Characterizations of Augmented Graded Rings

Mashhoor Refai, Fida A. M. Moh'd

Abstract

In this paper, we introduce some characterizations for augmented graded rings in special cases.

Key Words: Graded rings, Augmented graded rings, Strongly graded rings.

Introduction

Let G be a group with identity e. A ring R is said to be a G-graded ring if there exist additive subgroups R_{g} of R such that $R=\bigoplus_{g \in G} R_{g}$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. The G-graded ring R is denoted by (R, G). We denote by $\operatorname{supp}(R, G)$ the support of G which is defined to be $\left\{g \in G: R_{g} \neq 0\right\}$. The elements of R_{g} are called homogeneous of degree g. For $x \in R, x$ can be written uniquely as $\sum_{g \in G} x_{g}$ where x_{g} is the component of x in R_{g}. Also we write $h(R)=\bigcup_{g \in G} R_{g}$.

In this paper, we give some charaterizations for the augmented graded rings for the case where $\operatorname{supp}(R, G)$ is a subgroup of G. The general case is left open. One of the charaterizations has a connection with the second strong property.

[^0]
REFAI, MOH'D

1. Preliminaries

In this section, we give some basic facts of graded rings. For more details, one can look in $[3,4,5]$.

Lemma 1.1 Let R be a G-graded ring and $x, y \in R, g \in G$. Then

1. $(x+y)_{g}=x_{g}+y_{g}$.
2. $(x y)_{g}=\sum_{h \in G} x_{h} y_{h^{-1} g}$.

Proposition 1.2 Let R be a G-graded ring. Then

1. R_{e} is a subring of R and $1 \in R_{e}$.
2. R_{g} and R are left (resp. right) R_{e}-modules, for all $g \in G$.

Definition 1.3 A G-graded ring R is said to be strongly graded if $R_{g} R_{h}=R_{g h}$ for all $g, h \in G$.

Proposition 1.4 Let R be a G-graded ring. Then (R, G) is strong iff $R_{g} R_{g^{-1}}=R_{e}$ for all $g \in G$.

Corollary $1.5(R, G)$ is strong iff $1 \in R_{g} R_{g^{-1}}$ for all $g \in G$.
Definition 1.6 Let R be a G-graded ring. Then (R, G) is first strong if $R_{g} R_{g^{-1}}=R_{e}$ for all $g \in \operatorname{supp}(R, G)$, or equivalently if $1 \in R_{g} R_{g^{-1}}$ for all $g \in \operatorname{supp}(R, G)$.

Proposition 1.7 If (R, G) is first strong, then $\operatorname{supp}(R, G)$ is a subgroup of G.
Definition 1.8 Let R be a G-graded ring. Then (R, G) is said to be second strong if $\operatorname{supp}(R, G)$ is a monoid in G and $R_{g} R_{h}=R_{g h}$ for all $g, h \in \operatorname{supp}(R, G)$.

Remark 1.9 Every first strongly graded ring is second strong but the converse is not true in general (see [5]).

Definition 1.10 A ring R is said to be an augmented G-graded ring if it satisfies the following conditions:

1. $R=\bigoplus_{g \in G} R_{g}$ where R_{g} is an additive subgroup of R and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$ (R is a G-graded ring).
2. If R_{e} is the identity component of the graduation then $R_{e}=\bigoplus_{g \in G} R_{e-g}$, where R_{e-g} is an additive subgroup of R_{e} and $R_{e-g} R_{e-h} \subset R_{e-g h}$ for all $g, h \in G$ (R_{e} is a G-graded ring).

REFAI, MOH'D

3. For each $g \in G$, there exists $r_{g} \in R_{g}$ such that $R_{g}=\bigoplus_{h \in G} R_{e-h} r_{g}$. We assume $r_{e}=1$.
4. If $g, h \in G$ and r_{g}, r_{h} are both non-zero, then $r_{g} r_{h}=r_{g h}$ and for all $x, y \in R_{e}$ we have $\left(x r_{g}\right)\left(y r_{h}\right)=x y r_{g h}$.

Remark 1.11 It follows from the last definition that

1. Condition 3 of the definition implies $R_{h}=R_{e} r_{h}$ for all $h \in G$.
2. R_{g} is a G-graded R_{e}-module with the usual multiplication on R and with the graduation $R_{g-h}=R_{e-h} r_{g}$ for all $h \in G$
3. $R_{g-h} R_{g^{\prime}-h^{\prime}} \subseteq R_{g g^{\prime}-h h^{\prime}}$ for all $g, g^{\prime}, h, h^{\prime} \in G$. $R_{g-h} R_{g^{\prime}-h^{\prime}}=R_{e-h} r_{g} R_{e-h^{\prime}} r_{g^{\prime}}$ If $r_{g}, r_{g^{-1}}$ are both non-zero then $r_{g} R_{e}=R_{e} r_{g}=R_{g}$.

Proposition 1.12 Let R be an augmented G-graded ring such that $\operatorname{supp}(R, G)$ is a subgroup of G. Then (R, G) is first strong.

Proof Let $g \in \operatorname{supp}(R, G)$. Then $g^{-1} \in \operatorname{supp}(R, G)$, i.e., $R_{g} \neq 0$ and $R_{g^{-1}} \neq 0$.
Since $R_{g}=R_{e} r_{g}$ and $R_{g^{-1}}=R_{e} r_{g^{-1}}$ we get $r_{g} \neq 0, r_{g^{-1}} \neq 0$ and hence $r_{g} r_{g^{-1}}=r_{g g^{-1}}=r_{e}=1$. Thus $1 \in R_{g} R_{g^{-1}}$, i. e., R is first strong.

2. Characterizations of Augmented Graded Rings

In this section, we give characterizations for the augmented graded rings in the case where $\operatorname{supp}(R, G)$ is a subgroup of G. The general case is still open.

Lemma 2.1 Let $f: S \rightarrow G$ be a group isomorphism and R be a G-graded ring. Then R is S-graded ring with: $R_{s}=R_{f(s)}$ for all $s \in S$.

Proof. Trivial.
Notation 2.2 Suppose (R, G) is an augmented G-graded ring and $r_{g} \in R_{g}$ such that $R_{g}=\bigoplus_{h \in G} R_{e-h} r_{g}$. We let $F=\left\{r_{g}: g \in \operatorname{supp}(R, G), r_{g}\right.$ is fixed for each $\left.g \in G\right\}$. It is easy to show $|F|=|\operatorname{supp}(R, G)|$.

Lemma 2.3 Let R be an augmented G-graded ring such that $\operatorname{supp}(R, G)$ is a subgroup of G. Then F is a multiplicative group with the multiplication of R restricted on F. Furthermore, F is isomorphic to $\operatorname{supp}(R, G)$.

Proof. $F \neq \emptyset$ for $1=r_{e} \in F$. Let $g, h \in \operatorname{supp}(R, G)$. Then $r_{g} r_{h}=r_{g h} \in F$ because $g h \in \operatorname{supp}(R, G)$. Hence, F is closed under multiplication.

REFAI, MOH'D

Let $g \in \operatorname{supp}(R, G)$ then $g^{-1} \in \operatorname{supp}(R, G)$ and hence $r_{g} r_{g^{-1}}=r_{g^{-1}} r_{g}=r_{e}=1$, i.e., r_{g} has an inverse in F. Namely, $r_{g}^{-1}=r_{g^{-1}}$. Since F inherits the associativity from R, F is a multiplicative group.

One can show that $f: \operatorname{supp}(R, G) \rightarrow F$ given by $f(g)=r_{g}$ is a group isomorphism.
Lemma 2.4 Suppose R is an augmented G-graded ring and F given in Notation 2.2 is a multiplicative group. Then $\operatorname{supp}(R, G)$ is subgroup of G and hence F is isomorphic to $\operatorname{supp}(R, G)$.

Proof. Suppose (R, G) is augmented and F is a multiplicative group.
Let $g, h \in \operatorname{supp}(R, G)$. Then $r_{g} r_{h}=r_{g h} \in F$ and hence $g h \in \operatorname{supp}(R, G)$. Thus $\operatorname{supp}(R, G)$ is a monoid in G. Let $g \in \operatorname{supp}(R, G)$. Then $r_{g} \in F$; So $r_{g} r_{h}=1$ for some $r_{h} \in F$ and $h \in \operatorname{supp}(R, G)$. So, $r_{g h}=r_{g} r_{h}=1=r_{e}$ and hence $g h=e$ and $h=g^{-1}$. Therefore, $g^{-1} \in \operatorname{supp}(R, G)$. By Lemma 2.3, $\operatorname{supp}(R, G)$ is isomorphic to F.

Corollary 2.5 Let R be an augmented G-graded ring. Then, $\operatorname{supp}(R, G)$ is a subgroup of G iff F is a multiplicative group. Moreover, F is isomorphic to $\operatorname{supp}(R, G)$.

Proposition 2.6 Let R be a G-graded ring such that supp (R, G) is a subgroup of G. Then (R, G) is augmented iff the following conditions hold:

1. R_{e} is a G-graded ring by any graduation.
2. For each $g \in \operatorname{supp}(R, G)$ there exists $r_{g} \in R_{g}$ such that $R_{g}=R_{e} r_{g}$.
3. For each $g, h \in \operatorname{supp}(R, G)$ we have $r_{g} r_{h}=r_{g h}$ and $x r_{g}=r_{g} x$ for each $x \in R_{e}$.
Proof. Suppose (R, G) is augmented then (1), (2) and (3) follow by Remark 1.11.
For the converse, suppose $R_{e}=\bigoplus_{h \in G} R_{e-h}$.
First, we show that $R_{g}=\bigoplus_{h \in G} R_{e-h} r_{g}$ for all $g \in G$. If $g \notin \operatorname{supp}(R, G)$ we have $r_{g}=0$.
One can see that $R_{g}=\bigoplus_{h \in G} R_{e-h} r_{g}$. Suppose $g \in \operatorname{supp}(R, G)$ and $x \in R_{g}=R_{e} r_{g} \in \sum_{h \in G}$ $R_{e-h} r_{g}$. Then $x=s r_{g}$ and $s \in R_{e}$. Assume that $s=\sum_{i=1}^{n} y_{e-h_{i}}$ where $y_{e-h_{i}} \in R_{y_{e-h_{i}}}$ for $i=1,2, \cdots, n$. Then, $x=\sum_{i=1}^{n} y_{e-h_{i}} r_{g}$. Hence, $R_{g}=\sum_{g \in G} R_{e-h} r_{g}$.

Let $x \in R_{e-\alpha} r_{g} \cap \sum_{h \in G-\{\alpha\}} R_{e-h} r_{g}$. Then $x=y_{e-\alpha} r_{g}=\sum_{h \in G-\{\alpha\}} y_{e-h} r_{g}$ and hence $\left\{y_{e-h}-\sum_{h \in G-\{\alpha\}} y_{e-h}\right\} r_{g}=0$. Thus, $\left\{y_{e-\alpha}-\sum_{h \in G-\{\alpha\}} y_{e-h}\right\} r_{g} r_{g^{-1}}=0$ or $\left\{y_{e-\alpha}-\right.$
$\left.\sum_{h \in G-\{\alpha\}} y_{e-h}\right\}=0$ where $r_{g} r_{g^{-1}}=r_{e}=1$. Hence, $y_{e-\alpha}=0$ and $y_{e-h}=0$ for all $h \in G-\{\alpha\}$ because R_{e} is a G-graded ring . Therefore, $x=0$ and $R_{e-\alpha} r_{g} \cap \sum_{h \in G-\{\alpha\}}$ $R_{e-h} r_{g}=0$ for all $\alpha \in G$. Thus, we conclude that $R_{g}=\bigoplus_{h \in G} R_{e-h} r_{g}$.

Second, we claim $\left(x r_{g}\right)\left(y r_{h}\right)=x y r_{g h}$ for all $x, y \in R_{e}$ and $g, h \in \operatorname{supp}(R, G)$. Since $r_{g} r_{h}=r_{g h}$ for all $g, h \in \operatorname{supp}(R, G)$ and $x r_{g}=r_{g} x$ for all $x \in R_{e}$, and $g \in \operatorname{supp}(R, G)$, we have $\left(x r_{g}\right)\left(y r_{h}\right)=x\left(r_{g} y\right) r_{h}=x\left(y r_{g}\right) r_{h}=x y r_{g} r_{h}=x y r_{g h}$.

Proposition 2.7 Let R be a G-graded ring such that $H=\operatorname{supp}(R, G)$ is a subgroup of G. Then (R, G) is augmented iff the following conditions hold

1. R_{e} is G-graded ring by any graduation.
2. There exists a multiplicative group $F \subset h(R)$ such that F is isomorphic to $\operatorname{supp}(R, G)$, $F \cap R_{e}=1, R=R_{e} F$ and $a x=x a$ for each $x \in R_{e}$ and $a \in F$.

Proof. Suppose (R, G) is an augmented G-graded ring. Then condition (1) is clear. Let $R_{g}=\bigoplus_{h \in G} R_{e-h} r_{g}$ for some $r_{g} \in R_{g}$ and $g \in G$. Fixing this r_{g} for each $g \in G$, taking $F=\left\{r_{g}: g \in H\right\}$ and using Lemma 2.3, we have F is a multiplicative group such that $F \subset h(R), F$ isomorphic to $\operatorname{supp}(R, G), F \cap R_{e}=\{1\}$ and $R=\bigoplus_{g \in G} R_{e} r_{g}=$ $\bigoplus_{g \in H} R_{e} r_{g}=R_{e} F$.

By Remark 1.11, $r_{g} x=x r_{g}$ for all $x \in R_{e}$ and $g \in G$ (or $g \in H$).
Conversely, let $f: H \rightarrow F$ be a group isomorphism. We show (R, G) is augmented step by step.
Step1: If $g_{1}, g_{2} \in H$ and $g_{1} \neq g_{2}$ then $\sigma_{1} \neq \sigma_{2}$ where $f\left(g_{i}\right)=R_{\sigma_{i}}$, for $i=1,2$. Otherwise, if $\sigma_{1}=\sigma_{2}$ then $f\left(g_{i}\right) \in R_{\sigma_{i}}$, for $i=1,2$, and one can show that $f\left(g_{i}^{-1}\right)=R_{\sigma_{i}^{-1}}$. So, $f\left(g_{1}^{-1}\right) f\left(g_{2}\right) \in R_{\sigma_{1}^{-1}} R_{\sigma_{1}} \subset R_{e}$ or $f\left(g_{1}^{-1} g_{2}\right) \in R_{e} \cap F=\{1\}$. Hence, $f\left(g_{1}^{-1} g_{2}\right)=1$ and then $g_{1}^{-1} g_{2}=e$, i.e., $g_{1}=g_{2}$.
Step2: We show $R_{\sigma} \cap F \neq \emptyset$ for each $\sigma \in H$.
Let $K=\left\{\sigma \in H: R_{\sigma} \cap F=\emptyset\right\}$. Then $R=R_{e} F=\sum_{g \in H} R_{e} f(g)$ and $R_{e} f(g) \subset R_{\sigma_{g}}$ where $f(g) \in R_{\sigma_{g}}$. Also, if $g_{1} \neq g_{2}$ then $\sigma_{g_{1}} \neq \sigma_{g_{2}}$ and hence $R=\bigoplus_{g \in H} R_{e} f(g)$. Let $g \in H$ and $m \in R_{\sigma_{g}}$. Then, $m=\sum_{i=1}^{n} x_{i} f\left(g_{i}\right)$ where $x_{i} \in R_{e}$ and $g_{i} \in H$ for all $i=1, \cdots, n$. Thus,
$n=1$ and $g_{1}=g$ with $f(g) \in R_{\sigma_{g}}$, i.e., $m=x_{1} f(g) \in R_{e} f(g)$. Therefore, $R_{\sigma_{g}}=R_{e} f(g)$ and hence $R_{\sigma_{g}} \cap F \neq \emptyset$. So, $\sigma_{g} \in H-K$ for all $g \in H$. Since $R=\bigoplus_{g \in H} R_{e} f(g)=$ $\bigoplus_{g \in H} R_{\sigma_{g}} \subset \bigoplus_{\sigma \in H-K} R_{\sigma} \subset \bigoplus_{\sigma \in H} R_{\sigma}=R$ we have $R=\bigoplus_{\sigma \in H} R_{\sigma}=\bigoplus_{\sigma \in H-K} R_{\sigma}$ and hence $\bigoplus_{\sigma \in K} R_{\sigma}=0$. Since $K \subset H, K=\emptyset$. Therefore, $R_{\sigma} \cap F \neq \emptyset$ for all $\sigma \in H$.

Step3: Define $\zeta: H \rightarrow H$ by $\zeta(g)=\sigma_{g}$ where $f(g) \in R_{\sigma_{g}}$. Our aim now is to show that ζ is a group isomorphism.

Cearly ζ is well-defined and monomorphism.
Let $\sigma \in H$. By Step2, $R_{\sigma} \cap F \neq \emptyset$. Thus there exists $a \in F \cap R_{\sigma}$. Moreover, $a \in F$ and f is onto imply $a=f(g) \in R_{\sigma}$ and hence $\sigma=\zeta(g)$ where $g \in H$, i.e., ζ is onto.

By Lemma 2.1, R is an H-graded ring with $R_{(h)}=R_{\zeta(h)}$ for all $h \in H$. Hence, R is G-graded with $R_{(g)}=R_{\zeta(g)}$ if $g \in H$ and $R(g)=0$ if $g \notin H$.

Let $R=\bigoplus_{g \in G} R_{(g)}$. Then, by Proposition 2.6, $R=\bigoplus_{g \in G} R_{(g)}$ is an augmented G-graded ring.

Remark 2.8 Let G be an abelian multiplicative group and $\left\{H_{\alpha}: \alpha \in \Delta\right\}$ be a family of subgroups of G. We write $G=\bigotimes_{\alpha \in \Delta} H_{\alpha}$ if for each $g \in G, g=\prod_{\alpha \in \Delta} g_{\alpha}$ where $g_{\alpha} \in H_{\alpha}$ and $g_{\alpha}=e$ for all $\alpha \in \Delta$ except finitely many and if $H_{\beta} \cap\left(\underset{\alpha \in \Delta-\{\beta\}}{ } H_{\alpha}\right)=e$ where e is the identity of G, for all $\beta \in \Delta$. Indeed, this is the internal direct product of the multiplicative subgroups of G.

If $g \in G$. Then g has a unique decomposition of the form $g=\prod_{\alpha \in \Delta} g_{\alpha}$.
Proposition 2.9 Let R be a G-graded ring such that $\operatorname{supp}(R, G)$ is an abelian subgroup of G. Suppose $\operatorname{supp}(R, G)=\bigotimes_{\alpha \in \Delta}<g_{\alpha}>$, where $g_{\alpha} \in \operatorname{supp}(R, G)$ and $<g_{\alpha}>$ is the cyclic group generated by g_{α} for all $\alpha \in \Delta$, and $x y=y x$ for each $x, y \in h(R)-R_{e}$. Then (R, G) is augmented iff the following conditions hold

1. R_{e} is G-graded ring with any graduation.
2. (R, G) is second strong.
3. $R_{g_{\alpha}}$ is isomorphic to R_{e} as a left and right R_{e}-module for all $\alpha \in \Delta$. In the case $g_{\alpha}=e$ for some $\alpha \in \Delta$ we suppose R_{e} isomorphic to itself by the identity isomorphism.

Proof. Suppose (R, G) is augmented graded ring. Since $\operatorname{supp}(R, G)$ is subgroup of G it follows by Proposition 1.12, (R, G) is second strong. By Remark 1.11, xr $r_{g}=r_{g} x$ for all $x \in R_{e}$ and $g \in G$ where $r_{g} \in R_{g}$ with $R_{g}=\bigoplus_{h \in G} R_{e-h} r_{g}$. Also, $R_{g}=R_{e} r_{g}$ for all $g \in G$ and $r_{g} \neq 0$ iff $g \in \operatorname{supp}(R, G)$.

Define $f: R_{e} \rightarrow R_{g}=R_{e} R_{g}$ by $f(x)=x r_{g}$ for each $x \in R_{e}$. Then clearly f is well-defined and f is R_{e}-module isomorphism for all $g \in \operatorname{supp}(R, G)$ and hence for g_{α} where $\alpha \in \Delta$.

For the converse, assume that conditions (1), (2) and (3) hold. Since $\operatorname{supp}(R, G)$ is a subgroup of G and (R, G) is second strong then (R, G) is first strong. Let f_{α} $: R_{e} \rightarrow R_{g_{\alpha}}$ be an R_{e}-module isomorphism. For each $x \in R_{e}, f_{\alpha}(x)=x f_{\alpha}(1)=f_{\alpha}(1) x$. Let $r_{g_{\alpha}}=f_{\alpha}(1)$ for each $\alpha \in \Delta$. Then for each $x_{g_{\alpha}} \in R_{g_{\alpha}}$ there exists $x \in R_{e}$ such that $x_{g_{\alpha}}=f_{\alpha}(x)=x r_{\alpha}=r_{\alpha} x$, and x is unique because f_{α} is 1-1. Hence $R_{g_{\alpha}}=R_{e} r_{g_{\alpha}}=r_{g_{\alpha}} R_{e}$ for all $\alpha \in \Delta$.

Since R is first strong, $R_{g_{\alpha}} R_{g_{\alpha}^{-1}}=R_{g_{\alpha}^{-1}} R_{g_{\alpha}}=R_{e}$ for all $\alpha \in \Delta$. So, $\left(r_{g_{\alpha}} R_{e}\right) R_{g_{\alpha}^{-1}}=$ $R_{g_{\alpha}^{-1}}\left(R_{e} r_{g_{\alpha}}\right)$ or $r_{g_{\alpha}}\left(R_{e} R_{g_{\alpha}^{-1}}\right)=\left(R_{g_{\alpha}^{-1}} R_{e}\right) r_{g_{\alpha}}$ and hence we obtain $r_{g_{\alpha}} R_{g_{\alpha}^{-1}}=R_{g_{\alpha}^{-1} r_{g_{\alpha}}}=$ R_{e}. Therefore there exist $x, y \in R_{g_{\alpha}^{-1}}$ such that $1=x r_{g_{\alpha}}=r_{g_{\alpha}} y$. Clearly, $x r_{g_{\alpha}}, r_{g_{\alpha}} y \in$ R_{e}. Thus $f_{\alpha}\left(x r_{g_{\alpha}}\right)=f_{\alpha}\left(r_{g_{\alpha}} y\right)$ and hence $r_{g_{\alpha}}\left(x r_{g_{\alpha}}\right)=\left(r_{g_{\alpha}} y\right) r_{g_{\alpha}}$. Multiplying both sides by x from the left to get $\left(x r_{g_{\alpha}}\right)\left(x r_{g_{\alpha}}\right)=\left(x r_{g_{\alpha}}\right)\left(y r_{g_{\alpha}}\right)$ which gives $x r_{g_{\alpha}}=y r_{g_{\alpha}}$. Multiplying both sides from the right by y to get $x\left(r_{g_{\alpha}} y\right)=y\left(r_{g_{\alpha}} y\right)$ and so $x=y$. Thus, $x r_{g}=r_{g_{\alpha}} x=1$, i.e., $r_{g_{\alpha}}$ is a unit in R, for each $\alpha \in \Delta$. Since $R_{g_{\alpha}} R_{g_{\alpha}^{-1}}=R_{e}, r_{g_{\alpha}} R_{g_{\alpha}^{-1}}=$ R_{e} and hence $R_{g_{\alpha}^{-1}}=r_{g_{\alpha}}^{-1} R_{e}$.

Similarly, $R_{g_{\alpha}^{-1}}=R_{e} r_{g_{\alpha}}^{-1}$ for each $\alpha \in \Delta$. We define $r_{g_{\alpha}^{-1}}=r_{g_{\alpha}}^{-1} ; \alpha \in \Delta$. Thus $R_{e}=R_{g_{\alpha}} R_{g_{\alpha}^{-1}}=R_{e} r_{g_{\alpha}} r_{g_{\alpha}^{-1}}$. We let $r_{e}=r_{g_{\alpha}} r_{g_{\alpha}^{-1}}=1$.

If $\alpha \in \Delta$ and $n \in N$ then $R_{g_{\alpha}^{n}}=R_{g_{\alpha}} \cdots R_{g_{\alpha}}$ (n-times) and hence $R_{g_{\alpha}^{n}}=\left(R_{e} r_{g_{\alpha}}\right)$. $\cdots\left(R_{e} r_{g_{\alpha}}\right)$ (n-times) which gives $R_{g_{\alpha}^{n}}=R_{e} r_{g_{\alpha}} \cdots r_{g_{\alpha}}$ where $r_{g_{\alpha}}$ is product with itself n-times. We define $r_{g_{\alpha}^{n}}=r_{g_{\alpha}}^{n}$.

If $n \in Z-(N \cup\{0\})$, i.e., $n<0$ we have $R_{g_{\alpha}^{n}}=R_{\left(g_{\alpha}^{-1}\right)^{n}}=R_{g_{\alpha}^{-1}} \cdots R_{g_{\alpha}^{-1}}$ ($|n|$-times $)$ and hence $R_{g_{\alpha}^{n}}=\left(R_{e} r_{g^{-1}}\right) \cdots\left(R_{e} r_{g^{-1}}\right)(|n|$-times $)$ and so $R_{g_{\alpha}^{n}}=R_{e} r_{g_{\alpha}^{-1}} \cdots r_{g_{\alpha}^{-1}}=$ $R_{e} r_{g_{\alpha}^{-1}}^{|n|}$. We define $r_{g_{\alpha}^{n}}=r_{g_{\alpha}^{-1}}^{|n|}=\left(r_{g_{\alpha}}^{-1}\right)^{|n|}=\left(r_{g_{\alpha}}\right)^{-|n|}=r_{g_{\alpha}}^{n}$ for all $\alpha \in \Delta$.

Therefore, for any $\alpha \in \Delta$ and $n \in Z$ we define $r_{g_{\alpha}^{n}}=r_{g_{\alpha}}^{n}$ and hence $R_{g_{\alpha}^{n}}=R_{e} r_{g_{\alpha}}^{n}$. Similarly, we can show that $R_{g_{\alpha}^{n}}=r_{g_{\alpha}^{n}} R_{e}$, for all $n \in Z$ and $\alpha \in \Delta$.

REFAI, MOH'D

Now, let $h \in \operatorname{supp}(R, G)$. By Remark 2.8, h can be written uniquely as $h=\prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}}$ where $n_{\alpha} \in Z$ and $g_{\alpha}^{n_{\alpha}}=e$ for all α except finitely many.

Without loss of generality, suppose $h=g_{\alpha_{1}}^{n_{1}} \cdots g_{\alpha_{m}}^{n_{m}}$. Then $R_{h}=R_{g_{\alpha_{1}}^{n_{1}}} \cdots R_{g_{\alpha_{m}}^{n_{m}}}=$ $\left(R_{e} r_{g_{\alpha_{1}}^{n_{1}}}\right) \cdots\left(R_{e} r_{g_{\alpha_{m}}^{n_{m}}}\right)=R_{e} r_{g_{\alpha_{1}}^{n_{1}}} \cdots r_{g_{\alpha_{m}}^{n_{m}}}=r_{g_{\alpha_{1}}^{n_{1}}} \cdots r_{g_{\alpha_{m}}^{n_{m}}} R_{e}$. We define $r_{h}=r_{g_{\alpha_{1}}^{n_{1}} \cdots r_{g_{\alpha_{m}}^{n_{m}}}=}=$ $r_{g_{\alpha_{1}}}^{n_{1}} \cdots r_{g_{\alpha_{m}}}^{n_{m}}$. Since $g_{\alpha}^{n_{\alpha}}=e$ for each $\alpha \notin\{1, \cdots, m\}$ we have $r_{g_{\alpha}^{n}}=r_{e}=1$. So, it is possible to write $r_{h}=\prod_{\alpha \in \Delta} r_{g_{\alpha}^{n_{\alpha}}}$. Clearly, $R_{h}=R_{e} r_{h}$ and similarly $R_{h}=r_{h} R_{e}$.

Let $g, h \in \operatorname{supp}(R, G)$. Then $g=\prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}}$ and $h=\prod_{\alpha \in \Delta} g_{\alpha}^{m_{\alpha}}$ and hence $g h=$ $\prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}+m_{\alpha}}=\prod_{\alpha \in \Delta} g_{\alpha}^{m_{\alpha}+n_{\alpha}}=h g$.

But $r_{g h}=\prod_{\alpha \in \Delta} r_{g_{\alpha}^{n_{\alpha}+m_{\alpha}}}=\prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}+m_{\alpha}}=\prod_{\alpha \in \Delta} r_{g_{\alpha}}^{m_{\alpha}+n_{\alpha}}=r_{h g}$ implies $r_{g h}=r_{h g}$ for all $g, h \in \operatorname{supp}(R, G)$. Moreover, if $g, h \in \operatorname{supp}(R, G)$ such that $g=\prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}}$ and $h=\prod_{\alpha \in \Delta} g_{\alpha}^{m_{\alpha}}$ then $r_{g} r_{h}=\left(\prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}}\right)\left(\prod_{\alpha \in \Delta} r_{h_{\alpha}}^{m_{\alpha}}\right)=\prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}} r_{g_{\alpha}}^{m_{\alpha}}=\prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}+m_{\alpha}}=r_{g h}$ because the homogeneous elements commute, i.e., $r_{g} r_{h}=r_{g h}$ for all $g, h \in \operatorname{supp}(R, G)$.
$(*)$ If $g \notin \operatorname{supp}(R, G)$ we let $r_{g}=0$. Then we have the following

1. R_{e} is G-graded with any graduation.
2. For each $g \in G$ there exists $r_{g} \in R_{g}$ such that $R_{g}=R_{e} r_{g}$.
3. For all $g, h \in \operatorname{supp}(R, G)$ and noticing $(*)$ we have $r_{g} r_{h}=r_{g h}$.

If $x \in R_{e}$ we have $x r_{g_{\alpha}}=r_{g_{\alpha}} x$ for all $\alpha \in \Delta$ and hence $r_{g_{\alpha}}^{-1} x=x r_{g_{\alpha}}^{-1}$, i. e., $r_{g_{\alpha}^{-1}} x=$ $x r_{g_{\alpha}^{-1}} ; \alpha \in \Delta$. If $n \in Z, x r_{g_{\alpha}^{n}}=x r_{g_{\alpha}}^{n}=r_{g_{\alpha}}^{n} x=r_{g_{\alpha}^{n}} x$ follows by associativity of R, for $\alpha \in \Delta$.

Let $h \in \operatorname{supp}(R, G)$. Then $h=\prod_{\alpha \in \Delta} g_{\alpha}^{n_{\alpha}}$ and $r_{h}=\prod_{\alpha \in \Delta} r_{g_{\alpha}}^{n_{\alpha}}$. Without loss of generality, suppose $h=g_{\alpha_{1}}^{n_{1}} \cdots g_{\alpha_{m}}^{n_{m}}$ and $g_{\alpha}^{n_{\alpha}}=e$ for all $\alpha \notin\left\{\alpha_{1}, \cdots, \alpha_{m}\right\}$. Then $x r_{h}=x r_{g_{\alpha_{1}}}^{n_{1}} \cdots r_{g_{\alpha_{m}}}^{n_{m}}=r_{g_{\alpha_{1}}}^{n_{1}} x r_{g_{\alpha_{2}}}^{n_{2}} \cdots r_{g_{\alpha_{m}}}^{n_{m}}=r_{g_{\alpha_{1}}}^{n_{1}} r_{g_{\alpha_{2}}}^{n_{2}} \cdots x r_{g_{\alpha_{m}}}^{n_{m}}=r_{g_{\alpha_{1}}}^{n_{1}} r_{g_{\alpha_{2}}}^{n_{2}} \cdots r_{g_{\alpha_{m}}}^{n_{m}} x=r_{h} x$. Therefore, $x r_{h}=r_{h} x$ for all $x \in R_{e}$ and $h \in \operatorname{supp}(R, G)$. If $h \notin \operatorname{supp}(R, G)$ then $r_{h}=0$ and clearly $x r_{h}=r_{h} x$.

Therefore, by Proposition 2.6, (R, G) is augmented graded ring.
Corollary 2.10 Suppose (R, G) is commutative ring such that $\operatorname{supp}(R, G)$ is an abelian subgroup of G. Suppose $\operatorname{supp}(R, G)=\bigotimes_{\alpha \in \Delta}<g_{\alpha}>$, where $g_{\alpha} \in \operatorname{supp}(R, G)$ and $<g_{\alpha}>$

REFAI, MOH'D

is the cyclic group generated by g_{α} for all $\alpha \in \Delta$. Then (R, G) is augmented ring iff the following conditions hold

1. R_{e} is G-graded ring with any graduation.
2. (R, G) is second strong.
3. $R_{g_{\alpha}}$ is isomorphic to R_{e} as an R_{e}-module for all $\alpha \in \Delta$.

References

[1] M. Cohen and L. Rowen, Group graded rings, Comm. In Algebra, (11) (1983), 1253-1270.
[2] C. Nastasescu, Strongly graded rings of finite groups, Comm. In Algebra, 11(10) (1983), 1033-1071.
[3] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, (1982).
[4] M. Refai, Augmented graded rings, Turkish Journal of Mathematics, 21(3) (1997), 333-341.
[5] M. Refai, Various types of strongly graded rings, Abhath Al-Yarmouk Journal (Pure Sciences and Engineering Series), 4 (2) (1995), 9-19.

Mashhoor REFAI
Received 12.03.2003
Dean, Faculty of Information
Technology and Computer Sciences,
Yarmouk University Irbid-JORDAN
e-mail: mrefai@yu.edu.jo
Fida A. M. MOH'D
Department of Mathematics
Yarmouk University
Irbid-JORDAN
e-mail: fida@math.mun.ca

[^0]: 2000 AMS Mathematics Subject Classification: 13 A 02
 This research was supported in part by Yarmouk University

