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Characterizations of Augmented Graded Rings
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Abstract

In this paper, we introduce some characterizations for augmented graded rings

in special cases.

Key Words: Graded rings, Augmented graded rings, Strongly graded rings.

Introduction

Let G be a group with identity e. A ring R is said to be a G-graded ring if there exist

additive subgroups R, of R such that R = @ R, and R R;, C Ry, for all g, h € G. The
geG

G-graded ring R is denoted by (R, G). We denote by supp(R, G) the support of G which
is defined to be {g € G : Ry # 0}. The elements of R, are called homogeneous of degree

g. For z € R, x can be written uniquely as > z, where x, is the component of z in R,.
geG

Also we write h(R) = |J R,.
geG

In this paper, we give some charaterizations for the augmented graded rings for the
case where supp(R,G) is a subgroup of G. The general case is left open. One of the

charaterizations has a connection with the second strong property.
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1. Preliminaries

In this section, we give some basic facts of graded rings. For more details, one can
look in [3, 4, 5].

Lemma 1.1 Let R be a G-graded ring and x,y € R,g € G. Then
1. (4 y)g =24+ Yy

2. (l’y)q = Z .’L'hyh—lg.
heG

Proposition 1.2 Let R be a G-graded ring. Then
1. R is a subring of R and 1 € R,.
2. Ry and R are left (resp. right) Re-modules, for all g € G.

Definition 1.3 A G-graded ring R is said to be strongly graded if Ry Ry, = Rgn for all
g,h €@G.

Proposition 1.4 Let R be a G-graded ring. Then (R,G) is strong iff RgRy-1 = R.  for
all g € G.

Corollary 1.5 (R, G) is strong iff 1 € Ry R,—1 for all g € G.

Definition 1.6 Let R be a G-graded ring. Then (R,G) is first strong if RgR,~1 = R,
for all g € supp(R, G), or equivalently if 1 € RgR,—1 for all g € supp(R, G).

Proposition 1.7 If (R, G) is first strong, then supp(R,G) is a subgroup of G.

Definition 1.8 Let R be a G-graded ring. Then (R, G) is said to be second strong if
supp(R, G) is a monoid in G and RyRy, = Ry, for all g,h € supp(R, G).

Remark 1.9 Every first strongly graded ring is second strong but the converse is not true

in general (see [5]).

Definition 1.10 A ring R is said to be an augmented G-graded ring if it satisfies the
following conditions:

1. R= @ R, where Ry is an additive subgroup of R and RyRy, C Ry, for all g,h € G
geG

(R is a G-graded ring).

2. If R, is the identity component of the graduation then R, = @ Re_4, where Re_, is
geG

an additive subgroup of Re and Re_gRe_, C Re_gn for all g,h € G (R is a G-graded
ring).
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3. For each g € G, there exists rqg € Ry such that Ry = @ Re_pry . We assume re = 1.
heG

4. If g,h € G and rg, Ty are both non-zero, then ry vy, = rgp and for all x,y € R, we
have (xzry) (yrn) = xyrgn.

Remark 1.11 It follows from the last definition that

1. Condition 3 of the definition implies Ry, = R 11, for all h € G.

2. Ry is a G-graded R.-module with the usual multiplication on R and with the graduation
Rg_n = Re_prg forallh € G

3. Ry_pRy—n C Rygr—pns for all g, ¢',h, b € G. Ry_pRy—p = Re_pTgRe_piTy

If rg,7g-1are both non-zero then ry R, = Rerg = Ry.

Proposition 1.12 Let R be an augmented G-graded ring such that supp(R,G) is a
subgroup of G. Then (R,G) is first strong.
Proof Let g € supp(R,G). Then g~ ' € supp(R,G), i.e., Ry # 0 and R,—1 # 0.

Since Ry = Rery and Ry = Rerg—1 we get 7y # 0, ro—1 # 0 and hence

TgTg-1 =Tge-1 =7, =1. Thus 1 € Ry Ry-1 ,1i. e., R is first strong. O

2. Characterizations of Augmented Graded Rings

In this section, we give characterizations for the augmented graded rings in the case

where supp(R, G) is a subgroup of G. The general case is still open.

Lemma 2.1 Let f: S — G be a group isomorphism and R be a G-graded ring. Then R
is S-graded ring with: Rs = Ry for all s € S.

Proof. Trivial.

Notation 2.2 Suppose (R,G) is an augmented G-graded ring and ry € R, such that

Ry = @ Re_pryg. Welet F ={ry:g € supp(R,QG), ry is fized for each g € G}. It is
heG

easy to show |F| = |supp(R, G)|. O

Lemma 2.3 Let R be an augmented G-graded ring such that supp(R,G) is a subgroup
of G. Then F is a multiplicative group with the multiplication of R restricted on F.
Furthermore, F is isomorphic to supp(R,G).

Proof. FF # () for 1 =r. € F. Let g,h € supp(R,G). Then r, r, = rg, € F because
gh € supp(R,G). Hence, F is closed under multiplication.
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Let g € supp(R, G) then g~ ! € supp(R, G) and hence rg ry-1 = ry-irg =71 =1, i€,

T4 has an inverse in F'. Namely, rq_l

= ry-1. Since I inherits the associativity from R,
F' is a multiplicative group.

One can show that f : supp(R, G) — F given by f(g) = ry is a group isomorphism.O

Lemma 2.4 Suppose R is an augmented G-graded ring and F given in Notation 2.2 is
a multiplicative group. Then supp(R,G) is subgroup of G and hence F' is isomorphic to
supp(R, G).

Proof. Suppose (R, G) is augmented and F is a multiplicative group.

Let g,h € supp(R,G). Then rgry, = rg, € F and hence gh € supp(R,G). Thus
supp(R, G) is a monoid in G. Let g € supp(R,G). Then r, € F; So ry r;, = 1 for some
rn, € F and h € supp(R,G). So, rgp = rgrp, = 1 = 1. and hence gh = e and h = g~1.

Therefore, g~! € supp(R, G). By Lemma 2.3, supp(R, G) is isomorphic to F. O

Corollary 2.5 Let R be an augmented G-graded ring. Then, supp(R,G) is a subgroup
of G iff F is a multiplicative group. Moreover, F is isomorphic to supp(R,G).

Proposition 2.6 Let R be a G-graded ring such that supp(R,G) is a subgroup of G.
Then (R, G) is augmented iff the following conditions hold:
1. R. is a G-graded ring by any graduation.
2. For each g € supp(R, G) there exists ry € Ry such that Ry = R ry.
3. For each g, h € supp(R, G) we have ryry, = rgn, and xry = ryx for each
T € R..
Proof. Suppose (R, G) is augmented then (1), (2) and (3) follow by Remark 1.11.
For the converse, suppose R, = @ Re—p, -

heG
First, we show that Ry = @ Re_pry for all g € G. If g ¢ supp(R, G) we have r, = 0.
heG
One can see that Ry = @ Re_pry. Suppose g € supp(R,G) and x € Ry = Rerg € >
hea heG

n
Re_prg. Then z = sry and s € R.. Assume that s = > ye_p, where ye_p, € Rye—hi for
i=1

i=1,2,---,n.Then, = > ye_pn, 7y . Hence, Ry = > Re_pry.
i=1

1= geG
Let € Re—arg N >, Re_prg. Then = ye_qrg = >,  Ye—nry and hence
heG—{a} heG—{a}
{ye—h - Z ye—h}Tg = 0. Thus, {ye—a - Z ye—h}T!]Tg*1 = 0 or {ye—a -
heG—{a} heG—{a}
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> Ye—n} = 0 where rgr;-1 = 7. = 1. Hence, ye—q = 0 and y._, = 0 for all
heG—{a}

h € G — {a} because R, is a G-graded ring . Therefore, x = 0 and Re_org N >
heG—{a}

Re_prg =0 for all @ € G. Thus, we conclude that R, = hGBG Re_pry.
€

Second, we claim (zry)(yry) = xy rgp for all x,y € R, and g, h € supp(R, G). Since
rgry = g, for all g, h € supp(R, G) and zr, = ryx for all © € R, and g € supp(R, G),

we have (zry)(yrn) = x(rgy)rn = x(yrg)ry = Y TgTh = TYTgh- O

Proposition 2.7 Let R be a G-graded ring such that H = supp(R, G) is a subgroup of
G. Then (R, G) is augmented iff the following conditions hold

1. R. is G-graded ring by any graduation.

2. There exists a multiplicative group F C h(R) such that F' is isomorphic to supp(R, G),
FNR.=1, R=R. F and ax = xa for each x € R, and a € F.

Proof. Suppose (R,G) is an augmented G-graded ring. Then condition (1) is clear.

Let R, = hGBG Re_pry for some ry € Ry, and g € G. Fixing this r, for each g € G,
€

taking F' = {ry: g € H} and using Lemma 2.3, we have F is a multiplicative group

such that F C h(R), F isomorphic to supp(R,G), FN R, = {1} and R = @ Rery =
geG

@D Rery=R.F.
geH

By Remark 1.11, ry = xr, for all z € R, and g € G (or g € H).
Conversely, let f : H — F be a group isomorphism. We show (R, G) is augmented
step by step.

Stepl: If g1,92 € H and g1 # go then o1 # 0o where f(g;) = R,, , fori = 1, 2. Otherwise,
if 01 = 0o then f(g;) € Ry, , for i = 1,2, and one can show that f(g;') = R_-1. So,

f(gl_l)f(gz) IS RaflRU1 C R, or f(gl_lgg) € R.N F = {1}. Hence, f(91_192) =1 and
then 91_192 =6 i'e'v g1 = g2-

Step2: We show R, N F # ) for each o € H.

Let K ={c € H: R,NF =0} . Then R = R.F = ) R.f(g) and Rcf(9) C Ro,
geH
where f(g) € Ry, . Also, if g1 # g2 then oy, # 04, and hence R = @ R.f(g). Let g € H
geH

and m € Ry,. Then, m = 3~ x;f(g;) where z; € R. and g; € H foralli=1,---,n. Thus,
i=1
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n=1and g; = g with f(g9) € R,,, i.e., m = x1f(g) € Rcf(g). Therefore, Ry, = R.f(9g)

and hence R,, N F # (. So, 0, € H— K for all g € H. Since R = G?{Ref(g) =
ge

PR, C @ R, C @R, =Rwehave R= @ R, = & R, and hence
geH ccH-K oc€H oc€H ccH-K

P R, =0. Since K C H , K ={). Therefore, R, N F # ) for all 0 € H.
ceK

Step3: Define (: H — H by ((g) = o4 where f(g) € R,,. Our aim now is to show that
¢ is a group isomorphism.

Cearly ( is well-defined and monomorphism.

Let 0 € H. By Step2, R, N F # (). Thus there exists a € F N R, . Moreover, a € I
and f is onto imply a = f(g) € R, and hence o = ((g) where g € H , i.e.,  is onto.

By Lemma 2.1, R is an H-graded ring with R(,) = Ry for all h € H. Hence, R is
G-graded with Ry = R¢(g) if g€ H and R(g) =01if g ¢ H.

Let R = G}GR(Q) . Then, by Proposition 2.6, R = GBGR(Q) is an augmented G-graded

ge ge

ring. O

Remark 2.8 Let G be an abelian multiplicative group and {H, : o € A} be a family of

subgroups of G. We write G = Q) Hy if for each g € G, g = ][ g, where g, € H,
a€A aEA

and g, = e for all a € A except finitely many and if Hg N ( N Ha> = e where
aEA—{B}

e is the identity of G, for oll B € A. Indeed, this is the internal direct product of the
multiplicative subgroups of G.
If g € G. Then g has a unique decomposition of the form g = [] g,
a€A
Proposition 2.9 Let R be a G-graded ring such that supp(R,G) is an abelian subgroup

of G. Suppose supp(R,G) = @ < g, > , where g, € supp(R,G) and < g, > is the
a€A

cyclic group generated by g for all @ € A, and xy = yx for each x,y € h(R) — R.. Then
(R, G) is augmented iff the following conditions hold

1. R. is G-graded ring with any graduation.

2. (R, G) is second strong.

3. Ry is isomorphic to R as a left and right Re-module for all o € A. In the case

g, = e for some a € A we suppose R, isomorphic to itself by the identity isomorphism.
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Proof. Suppose (R, G) is augmented graded ring. Since supp(R, G) is subgroup of G it
follows by Proposition 1.12, (R, G) is second strong. By Remark 1.11, zr, = r, x for all

z € R, and g € G where ry € Ry with Ry = @ Re_prg. Also, Rg = R.rg forallge G
heG

and ry4 # 0 iff g € supp(R, G).

Define f : Re — R, = R.R,; by f(z) = xry for each z € R.. Then clearly f is
well-defined and f is R.-module isomorphism for all g € supp(R, G) and hence for g,
where o € A.

For the converse, assume that conditions (1), (2) and (3) hold. Since supp(R, Q)
is a subgroup of G and (R,G) is second strong then (R,G) is first strong. Let f,
: Re — Ry be an R.-module isomorphism. For each = € R., fo(7) = 2fo(1) = fo(1)z.
Let 7y, = fa(l) for each o € A. Then for each z, € R, there exists 2 € R.
such that r, = fa(x) = 21y = T , and z is unique because f, is 1-1. Hence

Ry = Rery, =14 Re forall a € A.

Since R is first strong, Ry R,-+ = R;-1 R, = R, for all a € A. So, (Tga Ro)R,—1 =

R,
ga
Re . Therefore there exist x,y € Ry-1 such that 1 = xr, =r, y . Clearly, xry 7y y €

(Rerg, ) or g (ReRg-1) = (Rg-1Re)ry and hence we obtainr, Ry-1 = Ry-1ry =

Re. Thus fo(xry ) = fa(rg, y) and hence 7y (xry ) = (rg_ y)ry, . Multiplying both
sides by = from the left to get (w7, )(zry ) = (2ry )(yry ) which gives xr, = yry .
Multiplying both sides from the right by y to get x(rga y) = y(rga y) and so x = y. Thus,
xrg =rg, x =1,1e,ry isaunit in R, for each o € A. Since Ry Rg-1 = Re, rg Rg-1 =

R, and hence R, = r~1 R..
9a 9o

Similarly, R,—1 = ReTg_l for each o € A. We define r,-1 = r-t s a € A. Thus

Yo

-1
Re =Ry Ry = Rerg rg-1 . Welet re =1y 1g-1 = 1.

If o € Aand n € N then Ryn = Ry -+ Ry (n-times) and hence Rgn = (Rery, ) -
-+ (Rerg, ) (n-times) which gives Ryn = Rery - - -1, where 74 is product with itself

n-times. We define rgn =177 .
Yo 9a

IfneZ—(NU{0}),ie,n <0wehave Rgn = R(y-1yn = R

9ot Rg-r ((|n-times)

-1
and hence Rgn = (Rerg-1) -+ (Rerg-1) ( |n|-times) and so Rgn = Rery-1 -+ 71,1 =

Rer!]n,ll. We define rgn = len,ll = (r; YY"l = (r, )"l = rg foralla € A.

o 9o

Therefore, for any o € A and n € Z we define rgn = ry and hence Ryn = Rery .

Similarly, we can show that Rgn = rgn Re, for all n € Z and a € A.
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Now, let h € supp(R,G). By Remark 2.8, h can be written uniquely as h = [] g™~
a€A

where n, € Z and g"* = e for all a except finitely many.

Without loss of generality, suppose h = 9211 - gim. Then Ry, = Rggi s Rgnm =

“am

Rer o (Rer = Rergni ---7 =7Tgny -+ Tgnm Re. We define rp, = rgny -+ 71 =
(Re gg}) (Re gg;g) el gt gpm g1 gpm tle h gl gnm

“Tam

gl Tl Since gj» = e for each o ¢ {1,---,m} we have rjna =1, = 1. So, it is
possible to write 7, = [[ 7gna . Clearly, R, = R.rj, and similarly Rj, = rpRe.
aeA
Let g,h € supp(R,G). Then g = [] ¢g"* and h = [] g™+ and hence gh =
a€A aEA

H gna-i-ma — H gma"l'na = hg.
aea " aea "

But rg, = ] Tgnatma = 11 T;’;*‘”"a = I T;’la"’"a = rpy implies 7gn, = Thy

a€A aEA aEA

for all g,h € supp(R,G). Moreover, if g,h € supp(R,G) such that g = [] g¢"~ and

a€A
m
h= Lo then rorn = (H T;;«:) (H Thaa> = 1I ToaTal = I1 T?§+ma = Tgh
aEA aEA aEA aEA aEA

because the homogeneous elements commute, i.e., rgry, = g, for all g, h € supp(R, G).
() If g ¢ supp(R,G) we let 7, = 0. Then we have the following

1. R, is G-graded with any graduation.

2. For each g € G there exists r, € R, such that Ry = Re ry.

3. For all g, h € supp(R, G) and noticing () we have ryry = 4.

1 1

If x € Re we have zr, = r, x for all @« € A and hence r 'z = zr ", i. e, ro1x =
9o 9o g 9o Ia

Trg-1;a € A.Ifne Z, Irgn =aTg =Ty T =TgnXk follows by associativity of R, for
a €A,

Let h € supp(R,G). Then h = [] g7 and rp, = [] rge. Without loss of

aEA aEA
3 J— n n n J—
generality, suppose h = g7l - - - gi'™ and gg* = e for all o ¢ {a1, - ,am}. Then
xry = xrt coopftm — e N2 e — e 2 e Tim — Tl T2 e e — ey e
h 9oy o 9oy U 90y o Yoy ' Gay o Yoy ' Gay o h

Therefore, xr, = rpx for all x € R, and h € supp(R, G). If h ¢ supp(R, G) then r, =0
and clearly xry = rpx.

Therefore, by Proposition 2.6, (R, G) is augmented graded ring. O
Corollary 2.10 Suppose (R,G) is commutative ring such that supp(R,G) is an abelian

subgroup of G. Suppose supp(R,G) = Q < g, > , where g, € supp(R,G) and < g, >
a€A
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is the cyclic group generated by g, for all « € A.Then (R, G) is augmented ring iff the
following conditions hold

1. R. is G-graded ring with any graduation.

2. (R, G) is second strong.

3. Ry is isomorphic to Re as an Re-module for all a € A.
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