible to write $r_h = \prod_{\alpha \in \Delta} r_{g_{\alpha}^{n_\alpha}}$. Clearly, $R_h = R_e r_h$ and similarly $R_h = r_h R_e$.

Let $g, h \in supp(R, G)$. Then $g = \prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}}$ and $h = \prod_{\alpha \in \Delta} g_{\alpha}^{m_{\alpha}}$ and hence $gh = \prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}+m_{\alpha}} = \prod_{\alpha \in \Delta} g_{\alpha}^{m_{\alpha}+n_{\alpha}} = hg$.

But $r_{gh} = \prod_{\alpha \in \Delta} r_{g_{\alpha}^{n_{\alpha}+m_{\alpha}}} = \prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}+m_{\alpha}} = \prod_{\alpha \in \Delta} r_{g_{\alpha}}^{m_{\alpha}+n_{\alpha}} = r_{hg}$ implies $r_{gh} = r_{hg}$ for all $g, h \in supp(R, G)$. Moreover, if $g, h \in supp(R, G)$ such that $g = \prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}}$ and

 $h = \prod_{\alpha \in \Delta} g_{\alpha}^{m_{\alpha}} \text{ then } r_{g}r_{h} = \left(\prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}}\right) \left(\prod_{\alpha \in \Delta} r_{h_{\alpha}}^{m_{\alpha}}\right) = \prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}} r_{g_{\alpha}}^{m_{\alpha}} = \prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}+m_{\alpha}} = r_{gh}$ because the homogeneous elements commute, i.e., $r_{g}r_{h} = r_{gh}$ for all $g, h \in supp(R, G)$.

(*) If $g \notin supp(R, G)$ we let $r_g = 0$. Then we have the following

- 1. R_e is G-graded with any graduation.
- 2. For each $g \in G$ there exists $r_g \in R_g$ such that $R_g = R_e r_g$.
- 3. For all $g, h \in supp(R, G)$ and noticing (*) we have $r_g r_h = r_{gh}$.

If $x \in R_e$ we have $xr_{g_{\alpha}} = r_{g_{\alpha}}x$ for all $\alpha \in \Delta$ and hence $r_{g_{\alpha}}^{-1}x = xr_{g_{\alpha}}^{-1}$, i. e., $r_{g_{\alpha}}^{-1}x = xr_{g_{\alpha}}^{-1}$; $\alpha \in \Delta$. If $n \in Z$, $xr_{g_{\alpha}}^{n} = xr_{g_{\alpha}}^{n} = r_{g_{\alpha}}^{n}x = r_{g_{\alpha}}^{n}x$ follows by associativity of R, for $\alpha \in \Delta$.

Let $h \in supp(R,G)$. Then $h = \prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}}$ and $r_h = \prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}}$. Without loss of generality, suppose $h = g_{\alpha_1}^{n_1} \cdots g_{\alpha_m}^{n_m}$ and $g_{\alpha}^{n_{\alpha}} = e$ for all $\alpha \notin \{\alpha_1, \cdots, \alpha_m\}$. Then $xr_h = xr_{g_{\alpha_1}}^{n_1} \cdots r_{g_{\alpha_m}}^{n_m} = r_{g_{\alpha_1}}^{n_1} xr_{g_{\alpha_2}}^{n_2} \cdots r_{g_{\alpha_m}}^{n_m} = r_{g_{\alpha_1}}^{n_1} r_{g_{\alpha_2}}^{n_2} \cdots xr_{g_{\alpha_m}}^{n_m} = r_{g_{\alpha_1}}^{n_1} r_{g_{\alpha_2}}^{n_2} \cdots r_{g_{\alpha_m}}^{n_m} x = r_h x$. Therefore, $xr_h = r_h x$ for all $x \in R_e$ and $h \in supp(R,G)$. If $h \notin supp(R,G)$ then $r_h = 0$ and clearly $xr_h = r_h x$.

Therefore, by Proposition 2.6, (R, G) is augmented graded ring.

Corollary 2.10 Suppose (R, G) is commutative ring such that supp(R, G) is an abelian subgroup of G. Suppose $supp(R, G) = \bigotimes_{\alpha \in \Delta} \langle g_{\alpha} \rangle$, where $g_{\alpha} \in supp(R, G)$ and $\langle g_{\alpha} \rangle$

is the cyclic group generated by g_{α} for all $\alpha \in \Delta$. Then (R,G) is augmented ring iff the following conditions hold

- 1. R_e is G-graded ring with any graduation.
- 2. (R,G) is second strong.
- 3. $R_{g_{\alpha}}$ is isomorphic to R_e as an R_e -module for all $\alpha \in \Delta$.

References

- [1] M. Cohen and L. Rowen, Group graded rings, Comm. In Algebra, (11) (1983), 1253-1270.
- [2] C. Nastasescu, Strongly graded rings of finite groups, Comm. In Algebra, 11(10) (1983), 1033-1071.
- [3] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, (1982).
- [4] M. Refai, Augmented graded rings, Turkish Journal of Mathematics, 21(3) (1997), 333-341.
- [5] M. Refai, Various types of strongly graded rings, Abhath Al-Yarmouk Journal (Pure Sciences and Engineering Series), 4 (2) (1995), 9-19.

Mashhoor REFAI Dean, Faculty of Information Technology and Computer Sciences, Yarmouk University Irbid-JORDAN e-mail: mrefai@yu.edu.jo Fida A. M. MOH'D Department of Mathematics Yarmouk University Irbid-JORDAN e-mail: fida@math.mun.ca Received 12.03.2003