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Abstract

In this paper, we introduce some characterizations for augmented graded rings

in special cases.
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Introduction

Let G be a group with identity e. A ring R is said to be a G-graded ring if there exist
additive subgroups Rg of R such that R =

⊕
g∈G

Rg and RgRh ⊆ Rgh for all g, h ∈ G. The

G-graded ring R is denoted by (R,G). We denote by supp(R,G) the support of G which
is defined to be {g ∈ G : Rg 6= 0}. The elements of Rg are called homogeneous of degree
g. For x ∈ R, x can be written uniquely as

∑
g∈G

xg where xg is the component of x in Rg.

Also we write h(R) =
⋃
g∈G

Rg.

In this paper, we give some charaterizations for the augmented graded rings for the
case where supp(R,G) is a subgroup of G. The general case is left open. One of the
charaterizations has a connection with the second strong property.
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1. Preliminaries

In this section, we give some basic facts of graded rings. For more details, one can
look in [3, 4, 5].

Lemma 1.1 Let R be a G-graded ring and x, y ∈ R, g ∈ G. Then
1. (x+ y)g = xg + yg.

2. (xy)g =
∑
h∈G

xhyh−1g .

Proposition 1.2 Let R be a G-graded ring. Then
1. Re is a subring of R and 1 ∈ Re.
2. Rg and R are left (resp. right) Re-modules, for all g ∈ G.

Definition 1.3 A G-graded ring R is said to be strongly graded if Rg Rh = Rgh for all
g, h ∈ G.

Proposition 1.4 Let R be a G-graded ring. Then (R,G) is strong iff RgRg−1 = Re for
all g ∈ G.

Corollary 1.5 (R,G) is strong iff 1 ∈ Rg Rg−1 for all g ∈ G.

Definition 1.6 Let R be a G-graded ring. Then (R,G) is first strong if RgRg−1 = Re

for all g ∈ supp(R,G), or equivalently if 1 ∈ RgRg−1 for all g ∈ supp(R,G).

Proposition 1.7 If (R,G) is first strong, then supp(R,G) is a subgroup of G.

Definition 1.8 Let R be a G-graded ring. Then (R,G) is said to be second strong if
supp(R,G) is a monoid in G and RgRh = Rgh for all g, h ∈ supp(R,G).

Remark 1.9 Every first strongly graded ring is second strong but the converse is not true
in general (see [5]).

Definition 1.10 A ring R is said to be an augmented G-graded ring if it satisfies the
following conditions:
1. R =

⊕
g∈G

Rg where Rg is an additive subgroup of R and RgRh ⊆ Rgh for all g, h ∈ G

(R is a G-graded ring).
2. If Re is the identity component of the graduation then Re =

⊕
g∈G

Re−g, where Re−g is

an additive subgroup of Re and Re−gRe−h ⊂ Re−gh for all g, h ∈ G (Re is a G-graded
ring).
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3. For each g ∈ G, there exists rg ∈ Rg such that Rg =
⊕
h∈G

Re−hrg . We assume re = 1.

4. If g, h ∈ G and rg, rh are both non-zero, then rg rh = rgh and for all x, y ∈ Re we
have (xrg) (yrh) = xyrgh.

Remark 1.11 It follows from the last definition that
1. Condition 3 of the definition implies Rh = Re rh for all h ∈ G.
2. Rg is a G-graded Re-module with the usual multiplication on R and with the graduation
Rg−h = Re−hrg for all h ∈ G
3. Rg−hRg′−h′ ⊆ Rgg′−hh′ for all g, g′, h, h′ ∈ G. Rg−hRg′−h′ = Re−hrgRe−h′rg′

If rg, rg−1are both non-zero then rg Re = Rerg = Rg.

Proposition 1.12 Let R be an augmented G-graded ring such that supp(R,G) is a
subgroup of G. Then (R,G) is first strong.

Proof Let g ∈ supp(R,G). Then g−1 ∈ supp(R,G), i.e., Rg 6= 0 and Rg−1 6= 0.
Since Rg = Rerg and Rg−1 = Rerg−1 we get rg 6= 0, rg−1 6= 0 and hence
rg rg−1 = rgg−1 = re = 1. Thus 1 ∈ Rg Rg−1 , i. e., R is first strong. 2

2. Characterizations of Augmented Graded Rings

In this section, we give characterizations for the augmented graded rings in the case
where supp(R,G) is a subgroup of G. The general case is still open.

Lemma 2.1 Let f : S → G be a group isomorphism and R be a G-graded ring. Then R

is S-graded ring with: Rs = Rf(s) for all s ∈ S.

Proof. Trivial.

Notation 2.2 Suppose (R,G) is an augmented G-graded ring and rg ∈ Rg such that
Rg =

⊕
h∈G

Re−hrg. We let F = {rg : g ∈ supp(R,G), rg is fixed for each g ∈ G}. It is

easy to show |F | = |supp(R,G)|. 2

Lemma 2.3 Let R be an augmented G-graded ring such that supp(R,G) is a subgroup
of G. Then F is a multiplicative group with the multiplication of R restricted on F .
Furthermore, F is isomorphic to supp(R,G).

Proof. F 6= ∅ for 1 = re ∈ F . Let g, h ∈ supp(R,G). Then rg rh = rgh ∈ F because
gh ∈ supp(R,G). Hence, F is closed under multiplication.
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Let g ∈ supp(R,G) then g−1 ∈ supp(R,G) and hence rg rg−1 = rg−1rg = re = 1 , i.e.,
rg has an inverse in F . Namely, r−1

g = rg−1 . Since F inherits the associativity from R,
F is a multiplicative group.

One can show that f : supp(R,G)→ F given by f(g) = rg is a group isomorphism.2

Lemma 2.4 Suppose R is an augmented G-graded ring and F given in Notation 2.2 is
a multiplicative group. Then supp(R,G) is subgroup of G and hence F is isomorphic to
supp(R,G).

Proof. Suppose (R,G) is augmented and F is a multiplicative group.
Let g, h ∈ supp(R,G). Then rgrh = rgh ∈ F and hence gh ∈ supp(R,G). Thus

supp(R,G) is a monoid in G. Let g ∈ supp(R,G). Then rg ∈ F ; So rg rh = 1 for some
rh ∈ F and h ∈ supp(R,G). So, rgh = rgrh = 1 = re and hence gh = e and h = g−1.
Therefore, g−1 ∈ supp(R,G). By Lemma 2.3, supp(R,G) is isomorphic to F . 2

Corollary 2.5 Let R be an augmented G-graded ring. Then, supp(R,G) is a subgroup
of G iff F is a multiplicative group. Moreover, F is isomorphic to supp(R,G).

Proposition 2.6 Let R be a G-graded ring such that supp(R,G) is a subgroup of G.
Then (R,G) is augmented iff the following conditions hold:
1. Re is a G-graded ring by any graduation.
2. For each g ∈ supp(R,G) there exists rg ∈ Rg such that Rg = Re rg.
3. For each g, h ∈ supp(R,G) we have rgrh = rgh and xrg = rgx for each

x ∈ Re.

Proof. Suppose (R,G) is augmented then (1), (2) and (3) follow by Remark 1.11.
For the converse, suppose Re =

⊕
h∈G

Re−h .

First, we show that Rg =
⊕
h∈G

Re−hrg for all g ∈ G. If g /∈ supp(R,G) we have rg = 0.

One can see that Rg =
⊕
h∈G

Re−hrg. Suppose g ∈ supp(R,G) and x ∈ Rg = Rerg ∈
∑
h∈G

Re−hrg. Then x = srg and s ∈ Re. Assume that s =
n∑
i=1

ye−hiwhere ye−hi ∈ Rye−hi for

i = 1, 2, · · ·, n. Then, x =
n∑
i=1

ye−hirg . Hence, Rg =
∑
g∈G

Re−hrg.

Let x ∈ Re−αrg ∩
∑

h∈G−{α}
Re−hrg. Then x = ye−αrg =

∑
h∈G−{α}

ye−hrg and hence

{ye−h −
∑

h∈G−{α}
ye−h}rg = 0. Thus, {ye−α −

∑
h∈G−{α}

ye−h}rgrg−1 = 0 or {ye−α −
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∑
h∈G−{α}

ye−h} = 0 where rgrg−1 = re = 1. Hence, ye−α = 0 and ye−h = 0 for all

h ∈ G − {α} because Re is a G-graded ring . Therefore, x = 0 and Re−αrg ∩
∑

h∈G−{α}

Re−hrg = 0 for all α ∈ G. Thus, we conclude that Rg =
⊕
h∈G

Re−hrg.

Second, we claim (xrg)(yrh) = xy rgh for all x, y ∈ Re and g, h ∈ supp(R,G). Since
rgrh = rgh for all g, h ∈ supp(R,G) and xrg = rgx for all x ∈ Re, and g ∈ supp(R,G),
we have (xrg)(yrh) = x(rgy)rh = x(yrg)rh = xy rgrh = xyrgh. 2

Proposition 2.7 Let R be a G-graded ring such that H = supp(R,G) is a subgroup of
G. Then (R,G) is augmented iff the following conditions hold
1. Re is G-graded ring by any graduation.
2. There exists a multiplicative group F ⊂ h(R) such that F is isomorphic to supp(R,G),
F ∩Re = 1 , R = Re F and ax = xa for each x ∈ Re and a ∈ F.

Proof. Suppose (R,G) is an augmented G-graded ring. Then condition (1) is clear.
Let Rg =

⊕
h∈G

Re−hrg for some rg ∈ Rg and g ∈ G. Fixing this rg for each g ∈ G,

taking F = {rg: g ∈ H} and using Lemma 2.3, we have F is a multiplicative group
such that F ⊂ h(R), F isomorphic to supp(R,G), F ∩ Re = {1} and R =

⊕
g∈G

Rerg =⊕
g∈H

Rerg = ReF .

By Remark 1.11, rg x = xrg for all x ∈ Re and g ∈ G (or g ∈ H).
Conversely, let f : H → F be a group isomorphism. We show (R,G) is augmented

step by step.

Step1: If g1, g2 ∈ H and g1 6= g2 then σ1 6= σ2 where f(gi) = Rσi , for i = 1, 2. Otherwise,
if σ1 = σ2 then f(gi) ∈ Rσi , for i = 1, 2, and one can show that f(g−1

i ) = Rσ−1
i

. So,

f(g−1
1 )f(g2) ∈ Rσ−1

1
Rσ1 ⊂ Re or f(g−1

1 g2) ∈ Re ∩ F = {1}. Hence, f(g−1
1 g2) = 1 and

then g−1
1 g2 = e, i.e., g1 = g2.

Step2: We show Rσ ∩ F 6= ∅ for each σ ∈ H .
Let K = {σ ∈ H : Rσ ∩ F = ∅} . Then R = ReF =

∑
g∈H

Ref(g) and Ref(g) ⊂ Rσg

where f(g) ∈ Rσg . Also, if g1 6= g2 then σg1 6= σg2 and hence R =
⊕
g∈H

Ref(g). Let g ∈ H

and m ∈ Rσg . Then, m =
n∑
i=1

xif(gi) where xi ∈ Re and gi ∈ H for all i = 1, · · ·, n. Thus,

215



REFAI, MOH’D

n = 1 and g1 = g with f(g) ∈ Rσg , i.e., m = x1f(g) ∈ Ref(g). Therefore, Rσg = Ref(g)
and hence Rσg ∩ F 6= ∅. So, σg ∈ H − K for all g ∈ H . Since R =

⊕
g∈H

Ref(g) =⊕
g∈H

Rσg ⊂
⊕

σ∈H−K
Rσ ⊂

⊕
σ∈H

Rσ = R we have R =
⊕
σ∈H

Rσ =
⊕

σ∈H−K
Rσ and hence⊕

σ∈K
Rσ = 0. Since K ⊂ H , K = ∅. Therefore, Rσ ∩ F 6= ∅ for all σ ∈ H .

Step3: Define ζ : H → H by ζ(g) = σg where f(g) ∈ Rσg . Our aim now is to show that
ζ is a group isomorphism.

Cearly ζ is well-defined and monomorphism.

Let σ ∈ H . By Step2, Rσ ∩ F 6= ∅. Thus there exists a ∈ F ∩ Rσ . Moreover, a ∈ F
and f is onto imply a = f(g) ∈ Rσ and hence σ = ζ(g) where g ∈ H , i.e., ζ is onto.

By Lemma 2.1, R is an H-graded ring with R(h) = Rζ(h) for all h ∈ H . Hence, R is
G-graded with R(g) = Rζ(g) if g ∈ H and R(g) = 0 if g /∈ H .

Let R =
⊕
g∈G

R(g) . Then, by Proposition 2.6, R =
⊕
g∈G

R(g) is an augmented G-graded

ring. 2

Remark 2.8 Let G be an abelian multiplicative group and {Hα : α ∈ ∆} be a family of
subgroups of G. We write G =

⊗
α∈∆

Hα if for each g ∈ G, g =
∏
α∈∆

g
α

where g
α
∈ Hα

and g
α

= e for all α ∈ ∆ except finitely many and if Hβ ∩
( ⋂
α∈∆−{β}

Hα

)
= e where

e is the identity of G, for all β ∈ ∆. Indeed, this is the internal direct product of the
multiplicative subgroups of G.

If g ∈ G. Then g has a unique decomposition of the form g =
∏
α∈∆

gα .

Proposition 2.9 Let R be a G-graded ring such that supp(R,G) is an abelian subgroup
of G. Suppose supp(R,G) =

⊗
α∈∆

< g
α
> , where g

α
∈ supp(R,G) and < g

α
> is the

cyclic group generated by gα for all α ∈ ∆, and xy = yx for each x, y ∈ h(R)−Re. Then
(R,G) is augmented iff the following conditions hold

1. Re is G-graded ring with any graduation.

2. (R,G) is second strong.

3. Rgα is isomorphic to Re as a left and right Re-module for all α ∈ ∆. In the case
gα = e for some α ∈ ∆ we suppose Re isomorphic to itself by the identity isomorphism.
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Proof. Suppose (R,G) is augmented graded ring. Since supp(R,G) is subgroup of G it
follows by Proposition 1.12, (R,G) is second strong. By Remark 1.11, xrg = rg x for all
x ∈ Re and g ∈ G where rg ∈ Rg with Rg =

⊕
h∈G

Re−hrg. Also, Rg = Re rg for all g ∈ G

and rg 6= 0 iff g ∈ supp(R,G).

Define f : Re → Rg = ReRg by f(x) = xrg for each x ∈ Re. Then clearly f is
well-defined and f is Re-module isomorphism for all g ∈ supp(R,G) and hence for gα
where α ∈ ∆.

For the converse, assume that conditions (1), (2) and (3) hold. Since supp(R,G)
is a subgroup of G and (R,G) is second strong then (R,G) is first strong. Let fα

: Re → Rgα be an Re-module isomorphism. For each x ∈ Re, fα(x) = xfα(1) = fα(1)x.
Let rgα = fα(1) for each α ∈ ∆. Then for each xgα ∈ Rgα there exists x ∈ Re

such that xgα = fα(x) = xrα = rαx , and x is unique because fα is 1-1. Hence
Rgα = Rergα = rgαRe for all α ∈ ∆.

Since R is first strong, RgαRg−1
α

= Rg−1
α
Rgα = Re for all α ∈ ∆. So, (rgαRe)Rg−1

α
=

Rg−1
α

(Rergα ) or rgα (ReRg−1
α

) = (Rg−1
α
Re)rgα and hence we obtain rgαRg−1

α
= Rg−1

α
rgα =

Re . Therefore there exist x, y ∈ Rg−1
α

such that 1 = xrgα = rgαy . Clearly, xrgα , rgαy ∈
Re. Thus fα(xrgα ) = fα(rgα y) and hence rgα (xrgα ) = (rgα y)rgα . Multiplying both
sides by x from the left to get (xrgα )(xrgα ) = (xrgα )(yrgα ) which gives xrgα = yrgα .
Multiplying both sides from the right by y to get x(rgαy) = y(rgα y) and so x = y. Thus,
xrg = rgαx = 1, i.e., rgα is a unit in R, for each α ∈ ∆. Since RgαRg−1

α
= Re, rgαRg−1

α
=

Re and hence Rg−1
α

= r−1
gα

Re.

Similarly, Rg−1
α

= Rer
−1
gα

for each α ∈ ∆. We define rg−1
α

= r−1
gα

; α ∈ ∆. Thus
Re = RgαRg−1

α
= Rergα rg−1

α
. We let re = rgα rg−1

α
= 1.

If α ∈ ∆ and n ∈ N then Rgn
α

= Rgα · · · Rgα (n-times) and hence Rgn
α

= (Rergα ) ·
· · (Rergα ) (n-times) which gives Rgn

α
= Rergα · · · rgα where rgα is product with itself

n-times. We define rgn
α

= rngα .

If n ∈ Z − (N ∪ {0}), i.e., n < 0 we have Rgn
α

= R(g−1
α

)n = Rg−1
α
· · ·Rg−1

α
( |n|-times)

and hence Rgn
α

= (Rerg−1) · · · (Rerg−1) ( |n|-times) and so Rgn
α

= Rerg−1
α
· · · rg−1

α
=

Rer
|n|
g−1
α

. We define rgn
α

= r
|n|
g−1
α

= (r−1
gα )|n| = (rgα)−|n| = rngα for all α ∈ ∆.

Therefore, for any α ∈ ∆ and n ∈ Z we define rgn
α

= rngα and hence Rgn
α

= Rer
n
gα

.
Similarly, we can show that Rgn

α
= rgn

α
Re, for all n ∈ Z and α ∈ ∆.
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Now, let h ∈ supp(R,G). By Remark 2.8, h can be written uniquely as h =
∏
α∈∆

gnα
α

where nα ∈ Z and gnα
α

= e for all α except finitely many.

Without loss of generality, suppose h = gn1
α1
· · · gnm

αm
. Then Rh = Rgn1

α1
· · · Rgnm

αm
=

(Rergn1
α1

) · · · (Rergnm
αm

) = Rergn1
α1
· · ·rgnm

αm
= rgn1

α1
· · ·rgnm

αm
Re. We define rh = rgn1

α1
· · ·rgnm

αm
=

rn1
gα1
· · · rnmgαm . Since gnαα = e for each α /∈ {1, · · ·, m} we have rgnαα = re = 1 . So, it is

possible to write rh =
∏
α∈∆

rgnα
α

. Clearly, Rh = Rerh and similarly Rh = rhRe.

Let g, h ∈ supp(R,G). Then g =
∏
α∈∆

gnα
α

and h =
∏
α∈∆

gmα
α

and hence gh =∏
α∈∆

gnα+mα
α

=
∏
α∈∆

gmα+nα
α

= hg.

But rgh =
∏
α∈∆

rgnα+mα
α

=
∏
α∈∆

rnα+mα
gα

=
∏
α∈∆

rmα+nα
gα

= rhg implies rgh = rhg

for all g, h ∈ supp(R,G). Moreover, if g, h ∈ supp(R,G) such that g =
∏
α∈∆

gnα
α

and

h =
∏
α∈∆

gmα
α

then rgrh =
( ∏
α∈∆

rnαgα

)( ∏
α∈∆

rmαhα

)
=
∏
α∈∆

rnαgα r
mα
gα

=
∏
α∈∆

rnα+mα
gα

= rgh

because the homogeneous elements commute, i.e., rgrh = rgh for all g, h ∈ supp(R,G).
(∗) If g /∈ supp(R,G) we let rg = 0. Then we have the following

1. Re is G-graded with any graduation.

2. For each g ∈ G there exists rg ∈ Rg such that Rg = Re rg.

3. For all g, h ∈ supp(R,G) and noticing (∗) we have rgrh = rgh.

If x ∈ Re we have xrgα = rgαx for all α ∈ ∆ and hence r−1
gα
x = xr−1

gα
, i. e., rg−1

α
x =

xrg−1
α

;α ∈ ∆ . If n ∈ Z, xrgn
α

= xrngα = rngαx = rgn
α
x follows by associativity of R, for

α ∈ ∆.

Let h ∈ supp(R,G). Then h =
∏
α∈∆

gnα
α

and rh =
∏
α∈∆

rnαgα . Without loss of

generality, suppose h = gn1
α1
· · · gnm

αm
and gnαα = e for all α /∈ {α1, · · ·, αm}. Then

xrh = xrn1
gα1
· · ·rnmgαm = rn1

gα1
xrn2
gα2
· · ·rnmgαm = rn1

gα1
rn2
gα2
· · ·xrnmgαm = rn1

gα1
rn2
gα2
· · ·rnmgαm x = rhx.

Therefore, xrh = rhx for all x ∈ Re and h ∈ supp(R,G). If h /∈ supp(R,G) then rh = 0
and clearly xrh = rhx.

Therefore, by Proposition 2.6, (R,G) is augmented graded ring. 2

Corollary 2.10 Suppose (R,G) is commutative ring such that supp(R,G) is an abelian
subgroup of G. Suppose supp(R,G) =

⊗
α∈∆

< g
α
> , where g

α
∈ supp(R,G) and < g

α
>
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is the cyclic group generated by gα for all α ∈ ∆.Then (R,G) is augmented ring iff the
following conditions hold
1. Re is G-graded ring with any graduation.
2. (R,G) is second strong.
3. Rgα is isomorphic to Re as an Re-module for all α ∈ ∆.
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