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Commutative Quartic P -Galois Extensions Over a

Field of Characteristic Not 2∗

Atsushi Nakajima

Abstract

In [2], K. Kishimoto introduced the notion of P -Galois extensions and gave some

fundamental properties of these extensions. P -Galois extensions relate Hopf Galois

extensions, and the author treated these topics in [5]. Moreover, the cubic P -Galois

extensions over a field were completely determined in [6]. Continuing [5] and [6], we

classify commutative quartic P -Galois extensions over a field of characteristic not 2.
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0. Introduction

Let A/R be a ring extension with common identity 1 and let P be a partially ordered
subset of Hom(AR, AR). In his paper [1], Kishimoto characterized a special type of Galois
extensions which he called a cyclic P -Galois extension over a ring of characteristic p.
Cyclic P -Galois extensions closely relate to purely inseparable extensions and H(u, pm)-
Hopf Galois extensions which were given in [4]. After that he introduced a general notion
of P -Galois extensions and gave some fundamental properties of them in [2].

Since the usual Galois extensions and purely inseparable extensions are P -Galois
extensions, the essential part of P -Galois extensions is that P is neither a group nor
a cyclic type (cf. [1]). If the cardinality | P | of P is 2 or 3, then all P -Galois extensions
over a field were completely classified without any assumptions in [5] and [6].

∗Dedicated to Professor Arif Kaya on his 60th birthday
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In this paper, continuing [5] and [6], we treat quartic P -Galois extensions, that is,
| P | = 4. We classify commutative quartic P -Galois extensions over a field k of
characteristic not 2 and determine the structure of these extensions, where P is neither
a group nor a cyclic type. Using these structures, we estimate the cardinality of the
isomorphism classes of these P -Galois extensions.

1. Preliminaries

The notion of a P -Galois extension might not be familiar to the reader, so according
to [2], we begin with the definition of a P -Galois extension.

Let A/R be a ring extension with common identity 1. Let P be a finite partially
ordered subset of Hom(AR, AR) with respect to an order ≤. In the following, we denote
the elements of P by Capital Greek Letters according to [2]. The set of all mininal (resp.
maximal) elements of P under ≤ is denoted by P (min) (resp. P (max)). A chain of
Λ ∈ P means a descending chain

Λ = Λ0 >> Λ1 >> ... >> Λm,

where Λm is a minimal element and Λt >> Λs means that there does not exist Λu such
that Λt > Λu > Λs. Then we say that Λ has length m+1. P is called a relative sequence of
homomorphisms if the following conditions (A.1) – (A.4) and (B.1) – (B.4) are satisfied:

(A.1) Λ 6= 0 for all Λ ∈ P and P (min) coincides with all Λ ∈ P such that Λ is a ring
automorphism.

(A.2) Any two chains of Λ have the same length.

(A.3) If ΛΓ 6= 0, then ΛΓ ∈ P and if ΛΓ = 0, then ΓΛ = 0.

(A.4) Assume that ΛΓ, ΛΩ ∈ P (resp. ΓΛ, ΩΛ ∈ P ). Then

(i) ΛΓ ≥ ΛΩ (resp. ΓΛ ≥ ΩΛ) if and only if Γ ≥ Ω.

(ii) If ΛΓ ≥ Ω, then Ω = Λ1Γ1 for some Λ ≥ Λ1 and Γ ≥ Γ1.

Let x, y ∈ A.

(B.1) Λ(1) = 0 for any Λ ∈ P − P (min).

(B.2) For any Λ ≥ Γ, there exists g(Λ,Γ) ∈ Hom(AR, AR) such that

Λ(xy) =
∑
Λ≥Γ

g(Λ,Γ)(x)Γ(y). (If Λ 6≥ Γ, then we set g(Λ,Γ) = 0.)
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(B.3) (i) The above map g(Λ,Γ) satisfies

g(Λ,Γ)(xy) =
∑

Λ≥Ω≥Γ

g(Λ,Ω)(x)g(Ω,Γ)(y).

(ii) If ΛΓ ≥ Ω, then

g(ΛΓ,Ω)(x) =
∑

Λ≥Λ′,Γ≥Γ′,Λ′Γ′=Ω

g(Λ,Λ′)g(Γ,Γ′)(x).

(B.4) (i) g(Λ,Λ) is a ring automorphism.
(ii) g(Λ,Ω) = Λ for any Ω ∈ P (min) such that Ω ≤ Λ.
(iii) If Λ > Γ, then g(Λ,Γ)(1) = 0.

Since P (min) is a finite subsemigroup of Hom(AR, AR), then P (min) is a group by
(A.1)–(A.4) and if P = {1 < Λ}, then by (B.2) and (B.4), Λ is a (1, λ)-derivation

Λ(xy) = Λ(x)y + λ(x)Λ(y), (g(Λ,Λ) = λ, x, y ∈ A).

For further details of relative sequences of homomorphisms, see [2].
Kishimoto added the following two conditions to obtain the properties of P -Galois

extensions:

(A.5) | P (min) | =| P (max) |.
(A.6) For any Ω ∈ P (max), if Γ ≤ Ω, then there exist Γ1 and Γ2 ∈ P such that

Ω = ΓΓ1 = Γ2Γ.

The types of P are restricted by the conditions of (A.1)–(A.6), but there exist various
types of P even in case of | P | = 4. We will see them later.

Now, for a relative sequence of homomorphisms P , we set

A1 = {a ∈ A | Λ(a) = a for all Λ ∈ P (min)}

and
A0 = {a ∈ A | Λ(a) = 0 for all Λ ∈ P − P (min)}.

Then A1 is a subring of A and for any a, b ∈ A0 and Λ ∈ P − P (min), we see

Λ(ab) =
∑
Λ≥Γ

g(Λ, Γ)(a)Γ(b) =
∑

Λ>Γ, Γ∈P(min)

Λ(a)Γ(b) = 0
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by (B.2). Therefore A0 is also a subring of A. AP = A1 ∩ A0 is called the invariant
subring of P . Next we compose an algebra from A and P .

Let D(A, P ) =
∑

Λ∈P ⊕AuΛ be a free left A-module with A-basis {uΛ | Λ ∈ P }.
Define a multiplication on D(A, P ) by

(auΛ)(buΓ) =
∑
Λ≥Ω

ag(Λ,Ω)(b)uΩΓ,

where uΩΓ = 0 if ΩΓ = 0. Then D(A, P ) is a k-algebra, which we call a trivial crossed
product ([2, Theorem 2.2.]). Under these circumstances, we give the following

Definition 1.1. A/R is called a P -Galois extension if it satisfies the following three
conditions:

(P.1) AP = R.
(P.2) A is a finitely generated projective right R-module.
(P.3) The map j : D(A, P ) → Hom(AR, AR) defined by j(auΛ)(x) = aΛ(x) is an

isomorphism.

If P = P (min), then D(A, P ) is the usual crossed product and so a P -Galois extension
is a Galois extension with Galois group P . If char(R) = p and Λ is a derivation such that
Λp = 0, then for

P = {1 < Λ < Λ2 < · · · < Λp−1},

a P -Galois extension relates a purely inseparable extension. This is a special case of cyclic
P -Galois extensions. For further details of cyclic P -Galois extensions, see [1].

Two P -Galois extensions A and B are isomorphic if there exists a ring isomorphism
ϕ : A→ B such that ϕ(Ωa) = Ωϕ(a) (a ∈ A, Ω ∈ P ).

The following lemma is useful, which is easily proved by A.4(i).

Lemma 1.2. Let P be a relative sequence of homomorphisms and Λ, Γ, Ω ∈ P . Then
we have the following.

(1) If ΛΩ 6= 0, ΓΩ 6= 0 and ΛΩ = ΓΩ, then Λ = Γ.

(2) If ΛΩ 6= 0, ΓΩ 6= 0 and Λ < Γ, then ΛΩ < ΓΩ.

Now we treat quartic P -Galois extensions. First, we classify the type of P such that
| P | = 4.
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If | P (min) | = 4, then P is a group of order 4 and so we omit it. If | P (min) | = 3,
then P contains a cyclic group of order 3 and so we can set

P = {1, Λ, Λ2, Γ | Λ3 = 1, Γ is not minimal}.

Since P (min) = {1, Λ, Λ2} and Γ is not minimal, we see Λi < Γ for some i ∈ {0, 1, 2}.
By (A.3), we get 1 = ΛiΛ3−i < ΓΛ3−i ∈ P . This shows that Λ3−iΓ = Γ, because Λ and
Λ2 are minimal. Hence 1 < Γ and so Λ < ΛΓ = Γ. Then by Lemma 1.2(1), we have a
contradiction: Λ = 1. Therefore the case | P (min) | = 3 does not happen.

Lemma 1.3. Let | P | = 4 and | P (min) | = 2. Then we have

P = {1 < Γ; Λ < ΛΓ | ΛΓ = ΓΛ, Λ2 = 1 and Γ2 = 0}

and Γ is a (1, γ)-derivation.

Proof. Since P contains a group of order 2, we can set P = {1, Λ, Γ, Ω | Λ2 = 1}.
We note that ΛΘ 6= 0 for any Θ ∈ P , and Γ < Ω implies ΓΛ < ΩΛ, because Λ is an
automorphism. The types of P are divided according to the cardinality of P (max):

(1) P (max) = 1:
(i) {1 < Γ < Ω; Λ < Γ < Ω}.

(2) P (max) = 2:
(ii) {1; Λ < Γ < Ω}, (iii) {1 < Γ < Ω; Λ}, (iv) {1 < Γ, Ω; Λ < Γ, Ω},
(v) {1 < Γ; Λ < Γ, Ω}, (vi) {1 < Γ,Ω; Λ < Γ}, (vii) {1 < Γ; Λ < Ω}.

(3) P (max) = 3:
(viii) {1 < Γ, Ω; Λ}, (ix) {Λ < Γ, Ω; 1}.

Now we examine each case.
(i) Multiplying by Λ, we have Λ < ΛΓ < ΛΩ. Comparing this chain with Λ < Γ < Ω,

we have a contradiction by Lemma 1.2.
(ii) and (iii) Multiplying by Λ, we have

1 < ΛΓ < ΛΩ and Λ < ΛΓ < ΛΩ,

respectively. These contradict that 1 and Λ are maximal in (ii) and (iii), respectively.
Similarly, we see that the cases (viii) and (ix) do not happen.
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(iv), (v) and (vi) Since Γ has two minimal elements 1 and Λ, then by (B.2) and (B.4)
we have

Γ(xy) = g(Γ,Γ)(x)Γ(y) + g(Γ, 1)(x)y + g(Γ,Λ)(x)Λ(y)

= γ(x)Γ(y) + Γ(x)y + Γ(x)Λ(y),

where g(Γ,Γ) = γ, and so Γ(x) = γ(x)Γ(1) + Γ(x) + Γ(x). Since Γ is not minimal, we
have Γ(1) = 0 by (B.1). Hence Γ(x) = 0 for all x ∈ A, which contradicts (A.1).

(vii) By (B.2) and (B.4), Γ is a (1, γ)-derivation and by 1 < Γ, we have Γ2 = 0.
Moreover by ΛΓ 6= 0, we also have Ω = ΛΓ. This case is in our lemma. �

Lemma 1.4. Let | P | = 4 such that P satisfies the condition (A.6). If | P (min) | = 1,
then P is one of the following types.

(1) P = {1 < Λ; 1 < Γ; 1 < Ω | Λ2 = Γ2 = Ω2 = ΛΓ = ΛΩ = ΓΩ = 0}, where Λ
(resp. Γ, Ω) is a (1, λ) (resp. (1, γ), (1, ω))-derivation.

(2) P = {1 < Γ; 1 < Λ < Λ2 | Λ3 = Γ2 = ΛΓ = 0}, where Λ (resp. Γ) is a (1, λ)
(resp. (1, γ))-derivation.

(3) P = {1 < Λ, Γ < ΓΛ | ΛΓ = ΓΛ, Λ2 = Γ2 = 0}, where Λ (resp. Γ) is a (1, λ)
(resp. (1, γ))-derivation.

(4) P = {1 < Λ < Γ < ΓΛ | ΛΓ = ΓΛ, Λ2 = Γ2 = 0}, where Λ is a (1, λ)-derivation.

(5) P = {1 < Λ < Λ2 < Λ3 | Λ4 = 0}, where Λ is a (1, λ)-derivation.

Proof. First, we note that P contains the identity map 1 : A→ A, because P (min) is
a group. So we can set

P = {1, Λ, Γ, Ω | 1 is the unique minimal}.

According to the cardinarity of P (max), the types of P are divided as follows.

(i) {1 < Λ; 1 < Γ; 1 < Ω}, (ii) {1 < Γ; 1 < Λ < Ω}, (iii) {1 < Λ < Γ, Ω},

(iv) {1 < Λ, Γ < Ω}, (v) {1 < Λ < Γ < Ω}.

We examine each case.
(i) Since Λ < Λ2, Λ < ΛΓ and Λ < ΛΩ, then by Lemma 1.2 and the maximality of

Λ, we have Λ2 = ΛΓ = ΛΩ = 0. Similarly we have Γ2 = ΓΩ = Ω2 = 0. And the other
properties of Λ, Γ and Ω are obtained by (B.2) and (B.4). This gives the type (1).
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(ii) Multiplying by Γ and Ω, we have

Γ < Γ2, Γ < ΓΛ < ΓΩ and Ω < ΓΩ, Ω < ΛΩ < Ω2,

respectively. Then using the maximality of Γ, Lemma 1.2 and (A.6), we have

Γ2 = ΓΛ = ΓΩ = 0, ΩΛ = Ω2 = 0 and Ω = Λ2.

This gives the type (2).

(iii) By 1 < Λ < Γ and 1 < Λ < Ω, we have Ω = Λ2 = Γ by (A.6), which is a
contradiction. Therefore this case does not happen.

(iv) By the maximality of Ω and Lemma 1.2, we have Ω2 = ΩΓ = ΩΛ = 0. If ΛΓ = 0,
then by (A.6) we get Ω = Λ2 = Γ2. Since Λ < Ω = Γ2, we have a contradiction by
(A.4)(ii). Therefore Ω = ΛΓ and Λ2 = Γ2 = 0. The other properties of Λ and Γ are
obtained by (B.2) and (B.4). This gives the type (3).

(v) Since Ω is maximal, then Ω2 = ΩΛ = ΩΓ = 0. If Ω 6= ΛΓ, then by (A.6),
Λ2 = Ω = Γ2 and so Γ < Λ2. This contradicts (A.4)(ii). Hence Ω = ΛΓ. On the other
hand if Λ2 = 0, then Λ2 = Γ2 = 0. And if Λ2 = Γ, then 1 < Λ < Λ2 < Λ3, Λ4 = 0. These
give the types (4) and (5). Especially, (5) is the cyclic type. �

According to Lemmas 1.3 and 1.4, we will classify commutative quartic P -Galois
extensions. So in the following, we will assume that P is a relative sequence of homo-
morphisms such that | P | = 4 and satisfies the condition (A.6), and A is a commutative
quartic P -Galois extension over a field k of characteristic not 2.

2. The case of Lemma 1.3

In this section, we assume

P = {1 < Γ; Λ < ΛΓ | ΛΓ = ΓΛ, Λ2 = 1 and Γ2 = 0},

where Γ is a (1, γ)-derivation, and we have

A1 = {a ∈ A | Λ(a) = a} and A0 = {a ∈ A | Γ(a) = 0}.

Since j : D(A, P ) → Homk(A,A) is an isomorphism, then we have dimkD(A, P ) =
4dimkA = (dimkA)2. Hence dimkA = 4. First, we prove the following
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Lemma 2.1. dimkAi = 2 or 3. (i = 0, 1).

Proof. Let 1, x, y, z be a k-basis of A. Suppose A0 = k. Then it is easy to see that
Γ(a) ∈ A0 = k (a ∈ A) and by relations

Γ(x2) = Γ(x)x+ γ(x)Γ(x) and Γ(xy) = Γ(x)y + γ(x)Γ(y),

we have
Γ(x2)Γ(y) − Γ(xy)Γ(x) = Γ(x)Γ(y)x − Γ(x)2y.

Since 1, x, y are linearly independent over k, then Γ(x) = 0 and thus x ∈ k, which
is a contradiction. Hence A0 6= k. By [2, Theorem 3.4], there exists a0 ∈ A such that
(1 + Λ)Γ(a0) = 1 and so a0 /∈ A0. Hence A 6= A0. Therefore we see dimkA0 = 2 or 3.

On the other hand, if A1 = k, then by (1 + Λ)(a0) ∈ A1 = k, we have a contradiction:
0 = Γ((1+Λ)(a0)) = (1+Λ)Γ(a0) = 1. Hence A1 6= k. Since A1 6= A, we see dimkA1 = 2
or 3. �

Lemma 2.2. (1) A0 has a k-basis 1, x such that x2 = b ∈ k and Λ(x) = −x.
(2) A1 has a k-basis 1, z such that z2 = c ∈ k, Γ(z) = 1 and γ(z) = −z.

Proof. (1) Suppose that dimkA0 = 3 and 1, w, y is a k-basis of A0. Take a0 ∈ A such
that (1+Λ)Γ(a0) = 1 and set z = a0 +Λ(a0). By Γ(z) = 1, we see that 1, w, z, zw are k-
basis of A and so we set y = s0 +s1w+s2z+s3zw (si ∈ k). Then by 0 = Γ(y) = s2 +s3w,
we have a contradiction: y = s0 + s1w. Therefore by Lemma 2.1, dimkA0 = 2 and we
may suppose that 1, w are k-basis of A0. Since A0 is a subalgebra, there exist r, s ∈ k
such that w2 = rw+s. Take w = x+ r/2, we have x2 = b for some b ∈ k and 1, x, z, zx
are also k-basis of A such that Γ(x) = 0 and Γ(z) = 1.

Now, we set Λ(x) = t0 + t1x + t2z + t3zx (ti ∈ k). By ΓΛ(x) = ΛΓ(x), we have
Λ(x) = t0 + t1x. Since Λ induces an automorphism of A0 and x2 = b, we get Λ(x) = t1x

and t21b = b (t1 6= 0). Therefore by Λ2 = 1 and Λ 6= 1, we have Λ(x) = −x.
(2) Suppose dimkA1 = 3. Since Γ(1 + Λ)(a) ∈ A0 ∩ A1 (a ∈ A), we can take a0 ∈ A

such that Γ(1 +Λ)(a0) = 1. Then there exists a k-basis 1, z, u of A1 such that Γ(z) = 1.
Let 1, x be a k-basis of A0 as in (1). As is easily seen, 1, x, z, zx are k-basis of A and
so we set u = t0 + t1x + t2z + t3zx (ti ∈ k). By u = Λ(u) and Λ(x) = −x, we have a
contradiction: u = t0 + t2z. Therefore by Lemma 2.1, dimkA1 = 2 and 1, z are k-basis
such that Γ(z) = 1. We set z2 = sz + t for some s, t ∈ k. Since 2 is invertible, we can
take z2

1 = c ∈ k such that Λ(z1) = z1 and Γ(z1) = 1. �
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By Lemmas 2.1 and 2.2, the following theorem is easily seen.

Theorem 2.3. There exists a k-basis 1, x, z, zx of A such that

(1) x2 = b and z2 = c for some b, c ∈ k,

(2) Γ(x) = 0, Λ(x) = −x, Γ(z) = 1 and Λ(z) = z.

In this case, A is isomorphic to A0 ⊗k A1 as k-algebra.

By this theorem, we may denote a P -Galois extension A/k by a pair of elements
(b, c) ∈ k × k. Under these notations, we have the following theorem.

Theorem 2.4. Let A = (b, c) and A′ = (b′, c′) be P -Galois extensions denoted above.
Let 1, x, z, zx and 1, x′, z′, z′x′ be k-basis of A and A′ as in Theorem 2.3, respectively.
Then a map ϕ : A = (b, c) → A′ = (b′, c′) is an isomorphism of P -Galois extension if
and only if there exists non-zero element r ∈ k such that b = r2b′. In this case, there hold
ϕ(x) = rx′, ϕ(z) = z′ and c = c′.

Proof. We set ϕ(x) = r0 + r1x
′ + r2z

′ + r3z
′x′ (ri ∈ k). Then by Γϕ(x) = ϕ(Γ(x)) = 0

and ϕ is an k-algebra isomorphism, we have r0 = 0 and b = r2
1b
′. Similarly we have

ϕ(z) = z′ and c = c′. The converse is clear. �

By Theorem 2.4, we can estimate the cardinality of the isomorphism classes of P -
Galois extensions as follows.

Corollary 2.5. The cardinality of the isomorphism classes of P -Galois extensions is

| (k×/(k×)2)× k | ,

where k× is the multiplicative group of k.

3. The case of Lemma 1.4

In this section, we determine the structure of P -Galois extensions, where P is one of
the types of Lemma 1.4.

3.1. First, let

P = {1 < Λ; 1 < Γ; 1 < Ω | Λ2 = Γ2 = Ω2 = ΛΓ = ΛΩ = ΓΩ = 0},
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where Λ, Γ and Ω are (1, λ), (1, γ) and (1, ω)-derivations, respectively. Since 1 is the
unique minimal, then A1 = A and so A0 = k. Let 1, x, y, z be a k-basis of A. Since Λ
is a (1, λ)-derivation, we have

Λ(x2) = Λ(x)x+ λ(x)Λ(x) and Λ(xy) = Λ(x)y + λ(x)Λ(y).

By these relations we get

Λ(x2)Λ(y) − Λ(xy)Λ(x) = Λ(x)Λ(y)x − Λ(x)2y.

Using that Λ(a) ∈ A0 = k (a ∈ A) and 1, x, y are linearly independent over k, we get
Λ(x) = 0. Similarly we also get Γ(x) = Ω(x) = 0. Hence x ∈ k, which is a contradiction.
Therefore there does not exist a P -Galois extension.

Second, let

P = {1 < Γ; 1 < Λ < Λ2 | Λ3 = Γ2 = ΛΓ = 0},

where Λ and Γ are (1, λ) and (1, γ)- derivations, respectively. Then A1 = A and A0 = k.
Set

AΓ = {a ∈ A | Γ(a) = 0}.

Using that Γ is a (1, γ)-derivation, we have

Γ(x2)Γ(y) − Γ(xy)Γ(x) = Γ(x)Γ(y)x − Γ(x)2y = 0.

Since Γ(a) ∈ k (a ∈ A), then Γ(x) = 0 and so x ∈ AΓ. Smilarly y, z ∈ AΓ. Hence
AΓ = A. Consider the map j : D(A, P ) → Homk(A,A) defined in Definition 1.1 (P.3).
Then by j(uΓ)(a) = Γ(a) = 0 (a ∈ A = AΓ), j is not an isomorphism. Thus we have the
following theorem.

Theorem 3.1. If P is one of the types of (1) or (2) of Lemma 1.4, then there does not
exist a P -Galois extension.

3.2. In this subsection, let P be the types (3) or (4) of Lemma 1.4. Then P has the
following common properties.

(1) Λ is a (1, λ)-derivation.
(2) ΛΓ = ΓΛ is the unique maximal element of P .
(3) 1 is the unique minimal element of P .
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(4) Λ2 = Γ2 = 0.

Using the above properties, we have the following lemma.

Lemma 3.2. There exists a k-basis 1, x, y, xy of A such that

Λ(x) = Γ(y) = 1 and Λ(y) = Γ(x) = 0.

Proof. Since ΓΛ is unique maximal and 1 is unique minimal, there exists a ∈ A such
that ΛΓ(a) = 1 by [2,Theorem 3.4]. Set x = Γ(a) and y = Λ(a). Then by ΛΓ = ΓΛ and
Λ2 = Γ2 = 0, we have

Λ(x) = Γ(y) = 1 and Λ(y) = Γ(x) = 0.

Using these relations, we see that 1, x, y, xy are k-basis of A. �

Now, to determine the structure of P -Galois extension A/k, we take another k-basis
as follows.

Lemma 3.3. There exists a k-basis 1, z, w, zw of A such that

(1) 1, z are a linearly independent over k[w] such that z2 = b ∈ k[w] and w2 = c ∈ k,
where k[ω] is the k-subalgebra generated by ω,

(2) Λ(z) = Γ(w) = 1 and Λ(w) = 0.

Proof. As is easily seen, A0 = {a ∈ A | Λ(a) = Γ(a) = 0} = k. Using a k-basis
1, x, y, xy as in Lemma 3.2, we may set y2 = r0 + r1x+ r2y + r3xy (ri ∈ k). Then by
Λ(y2) = Λ(y)y + λ(y)Λ(y) = 0 = r1 + r3y, we get r1 = r3 = 0 and hence y2 = r0 + r2y.

Now, we divide into two cases.
(i) If P is of type (3) of Lemma 1.4, then Γ is a (1, γ)-derivation and so Γ(1) = 0.

Put w = y − r2/2. Then 1, x, w, xw are k-basis of A such that

Λ(x) = Γ(w) = 1, Λ(w) = Γ(x) = 0 and w2 = c ∈ k. (∗)

(ii) If P is of type (4) of Lemma 1.4, then by

Γ(1) = Γ(1 · 1) = Γ(1) + g(Γ,Λ)(1)Λ(1) + γ(1)Γ(1)

and γ is an automorphism, we have Γ(1) = 0. Therefore A has k-basis 1, x, w, xw with
the properties (*).
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By Λ(x) = 1 and Λ(w) = 0, we see that 1, x are k[w]-linearly independent. Since k[w]
is a subalgebra, we have x2 = a0 + a1x for some a0, a1 ∈ k[w]. Take z = x− a1/2. Then
z2 ∈ k[ω], Λ(z) = 1, and 1, z are k[w]-linearly independent. Therefore we can easily get
a k-basis 1, z, w, zw of A which is requested one. �

We denote a P -Galois extension A/k in Lemma 3.3 by [b, c] (b ∈ k[w], c ∈ k). Using
the basis in Lemma 3.3, we prove the following theorem.

Theorem 3.4. Let A = [b, c] and A′ = [b′, c′] be P -Galois extensions. Let 1, z, w, zw
and 1, z′, w′, z′w′ be k-basis of A and A′ in Lemma 3.3, respectively. If ϕ : A → A′ is
an isomorphism of P -Galois extension, then b = b′ and c = c′.

Proof. We set

ϕ(w) = r0 + r1z
′ + r2w

′ + r3z
′w′ and ϕ(z) = s0 + s1z

′ + s2w
′ + s3z

′w′,

(ri, si ∈ k). Then by Λ(ϕ(w)) = ϕ(Λ(w)) and Γ(ϕ(w)) = ϕ(Γ(w)), ϕ induces an
isomorphism from k[w] to k[w′] such that ϕ(w) = r0+w′ and ϕ(w2) = c = (r2

0+c′)+2r0w
′.

Hence r0 = 0, c = c′ and ϕ(w) = w′. Moreover, by Λ(ϕ(z)) = ϕ(Λ(z)), we have
ϕ(z) = s0 + z′ + s2w

′ and thus

ϕ(z2) = b = (s0 + s2w
′ + z′)2 = (s0 + s2w

′)2 + b′ + 2(s0 + s2w
′)z′.

Since 1, z′ are linearly independent over k[w′] and b, b′, s0 + s2w
′ ∈ k[w′], we have

s0 = s2 = 0. Hence ϕ(z) = z′ and b = b′. �

Since dimkk[w] = 2, we have

Corollary 3.5. The cardinality of the isomorphism classes of P -Galois extensions is

| k × k × k | .

Our results will be extended to noncommutative ring extensions under certain condi-
tions, but it seems to me that to calculate the cardinality of the isomorphism classes is
not easy. And the remaining case of char(k) = 2 was given in [7].
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